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Lattice layout and optimizer
e�ect analysis for generating
optimal transcranial electrical
stimulation (tES) montages
through the metaheuristic L1L1
method

Fernando Galaz Prieto*, Maryam Samavaki and

Sampsa Pursiainen

Computing Sciences, Faculty of Information Technology, Tampere University, Tampere, Finland

Introduction: This study focuses on broadening the applicability of the

metaheuristic L1-norm fitted and penalized (L1L1) optimization method in

finding a current pattern for multichannel transcranial electrical stimulation (tES).

The metaheuristic L1L1 optimization framework defines the tES montage via

linear programming by maximizing or minimizing an objective function with

respect to a pair of hyperparameters.

Methods: In this study, we explore the computational performance and

reliability of di�erent optimization packages, algorithms, and search methods in

combinationwith the L1L1method. The solvers fromMatlab R2020b,MOSEK 9.0,

Gurobi Optimizer, CVX’s SeDuMi 1.3.5, and SDPT3 4.0were employed to produce

feasible results through di�erent linear programming techniques, including

Interior-Point (IP), Primal-Simplex (PS), and Dual-Simplex (DS) methods. To solve

the metaheuristic optimization task of L1L1, we implement an exhaustive and

recursive search along with a well-known heuristic direct search as a reference

algorithm.

Results: Based on our results, and the given optimization task, Gurobi’s IP

was, overall, the preferable choice among Interior-Point while MOSEK’s PS and

DS packages were in the case of Simplex methods. These methods provided

substantial computational time e�ciency for solving the L1L1method regardless

of the applied search method.

Discussion: While the best-performing solvers show that the L1L1 method

is suitable for maximizing either focality and intensity, a few of these solvers

could not find a bipolar configuration. Part of the discrepancies between these

methods can be explained by a di�erent sensitivity with respect to parameter

variation or the resolution of the lattice provided.

KEYWORDS

transcranial electrical stimulation (tES), optimization, linear programming, L1-norm,

Interior-Point, metaheuristics

1 Introduction

Transcranial Electrical Stimulation (tES) is a non-invasive brain stimulation method
used for stimulating neuronal activity, treating psychiatric disorders, and studying
neuronal behavior by transmitting a constant low-intensity current pattern through
a set of electrode patches attached to the scalp of the subject to modulate cortical
excitability (Nitsche and Paulus, 2000). In tES, a volumetric current density in the brain
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is generated by injecting through the scalp a current pattern
that can be described via different properties, including the
number of active electrodes, their physical description (e.g.,
positioning, shape, permittivity, and impedance values), the applied
stimulus waveform (e.g., amplitude, pulse shape, pulse width, and
polarity), the number of stimulation sessions, and the time interval
(Peterchev et al., 2012). Since different electrode montages result in
distinct brain current flow, clinicians and researchers can adjust the
montage to target or avoid specific brain regions in an application-
specific manner.

An increasingly popular form of tES is the Transcranial
Direct Current Stimulation (tDCS)method (Paulus, 2011;Moreno-
Duarte et al., 2014; Thair et al., 2017; Reed and Cohen Kadosh,
2018). Compared to other non-invasive stimulation methods,
the advantages of tDCS can be attributed to its inexpensive
and approachable characteristics. Unlike the intricate machinery
required for Transcranial Magnetic Stimulation (TMS) or the
specialized frequency considerations in Transcranial Alternating
Current Stimulation (tACS), tDCS involves a simpler setup—a
direct current passed through scalp electrodes. This simplicity
not only reduces the cost of equipment but also enhances
portability, making tDCS more accessible for various settings,
including home use. The simplicity and minimal training required
contribute to its user-friendly nature enabling a broader range
of individuals to utilize or participate in studies involving this
method. Whereas tDCS is classically applied in a two-channel
configuration (Kaufmann et al., 2021), its focality can be enhanced
via multiple channels, which has motivated the introduction of
advanced optimization methods for finding an optimal multi-
channel montage (Fernandez-Corazza et al., 2020).

tES modeling involves constructing computational
representations of the head and brain anatomy, simulating
the distribution of electric fields. This process integrates factors
such as electrode placement, tissue conductivity, and finite element
method simulations to visualize and analyze the spatial distribution
of the electric field within the brain. Generating a high-resolution
forward model is critical for building an explicit patient-specific
head model, determining optimal positioning of electrodes, and
predicting electric field generation across the brain for specific
stimulation configurations (Faria et al., 2011; Rampersad et al.,
2013; Wagner et al., 2013). Using such a forward model, multi-
electrode stimulation can be optimized via specifically designed
mathematical methodology (Dmochowski et al., 2011; Ruffini et al.,
2014; Guler et al., 2016; Wagner et al., 2016; Fernandez-Corazza
et al., 2020), such as the recently developed convex optimization
schemes including the Distributed Constrained Maximum
Intensity (D-CMI) (Khan et al., 2022), and the metaheuristic
L1-norm regularized L1-norm fitting (L1L1) (Galaz Prieto et al.,
2022) which aim at an individualized distributional fit for a given
target activity.

