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Learning and change in a dual
lexicon model of speech
production

Maya Davis and Melissa A. Redford*

Department of Linguistics, University of Oregon, Eugene, OR, United States

Speech motor processes and phonological forms influence one another because

speech and language are acquired and used together. This hypothesis underpins

the Computational Core (CC) model, which provides a framework for understanding

the limitations of perceptually-driven changes to production. The model assumes

a lexicon of motor and perceptual wordforms linked to concepts and whole-word

production based on these forms. Motor wordforms are built up with speech

practice. Perceptual wordforms encode ambient language patterns in detail. Speech

production is the integration of the two forms. Integration results in an output

trajectory through perceptual-motor space that guides articulation. Assuming

successful communication of the intended concept, the output trajectory is

incorporated into the existing motor wordform for that concept. Novel word

production exploits existing motor wordforms to define a perceptually-acceptable

path through motor space that is further modified by the perceptual wordform

during integration. Simulation results show that, by preserving a distinction between

motor and perceptual wordforms in the lexicon, the CC model can account for

practice-based changes in the production of known words and for the e�ect of

expressive vocabulary size on production accuracy of novel words.
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Introduction

How do we produce an unfamiliar word that we have just heard? One answer is that we

hear and encode the word as a sequence of phonemes; when the sequence is activated for

production, the phonetic aspect is filled in, syllable structure is imposed, and the corresponding

motor programs are selected and executed (Levelt, 1989; Levelt et al., 1999; Guenther, 2016).

But, if our production of the unfamiliar word is inaccurate, how exactly do we improve on it

over time? The Computational Core (CC) model presented in this paper was built to address

this question and others that arise from the developmental problem of learning and change in

production— learning and change that occurs across the lifespan.

One approach to the problem of learning and change in production is to assume both

perceptual representations linked to phonemes and online control over execution (e.g., Houde

and Nagarajan, 2011; Parrell et al., 2019). Under these assumptions, predictive control can be

used to adjust a planned articulation that will miss the acoustic goal linked to a phoneme

(Niziolek et al., 2013). But what if the unfamiliar word that a speaker attempts makes use of

familiar phonemes linked to unfamiliar sounds arranged according to an unfamiliar timing

pattern? The standard approach to this problem, encountered in adult second language learning,

is to assume perceptual learning at the level of the acoustic categories that define speech motor

goals (Flege, 1995; Samuel and Kraljic, 2009; Holt and Lotto, 2010; Flege and Bohn, 2021). Such

learning could induce change in production based on online control. Yet, studies on second

language acquisition indicate that accurate perceptual learning does not result in production

accuracy (Nagle and Baese-Berk, 2022), especially if the newly learned acoustic category cannot

be mapped onto a speaker’s prior production experience (Nielsen, 2011; Nagle, 2018). Despite

learning, changes in production accuracy are constrained.
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Also, even if an unfamiliar sound can be attained based on

perceptual learning, how is an unfamiliar timing pattern achieved?

Native-like production of relative timing patterns within a word

are acquired early by first language speakers, but not nearly as

easily—if ever—by adult second language speakers (e.g., Redford

and Oh, 2017). The question of how relative timing patterns

are acquired is especially difficult to address within a framework

where word production and perception are mediated by phonemes.

An alternative approach is to assume that learning is instead

mediated by wordform representations. For example, the detailed

acoustic-perceptual wordform representations of exemplar-based

theories (Johnson, 1997, 2006; Pierrehumbert, 2002; Smith and

Hawkins, 2012) necessarily include time-varying information about

acoustic goals that could be referenced during execution. Predictive

control could be used to adjust planned articulations accordingly,

which would result in changes to production. But, if accurate

production of unfamiliar words with unfamiliar sounds and timing

patterns can be attained simply with reference to whole-word

perceptual representations, then why is the correlation between

perception and production in second language acquisition so

far from perfect? Put another way: What constrains production

during learning? Relatedly, why does production accuracy, measured

against perceptual input, appear to plateau in adult second

language speakers?