In this study, we aim to broaden the applicability of the
linear programming (LP)-based L1L1 method for finding tES
electrode montages computationally in a comprehensive manner,
i.e., by evaluating the metaheuristic results and total computing
time through different mathematical optimization algorithms
and packages; this includes Interior-Point (IP) (Mehrotra,
1992), Primal-Simplex (PS), and Dual-Simplex (DS) (Boyd and
Vandenberghe, 2004) as alternative LP algorithms, and Matlab

(R2020b) from MathWorks (Zhang, 1999), MOSEK Optimization
Suite (Release 9.0) (Mosek, 2019), Gurobi Optimization (9.5.1)
(Gurobi Optimization LLC, 2022), SDPT3 (4.0) (Tütüncü et al.,
2003), and SeDuMi (1.3.5) (Sturm, 1999; Frenk et al., 2000; Polik
et al., 2007) as alternative packages. The latter two open-source
alternatives are available in the CVX optimization toolbox
(Grant and Boyd, 2014). We also investigate the metaheuristic
hyperparameter optimization (HPO) task of L1L1 via exhaustive
search (Bianchi et al., 2009) and recursive search (Je and Park,
2013) with heuristic direct search as a reference algorithm (Bogani
et al., 2009).

Our results suggest that the performance differences between
the above-mentioned optimization packages, algorithms, and
search methodology can be crucial regarding the optimization
results, focality stimulation current, and the availability of active
channels in the montage. Moreover, exhaustive and recursive
search methods can also be considered preferable to heuristic direct
search in terms of their overall reliability and predictability.

2 Materials and methods

In tES, a real L × 1 current pattern y is injected into the
subject’s head through a set of contact electrodes attached to the
scalp. These electrodes, ranging from 0.5 to 4.0 milliamperes (mA)
(Zaghi et al., 2010; Khadka et al., 2020; Workman et al., 2020),
form what is known as an electrode montage and are responsible
for distributing the injected volumetric current density–measured
in ampere per square meter (A/m2)–throughout the scalp, skull,
cerebrospinal fluid (CSF), and brain components, including cortical
and subcortical brain structures. The governing linear system is of
the form

L̂y = x̂, (1)

where L̂ is a real N × L lead field matrix (forward mapping)
that describes the relationship between the y, and x̂ is a real
N × 1 discretized volume current density vector. The linear system
(Equation 1) is re-interpreted component-wise as the focused field
L̂1y = x̂1, where the target field has non-zero values, and the
nuisance field L̂2y = 0, where it vanishes. Detailed mathematical
definition of the lead field matrix refer to Appendix A. Forward

model in Galaz Prieto et al. (2022).
The optimization problem needs to find the best matching

between y, and the focused field via Ly = x, where the projection of
the focused field into the direction of the target constitutes the first
component as

L =
(

L1
L2

)

=
(

PL̂1
L̂2

)

and x =
(

x1
0

)

=
(

Px̂1
0

)

with P denoting a matrix that projects a vector into the
direction of x̂1. The target amplitude ‖x1‖2 is set as 3.85 A/m2

which is an approximation of the excitation current threshold for
nerve fibers of the upper limb area of the motor cortex (Kowalski
et al., 2002).
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2.1 L1-norm fitted and regularized
optimization

The goal in L1-norm Fitted and Regularized (L1L1)
optimization method (Galaz Prieto et al., 2022) is to minimize

min
y

{
∥

∥

∥

∥

∥

(

L1y− x1
9ε[ν−1L2y]

)
∥

∥

∥

∥

∥

1

+ αζ‖y‖1

}

,

s.t. y � γ 1, ‖y‖1 ≤ µ,
L
∑

ℓ=1

yℓ = 0.

(2)

The injection on every active ℓ-th electrode channel is limited
to γ ≤ 2.0 mA, the total injection current dose flowing through
the tES head cap is within the safety limit µ ≤ 4.0 mA, and the
total sum of electric current from every active electrode channel in
yℓ, where ℓ ∈ {1, · · · , L}, must be equal to zero. The regularization
parameter α sets the level of L1-regularization with respect to the
scaling value ζ = ‖L‖1. The function

9ε[w]m = max{ |wm|, ε } for m = {1, 2, · · · ,M},

where w = (w1,w2, · · · ,wM), sets the nuisance field threshold
0 ≤ ε ≤ 1 with respect to the scaling value ν = ‖x‖∞,
meaning that entries (L2y)m with an absolute value below εν do
not actively contribute to the minimization process due to the
threshold.We refer to the set {m : |(L2y)m| ≥ εν } as the constraint
support, i.e., the index set contributing to the value of the objective
function. Detailed formulation of the linear programming system
(Equation 2) can be found in Galaz Prieto et al. (2022).

The current density Ŵ of the focused field is defined as

Ŵ = xT1 L1y

‖x1‖2
and Ŵmax = argmax

y,α,ε
Ŵ ,

and the focality of the stimulus 2 is defined as the following
current ratio

2 = Ŵ

‖L2y‖2/
√
M

and 2max = argmax
y,α,ε

2.

The metacriterion Ŵ ≥ Ŵ0 is applied to maintain appropriate
intensity at the target location. Namely, without a lower bound for
the intensity, the intensity of the maximizer is likely to vanish.

2.2 Two-stage metaheuristic lattice search

To derive a multi-channel tES montage following the
aforementioned equations, the optimization framework takes into
account the following indications: (A) a procedure for selecting
the most relevant electrodes in the montage for a given region
of interest; (B) a definition of the tuning parameters which will
maximize or minimize the objective function; and (C) a method
to evaluate said parameters and retrieve data (search method). In
this study, 128 electrodes were attached to the scalp following the
international 10-10 EEG hardware systemwith an impedance of 2.0
kOhm (kiloohms). Physiological impediments in the head model,
fluctuation in conductivity tissue, and behavior of the injected
current aspects are excluded. The framework of this search is as
follows:

(A) The two-stage determines which of the tES channels in the
neurostimulator headgear should be set as active or inactive
based on the field distribution on the head surface for a given
current source in the brain. After calculating the lead field
matrix, the user specifies an approximate region of interest
through forward dipole modeling (Bauer et al., 2015; Medani
et al., 2015; Pursiainen et al., 2016). This is the highlighted
region from which the two-stage procedure shall prioritize
the electrode selection as follows:

(A.1). During the first stage, the optimization model sets
all channels with an initial current of zero value and
determines a volumetric current density influenced
by the electric properties, direction, and positioning
of the dipole modeling. Then, the optimization
model filters the montage down to a (user-defined)
number of electrodes that contribute the most to
the maximal safety tES current injection based
on the initial range of α and ε values provided.
The corresponding electric potential from the now-
limited montage with channels yℓ is normalized to
meet the intended maximum current injection µ

value while the remaining electrodes are opted out of
further calculations. We constraint the total number
of active electrodes available to ℓ = 20 inspired by
commercial tES systems (Roy et al., 2019; Tost et al.,
2021).

(A.2). In the second stage, the optimization re-runs using
only the active electrodes obtained previously. In
this stage, the objective function can be retroactively
modified to retrieve a customizedmontage that favors
an intense volumetric current density Ŵ or a maximal
stimulation focality given a target current2. The final
result is then thresholded to a non-zero number of
currents in the pattern.

(B) Using metaheuristic methodology means developing an
algorithm that can produce near-optimal results in a
computationally feasible time (Bianchi et al., 2009). In the
present context, the objective is to iteratively adjust the
parameters α and ε to ascertain a solution that minimally
impairs the objective function. The aim is to secure a
heightened amplitude within the targeted focus field while
concurrently mitigating undesirable signals (the nuisance
field). We define a parameter space by specifying ranges for
αm from -100 to -20 dB and εn from -160 to 0 dB, employing
logarithmic increments. Plotting these parameter values on
a Cartesian plane elucidates the search space κ , subject to
a set of constraints delineated by the linear programming
paradigm at hand.

(C) The lattice search aspect defines the instructions on how
to retrieve information from the search space κ for
solving (Equation 2). This task can be considered as a
hyperparameter optimization (HPO) exercise (Feurer and
Hutter, 2019; Yang and Shami, 2020) for building a predictive
model that performs best when using the most fitting αm
and εn parameters. The following exploration techniques are
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evaluated for finding these parameters: exhaustive search,

direct search, and recursive search.

(C.1) The exhaustive search, or grid search, systematically
evaluates every possible candidate solution within
the search space κ , i.e., the Cartesian product of
each αm and εn value in existence (Figure 1A). The
final candidate solution is the combination that best
minimizes the objective function. We applied a coarse
grid of size κ = 15 and compared it against a finer grid
of size κ = 40.

(C.2) By direct search, we refer to the Generalized direct
search (GPS) (Bogani et al., 2009) available in the
Matlab’s optimization toolbox. It aims at finding a
point in the hyperparameter space without knowledge
of any gradient. The method begins with a given
search window D(i) and an initial estimate ψ (i)

(α,ε)
acting as a pivot. The location of this window
is centralized over the pivot along with its four
orthogonal neighbor points in the Euclidian distance
w(i), i.e.,

D(i) = {ψ (i)
(αm ,εn)

,ψ (i)
(αm ,εn+w(i)

),

ψ
(i)
(α

m+w(i)
,εn)

,ψ (i)
(αm ,εn−w(i)

),ψ
(i)
(α

m−w(i)
,εn)

}.

Figure 1B depicts themesh and its behavior. At each
i-th iteration within the mesh, if a neighboring point
performs better than the center point, the window
reallocates this point as the new pivot. If none of these
points yields a better output, then the length of the
mesh w is reduced, and a new set of neighbor points
is adopted. That is,

w(i+1) =
{

w(i), if ψ (i+1)
(αm ,εn)

≤ ψ
(i)
(αm ,εn)

,

w(i)/2, if none satisfies.

The cycle repeats until the number of i iterations is
reached or the algorithm is unable to find any better
point.

(C.3) The recursive search is a modified version of the
three-step search block-matching algorithm (Je and
Park, 2013) that resembles a combination of the
previously mentionedmethods; it defines the subset of
the hyperparameter space as in (C.1), and converges
towards the most fitting solution by recursively
reducing the region of feasibility similar to (C.2). In
this study, we adapted the algorithm for tuning α and
ε by dividing these finite sets into two linearly-spaced
vectors with {κ̃} points, recursively through a number
of M iterations, taking their minimum and maximal
values as their lower and upper bounds, i.e.,

α̃(M+1) = {(α(M)
κ̃

− α(M)
1 )/(κ̃ − 1)}, and

ε̃(M+1) = {(ε(M)
κ̃

− ε(M)
1 )/(κ̃ − 1)}, respectively.

Thus, the method updates the hyperparameter
space by replacing it with a narrower subspace instead

of shrinking the search window (Figure 1C). At each
M-th iteration, the search window, with initial size
wi = βi

2, finds the center of the subspace such that

1

βi
ψ (i) ≤ ψ (i) ≤ βiψ

(i) ,

where ψ (i) is the central point at the i-th grid and
the optimal solution from the previous (or initial)
feasible region β−1

i−1ψ
(i−1) ≤ ψ (i−1) ≤ βi−1ψ

(i−1). A
search window of size wi+1 is centered at the location
of ψ (i), i.e., βi = sβi−1 with s > 0,

wM = β2M =
(

u0

l0

)1/K

and s =
(

l0

u0

)
K−1
KM

,

where u0 and l0 are the upper and lower limits from
the initial hyperparameter space, respectively, and K

equals a user-defined reference lattice size for a single
non-recursive search. We evaluate and compare this
method by setting κ̃ = {3, 5, 7, 9}, withM = {1,· · · , 3}
in each case. With this set of equations, the workload
of an exhaustive search is reduced to O(MK̃2), where
K̃ is a smaller grid size, i.e, K̃ < K√

M
.

Additionally, we estimated the limits for the lattice-induced
deviation of 2max and Ŵmax via a second-order Taylor’s polynomial
approximation (Sauer, 2018), With this strategy, the deviation
is obtained with respect to a hypothetical lattice with twice the
resolution compared to the actual one.

2.3 Reciprocity principle

The Reciprocity Principle (Fernandez-Corazza et al., 2020) is
an explicit approach for obtaining maximum current density, Ŵmax,
based on the reciprocity of the electromagnetic field propagation.
Specifically, the maximum stimulation amplitude is obtained with a
two-patch tES electrode montage corresponding to the two greatest
EEG electrode voltages generated by a desired target current in
the brain. The principle considers the connection between the
forward and reverse propagation of the electromagnetic field, which
is predicted by the lead field matrix.

2.3.1 Formulation of the reciprocity principle for
a tES lead field matrix

While gradient propagation in general electromagnetism is not
always reciprocal, it can be shown that a bipolar montage in tES
corresponds to the greatest absolute back-projected currents in the
vector LTx1. The reciprocity principle can be formulated, for a
restricted system, as

LRKyK = x, (3)

where RK denotes a real N × K (K ≤ N) restriction matrix
whose nonzero entries rij ,j = 1 correspond to an ordered subset of
electrodes

S = ij : j = 1, 2, · · · ,K, with |(LT1 x1)i1 | ≥ |(LT1 x1)i2 | ≥ · · ·
≥ |(LT1 x1)iK |.
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FIGURE 1

Schematic illustration of the Hyperparameter Optimization (HPO) techniques applied; (A) the exhaustive search method evaluates the entire

hyperparameter space, case by case; (B) The direct search method employs a pattern that shrinks in size towards the direction in which the objective

function decays; and (C) the recursive search divides the space into subspaces based on the size of the search lattice, shrinking and repositioning the

lattice towards the most fitting solution in a recursive manner.

The reciprocity principle follows by writing the intensity as
Ŵ = σK yTK sK with σK = ‖RKL

T
1 x1‖1/‖x1‖2 and sK =

RKL
T
1 x1/‖RKL

T
1 x1‖1 describing that Ŵ can be interpreted as a

projection of yK on σK sK . Thus, the maximum of Ŵ is achieved
when yK is parallel to sK . The maximizer is then up-scaled to
match the applied current dose µ, i.e., yK = µ sK . Therefore, the
correspondingmaximum intensity isŴ = µσK ‖sK‖22. The optimal
maximizer montage is

max
K
µσK‖sK‖22 ,

where, by definition, ‖sK‖1 = 1 for any K = 1, 2, . . . ,N, and
the entries of sK are ordered in descending order with respect to
their absolute value. Assuming that these entries are given by λ1 ≥
λ2 ≥ · · · ≥ λK ≥ 0, respectively, it holds that ‖sK‖1 =

∑K
j=1 λj,

‖sK−1‖1 = (λj − 1)−1∑K−1
j=1 λj, and

‖sK‖22 − ‖sK−1‖22 =
λK

1− λK



λ2K−λK+
2− λK
1− λK

K−1
∑

j=1

λ2j



 ≥

λK

1− λK



λ2K−λK+2
K−1
∑

j=1

λ2j





≥ λK

1− λK



Kλ2K−λK+
K−1
∑

j=1

λ2j



 .

The equality follows a straightforward substitution, the first
inequality is based on

2− λK
1− λK

= 1+ 1

1− λK
≥ 2,

and the second one is obtained as (K − 1)λ2K ≤
∑K−1

j=1 λ
2
ij
.

Following from the discriminant, together with the Arithmetic
Mean–Quadratic Mean inequality

1

K − 1

K−1
∑

j=1

λ2j ≥





1

1− K

K−1
∑

j=1

λj





2

,

The second factor in Equation (3) does not have roots if

K

K−1
∑

j=1

λ2j ≥





K−1
∑

j=1

λj





2

≥ 1

4
, i.e.,

K−1
∑

j=1

λj ≥
1

2
.

This assumption is valid since a montage with only two active
channels cannot contain more than two halves of the total dose
(otherwise, the sum of said currents will be less than zero). Hence,
‖sK‖22 − ‖sK−1‖22 ≥ 0 for any montage, and the maximum of Ŵ is
obtained with the bipolar pattern that corresponds to the first two
entries i1 and i2 in the set S .

2.4 Mathematical optimization software

We solve the optimization task (Equation 2) using the Interior-
Point (IP), the Primal-Simplex (PS), and the Dual-Simplex
(DS) methods. The class of the IP methods is sub-divided
into the primal-dual algorithms (predictor-corrector) (Fiacco and
McCormick, 1964; Mehrotra, 1992) and the barrier methods, which
determine the feasible set via a barrier function. While IP methods
utilize Newton’s method to operate in the interior of a feasible set
(Boyd and Vandenberghe, 2004), simplex methods seek solutions
by considering the feasible set as a convex polytope and moving
along its edges. While this strategy uses less memory than the
interior-point strategy, it has lower predictability for large-problem
convergence.

The concepts of primal- and dual-simplex refer to the
formulation of the linear programming problem; by presenting
the entries of the current pattern y as differences of non-negative
variables (yi = si − pi, si, pi ≥ 0) and the equality constraint
via two inequalities (condition a = 0 is satisfied, a ≤ 0 and
−a ≤ 0), the task can be brought back to the following standard
primal formulation:

max
z

cTz subject to Az ≤ b, z ≥ 0 ,
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TABLE 1 Description of the Linear Programming (LP) solvers applied for

solving the L1L1 optimization problem through the Interior-Point (IP),

Primal-Simplex (PS), and Dual-Simplex (DS) algorithms.

Solver Interface Method Code

Matlab 2020b Optimization
toolbox

Interior-Point
(Primal-Dual)

Matlab IP

Primal-Simplex Matlab PS

Dual-Simplex Matlab DS

MOSEK 9.0 MOSEK
toolbox

Interior-Point
(Primal-Dual)

MOSEK IP

Primal-Simplex MOSEK PS

Dual-Simplex MOSEK DS

Gurobi Optimizer Gurobi
toolbox

Interior-Point
(Barrier Method)

Gurobi IP

Primal-Simplex Gurobi PS

Dual-Simplex Gurobi DS

SDPT3 4.0 CVX 2.1 Interior-Point
(Primal-Dual)

SDPT3 IP

SeDuMi 1.3.5 CVX 2.1 Interior-Point
(Primal-Dual)

SeDuMi IP

All solvers were embedded with Matlab’s version R2020b and called by the optimizer of the

Zeffiro Interface (ZI) toolbox. Matlab, MOSEK, CVX’s SDPT3, and CVX’s SeDuMi apply

primal-dual routines, and Gurobi uses the barrier method.

whose dual is given by

min
ẑ

bT ẑ subject to AT ẑ ≥ c, ẑ ≥ 0 .

The IP algorithms applied in this study include Gurobi’s parallel
barriermethod and the primal-dual routines fromMatlab,MOSEK,
SDPT3, and SeDuMi. The simplex methods include MOSEK’s PS
and DS, Gurobi’s PS and DS, and Matlab’s DS algorithm. Matlab’s
Optimization Toolbox has two IP solvers, of which we apply
the interior-point legacy (IPL), whose origin is in the Linear-
Programming Interior Point Solvers (LIPSOL) package (Zhang,
1999). All the solvers, their types, and their abbreviations used in
this study are described in Table 1.

2.5 Numerical domain and computing
platform

As the domain of the numerical simulations, we applied a
realistic tetrahedral 1.0mmFEmesh based on an open T1-weighted
Magnetic Resonance Imaging (MRI) dataset1. Through FreeSurfer
Software Suite2, we segmented the data to find the complex surface
boundaries between different tissue compartments, including the
skin, skull, cerebrospinal fluid (CSF), gray and white matter, and
subcortical structures such as brain stem, thalamus, amygdala, and
ventricles (Fischl, 2012). Their conductivity values, which influence
the accuracy of the forward solution (Montes-Restrepo et al., 2014),
were set according to (Dannhauer et al., 2011). We discretized
the volumetric current density to solve the inverse problem using

1 https://brain-development.org/ixi-dataset/

2 https://surfer.nmr.mgh.harvard.edu/

563 spatial nodes evenly distributed in the gray and white matter
compartments of the cerebrum and cerebellum with approximately
1.3 cm (centimeters) distance between two neighboring nodes,
associating each node with three divergence-free Cartesian field
components.

Through dipole modeling (Bauer et al., 2015; Medani et al.,
2015; Pursiainen et al., 2016), we define the region of interests
from which the multi-channel tES montage should be derived.
We selected the primary somatosensory cortex in the postcentral
gyrus (Figure 2A), the primary auditory cortex of the posterior
superior temporal gyrus (Figure 2B), and the primary visual cortex
in the occipital lobe (Figure 2C) as the target areas. Each dipole is
normally oriented with respect to the surface of the gray matter to
satisfy the normal constraint of brain activity in the cerebral cortex
(Creutzfeldt et al., 1962). Each L1L1 method-based current pattern
obtained represents an approximative solution to the optimization
problem (Equation 2) corresponding to one of the aforementioned
areas.

We performed the numerical simulations using a Dell 5820
workstation with a 10-core Intel Core i9-10900X processor and
256 GB of RAM. The L1L1 solver was implemented in Matlab-
based Zeffiro Interface toolbox3 (He et al., 2019) which builds a
high-resolution finite element (FE) mesh and generates a tES lead
field matrix (Galaz Prieto et al., 2022) for a given surface-based
head segmentation incorporating the Complete Electrode Model’s
(CEM) boundary conditions (Pursiainen et al., 2012, 2017).

3 Results

The exhaustive search proved to be a reliable method for
experimental benchmarking when the required tES montage
requires careful design for clinical applications. By presenting the
exhaustive search results in the form of a heatmap with a coarse
grid of κ = 15 (Figure 3A), we can pinpoint the (α, ε) region
where the focused current amplitude reaches its maximum. Despite
a significantly increased number of evaluations, with a finer grid
of κ = 40 (Figure 3B), we can further determine a more detailed
optimal area. This area corresponds to the Cartesian product of αm
ranging from −71 to −50 dB and εn from 0 to −98 dB. In this
context, a high current injection montage, denoted by Ŵmax (yellow
star), is positioned at the peak of the amplitude, while focality-
based montages,2max (purple star), adhere closely. However, these
focality-based montages are slightly deviated due to the influence
of the nuisance field, despite being relatively close, as determined
by a threshold condition corresponding to 75% of the maximum
amplitude achievable with the two-patch bipolar tES montage. In
comparison between these grid resolutions, one can observe slight
enhancements in amplitude, increased optimization accuracy, and
improved numerical stability in the latter case. These aspects are far
more noticeable with Dual- and Primal-Simplexmethods than with
the Interior-Point, which yields overall smoother results with fewer
drastic deviations.

Figure 4 delineates the performance nuances among
optimization strategies. The whiskers along the stems signify
a second-order Taylor’s polynomial estimate, reflecting the
maximum deviation within half lattice units distance from

3 https://github.com/sampsapursiainen/ze�ro_interface
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FIGURE 2

Top row: 3D view of the head model coupled with a 128-channel electrode array (blue dots) following a 10-10 EEG hardware configuration. A

synthetic dipole, (magenta spherical arrow), which simulates a current distribution, is placed at the (A) primary somatosensory cortex in the

postcentral gyrus, (B) primary auditory cortex in posterior superior temporal gyrus, and (C) primary visual cortex in the occipital lobe, respectively.

Bottom row: 2D plane view of the head model displaying the electric field distribution generated by an optimal tES montage following the reciprocity

principle which maximizes the focused volumetric current density. The direction of the injection current pattern generated by the montage matches

the dipole’s orientation. The anodal channels (red spheres) are found by the posterior, while the cathodal channels (blue spheres) by the parietal or

frontal sections. The empty circles indicate inactive channels. The volumetric current density is given in Amperes per square meter (A/m2).

the optimizer. The reciprocity principle reference for Ŵmax is
represented by a horizontal black dashed line, and the number of
non-zero (NNZ) channels required for a tES montage is depicted
on the right side of each corresponding stem. The solvers are sorted
in ascending order based on their performance, with the exhaustive
search κ = 40 grid (blue) serving as the point of reference. Both
the direct and recursive search techniques adeptly uncover optimal
(α, ε) solutions for 2max and Ŵmax, yielding a substantial reduction
in total computing time compared to the specified hyperparameter
space.

Due to the heuristic nature of the direct search, and to

assert the efficacy of the said technique, we performed a series
of trial runs by setting the initial point to the center of the

search space. In these trials, the number of objective function
evaluations varied, ranging from 25 to 54 trials, with a 33.8 mean

among the evaluations (see Table 2). While the number of function

evaluations was slightly higher, the quality of the results was
nearly on par with those obtained with the recursive search with

a search window of K̃ = 3. With IP solvers, the search runs were
mostly successful, while PS and DS tended to fail to find a feasible
optimizer candidate.

Due to its relatively fast performance among interior-point
methods, we applied MOSEK IP to evaluate topographical maps
of stimulus focality 2max (Figure 5A) and current density Ŵmax

(Figure 5B) for an exhaustive search κ = 15 and a recursive
search K̃ = 3. Overall, the results of the recursion were close
to the outcome of the exhaustive search. Thus, the topographical
differences between the different approaches of this study were
observed to be minor.

By limiting the search space only to a narrower subspace is
a simple countermeasure for dealing with the disadvantages of
the exhaustive search. With a κ = 15 grid as a reference, it
can take approximately 850 seconds to perform a complete search
for the first stage, while the second stage only takes roughly 15%
of that time since it uses a limited lead field following from the
limited number of active electrodes. As an alternative approach,
the direct and recursive search seemed to perform well compared
to the number of objective function evaluations made during the
search process (Figure 6). In particular, MOSEK turned out to be
the superior choice, with MOSEK DS being the fastest one. The
computing time for Gurobi IP was close to that of MOSEK IP, and
Gurobi DS, PS, and Matlab IPL and DS required approximately
three times the time. The slowest-performing SDPT3 and SeDuMi
took as much as six times the run time of MOSEK IP. Overall,
the simplex methods applied to the L1L1 optimization scheme
deliver faster yet less accurate solutions than Interior-Point (IP) for
focality-based montages, while minor differences can be found for
intensity-based solutions.

4 Discussion

In this study, we analyzed the numerical and computational
performance of exhaustive search, direct search, and recursive
search techniques to find an optimal stimulation focality 2 and
current density Ŵ for solving the L1L1 optimization problem
for non-invasive transcranial electrical stimulation (tES) current
injection. This analysis was motivated by our earlier results in
(Galaz Prieto et al., 2022) which suggested that the L1L1 method
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FIGURE 3

Performance comparison of the exhaustive search for solving the L1-norm fitted and penalized (L1L1) optimization method with current density Ŵ as

the objective function. The coarse (A) search space κ = 15 produces 225 evaluations, and the finer (B) search space κ = 40 with 1600 evaluations,

both using regularization parameter α (x-axis) and the nuisance threshold level ε (y-axis). The candidate solutions with respect to current density

Ŵmax and focality 2max are marked with a yellow and purple star, respectively. The maximizers are generally found around from area in which α is

between −71 to −50 dB dB (decibels) and ε from 0 to −98 dB. Notice that in the case of using the Gurobi package, with a Simplex algorithm, both

optimal candidate solutions for either a stimulus focality or a current density both optimal solutions are taking the same (α, ε) tuning parameters due

to the sharp steepness from the coarse search space. The volumetric current density on every chart is given in Amperes per square meter (A/m2).

provides a theoretically attractive approach for obtaining a high-
gain focal stimulus as compared to complex L2-norm fitting and
regularized least squares techniques (Dmochowski et al., 2011;
Wagner et al., 2016).

The reciprocity principle, as outlined by Fernandez-Corazza
et al. (2020), served as a reference technique. Its validity was
shown for the present tES lead field matrix L (see Section 2.3.1).
When focusing on a specific target region, the current injection
pattern from a two-patch tES montage aligns with the maximum
intensity achievable through this principle. Essentially, this involves
selecting the two electrodes with the highest absolute back-
projected currents. With the absence of nuisance field constraints,
the L1L1 solution was observed to agree with the reciprocity
principle if the aforementioned algorithmic aspects were handled
appropriately.

Decisive aspects for a successful outcome of L1L1 were found
to be the choice of the optimization package, algorithm, and
search routine, which significantly affect both the performance of
the metaheuristic optimization process and output. To enlighten
this aspect, we covered the performance of several Interior-
Point (IP) (Mehrotra, 1992), Dual-Simplex (DS), and Primal-
Simplex (PS) (Boyd and Vandenberghe, 2004) methods from
different open-source and commercial optimization toolboxes.

We tested the L1L1 method using the commercial solvers of
MOSEK Optimization Suite (Release 9) (Mosek, 2019) and Gurobi
Optimization (9.5.1) (Gurobi Optimization LLC, 2022), and
compared them to the open-source alternatives (Grant and Boyd,
2014) SDPT3 (4.0) (Tütüncü et al., 2003) and SeDuMi (1.3.5)
(Sturm, 1999; Frenk et al., 2000; Polik et al., 2007) as well as Matlab
R2020b’s (MathWorks) Interior-Point-Legacy (IPL) algorithm,
which originates from the open LIPSOL (Zhang, 1999) toolbox.
We selected the IPL algorithm since we experienced stagnation
with Matlab’s main IP algorithm, which did not return any
appropriate results.

Based on the results, we consider Gurobi IP to be the preferable
choice in both optimization stages, considering 2max and Ŵmax in
each tested target region of interest and, as it was also overall
the fastest of the IP solvers. While the best-performing solvers
show that the L1L1 method is suitable for maximizing focality
and intensity, a few did not find the bipolar current pattern that
maximizes Ŵmax. Notably, SDTP3 did not find a bipolar pattern at
all, verifying our earlier hypothesis (Galaz Prieto et al., 2022) that
the performance of L1L1 might be highly solver-based. Part of the
discrepancies between the optimization methods can be explained
by a different sensitivity with respect to parameter variation or the
resolution of the lattice.
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FIGURE 4

Stem plots results from the two-stage metaheuristic lattice search using exhaustive search with coarse grid of κ = 15 (red) and fine grid of κ = 40

(blue), and a recursive one with K̃ = {3, 5, 7, 9} (cyan, magenta, green, and black, respectively) considering the somatosensory (Som.), auditory (Aud.)

and visual (Vis.) regions of interest. The whiskers in the stem plot indicate a second-order Taylor’s polynomial estimate for the maximum deviation

within a half-lattice unit distance from the optimizer. The intense current injection (Ŵmax) calculated using the reciprocity principle is shown with a

horizontal black dashed line as a reference. The number of non-zero (NNZ) channels in the Transcranial Electrical Stimulation (tES) montage is

shown on the right side next to the corresponding stem. The solvers are sorted in descending order from left to right based on their performance

with κ = 40.

From a computational complexity standpoint, the exhaustive
search method can be applied for benchmarking purposes. In
contrast, a recursive search proves an advantageous alternative and
is competitively on par with the direct search technique, each one
applied in this study. This equivalence arises from both methods
converging toward the most suitable regularization parameter
α and nuisance threshold ε values in a comparably controlled
manner. Notably, the computational complexity of recursive search
remains consistent across various optimization runs, in contrast to
the variability observed in the direct search. Results comparable to
those obtained through exhaustive search can be attained with a
reduced-resolution search window of, say, size K̃ = 3, representing

a substantial acceleration in comparison to exhaustive search.
Furthermore, the recursive approach demonstrates both numerical
stability and convergence towards exhaustive search results, both at
individual data points and in the overall topographical context, as
the probing lattice size increases.

4.1 Limitations and future work

Unlike earlier linear programming (LP) formulations for tES
optimization problems, our use of the metaheuristic process
enabled us to explore parameters freely, without imposing rigid
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TABLE 2 Comparison of stimulation focality 2max and intensity Ŵmax results obtained between exhaustive, direct, and recursive search methods.

Somatosensory Auditory Visual

Search Resolution Levels Window Evaluations 2max Ŵmax 2max Ŵmax 2max Ŵmax

Exhaustive Fixed - 15 225 2.93 0.1315 6.47 0.1486 4.98 0.1488

Exhaustive Fixed - 40 1600 3.93 0.1315 7.69 0.1725 4.98 0.1574

Direct Adaptive - - 28-54* 3.45 0.1315 7.75 0.1725 4.99 0.1488

Recursive Adaptive 3 3 27 2.99 0.1315 6.47 0.1486 5.11 0.1514

Adaptive 3 5 75 3.45 0.1315 6.92 0.1725 5.17 0.1545

Adaptive 3 7 147 3.88 0.1315 7.10 0.1725 5.17 0.1545

Adaptive 3 9 243 4.02 0.1315 7.68 0.1725 3.91 0.1545

The behavior of the search space (Resolution), number of resolution levels (Levels), search window size (Window), and the number of objective function evaluations (Evaluation) per

optimization run are given. Non-applicable features are marked with the (-) symbol.
* In direct search, the number of objective function evaluations varied between different optimization runs.

FIGURE 5

Comparison of the topographical maps for (A) maximum focality 2max and (B) current density Ŵmax using exhaustive search κ = 15 (top-row), and

recursion with K̃ = 3 (bottom-row). The contours show 20, 40, and 75% equicurves with respect to their maximum entry. Maps have been computed

using the MOSEK with the Interior-point method.

a priori constraints on the nuisance field, as observed in
Wagner et al. (2016). In L1L1, we optimally set the nuisance
field through hyperparameter optimization embedded in a two-
stage metaheuristic lattice search procedure. Interpreted as an
enhancement for localizing both pattern and volumetric density
of the stimulus, L1-norm fitting and regularization outperform
the least-squares methodology introduced in Dmochowski et al.
(2011, 2017). However, this improvement comes at a greater
computational cost, prompting our in-depth investigation into
various algorithmic aspects of metaheuristic optimization in
this study. Our present findings underscore the critical role of
computational considerations when integrating hyperparameters
and metacriteria into the tES optimization problem, aspects
overlooked in the studies mentioned earlier.

Our results concerning L1L1 are limited to numerically
simulated tES only, meaning that neither the performance of the
method in other modalities than tES nor the effects of uncertainty
causing inter-subject variability (Laakso et al., 2015) have not
been fully covered yet. Those might include, for example, any
discrepancies between the estimated and actual values of electrical
conductivity, such as skull conductivity (Schmidt et al., 2015),
strategy to specify a montage (Kaufmann et al., 2021), as well as
uncertainty about the targeted region in the brain, e.g., a possible

spread of an epileptic focus (Simula et al., 2022). While the
expected level of uncertainty can be controlled via the range of the
hyperparameter ε, a future study on its effect will obviously need to
be conducted.

Of the applied liner programming methods, interior-point is
an overall preferable option over the simplex methods, which can
be considered beneficial characteristic when hardware performance
is limited, e.g., for a potential Field-Programmable Gate Array
(FPGA) implementation (Bayliss et al., 2006; Gensheimer et al.,
2014). Another comparative method, the Alternating Direction
Method of Multipliers (ADMM) (Lin et al., 2021), was not included
in this investigation as achieving an appropriate convergence
seemed more difficult due to its dependence on a step-length
parameter. While the current results enlighten how the different
algorithms would perform with different nuisance threshold levels,
an independent study would be needed to determine the optimal
level given the mathematical uncertainty.

Possible future work directions can be to open up the function
of L1L1 on a broader scale, this include applying it for deep
brain stimulation (DBS), where the electrical stimulus is not
transcranial. Likewise, an advanced optimization technique is
needed to target subcortical nuclei of the brain; for instance, in
the recent study (Anderson et al., 2018), where the Interior-Point
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FIGURE 6

Total amount of computing time for finding the most fitting

candidate solution through the two-stage metaheuristic lattice

search on every optimization solver and method in this study. In

order of stem (top-to-bottom): exhaustive search with search space

κ = 15 (red), direct search (cyan), and recursive search with K̃ = 3

(blue). Noticeably, the non-commercial solvers from CVX (SDPT3

and SeDuMi) are significantly slower than those produced by Matlab,

Gurobi and MOSEK.

algorithm has been applied. Yet another interesting direction is
to consider a priori information for the design and application
of the L1L1 algorithm, for example, an epileptic focus based
on non-invasive measurements such as video-EEG of epileptic
activity applied to determine approximate stimulation locations.
Finally, the mathematical implications of this study can be
further enriched by incorporating transcranial direct current
stimulation and functional magnetic resonance imaging (tDCS-
fMRI) (Esmaeilpour et al., 2020). By utilizing tDCS-fMRI data
sets to explore real-time neural changes caused by electrical
stimulation–such as in the studies by Callan et al. (2016) for
investigating resting state networks linked to visual stimuli, or in
the research conducted by Mark et al. (2023) for monitoring brain
activity of pilots undergoing aviation training–further enriches
the necessity of an effective inverse problem study equipped with
optimizationmethods for simulating and understanding the signal-
to-noise (SNR) impacts with a level of mathematical uncertainty,
as some of these deficiencies were mentioned on their study
limitations.
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