The typical explanation for constrained production accuracy in

second language speech is that unfamiliar words are not directly

read off from perceptual representations; rather, they are filtered

through a speaker’s phonology (Major, 1998, 2001). In exemplar-

based theories, the phonology is language-specific knowledge

about phonemes, phonotactics, and other suprasegmental patterns

abstracted from across the perceptual wordforms of the lexicon

(Bybee, 2002; Pierrehumbert, 2003). When these abstractions are

stored (“labeled”) separately from the lexicon, an exemplar-based

model of production makes assumptions similar to phoneme-

driven models of production (see, e.g., Pierrehumbert, 2001; Wedel,

2006); that is, it assumes acoustic goals linked to phonemes

and so it assumes phoneme-guided production. Given that time-

varying information must also be learned and implemented by

the motor system to effect change in production, this type

of model is unsatisfactory. The CC model presents a word-

based alternative to the phoneme-driven model of production.

The goal of the model is to account for perceptually-driven

learning and change in production and for the constraints on

said change.

The CC model addresses learning and change from a

developmental perspective. This perspective is adopted because

(a) the problem of learning and change is especially acute in early

language development, and (b) the adult’s production system

emerges from the child’s and so should be derived from it. The

latter reason constitutes a working hypothesis that has led us to

propose a developmentally sensitive theory of speech production

(Redford, 2015, 2019)—a framework for understanding the evolution

of speech production across the lifespan. The CC model details an

important piece of the theory: the idea that speech motor processes

and phonological forms influence one another because speech and

language are acquired together. The model instantiation of this

idea captures language-specific limits on perceptually-driven motor

learning and change in production.

Background to the CC model

The CC model assumes a dual lexicon. More specifically, it

assumes a lexicon comprised of separate perceptual and motor

wordforms that are jointly linked to shared concepts. The CC

model also assumes whole-word production. These assumptions are

motivated by our developmental perspective. Both extend specific

ideas from child phonology to provide the basis for a developmentally

sensitive account of adult production.

The shapes of children’s first words deviate markedly from adult

wordforms. Work in child phonology shows that these deviations

are idiosyncratic. For example, one child will say [bAbA] for bottle

(Velleman, 1998; cited in Velleman and Vihman, 2002, p. 20)

while another says [bAdi] (Vihman, 2014, p. 80) and a third

says [papm:] (Jaeger, 1997; Vihman and Croft, 2007, p. 702). The

idiosyncratic productions of single words are associated with child-

specific systematicities across multiple words. For example, the 18-

month-old who says [pApm:] for “bottle” replaces voiced stops

with voiceless ones in “baby” and “byebye,” rendering these as

[peipi] and [(p@)pa:i], respectively; she also produces word-final

nasals in other words where they are not required (e.g., [k2kN]

for “cracker” and [takN] for “doggie”; see Table 9 in Vihman and

Croft, 2007, p. 702). In general, children’s deviations from adult-like

wordforms are interpreted to suggest strong motor constraints on

first word production (Menn, 1983; Nittrouer et al., 1989; McCune

and Vihman, 2001; Davis et al., 2002). Ferguson and Farwell (1975)

proposed that individual children overcome these constraints by

applying their favored sound patterns to best approximate whole

word targets, resulting in systematic patterns of individual difference

in production. McCune and Vihman (2001) went further to specify

that a child’s favored patterns are selected from among their vocal

motor schemes that are established with vocal-motor practice during

the pre-speech period. Redford (2015) combined this idea with

the ideas of generalized motor programs from schema theory

(see Schmidt, 1975, 2003) and gestural scores from Articulatory

Phonology (Browman and Goldstein, 1986, 1992) to propose that,

even beyond the first word period, the child continues to rely on

established motor representations to guide production and that this

reliance continues on through adulthood.

In Redford (2015), the motor representations that guide

production were defined as temporally-structured memories built up

from motor traces associated with the successful communication of

concepts. They are first established when communication of a new

concept is first attempted. Of course, this first attempt requires that

the child also have stored a perceptual representation of the wordform

that denotes a concept. This representation serves as the goal for

production. Its presence in the lexicon allows for developmental

change in the direction of the adult form (Redford, 2019). But,

with a hypothesis of whole-word production, comes the problem of

how to explain the emergence of segment-like control over speech

articulation. Davis and Redford (2019) proposed the Core model

to address this problem. In brief, Core demonstrated that segment-

like control could emerge under the assumption of whole-word

production with practice-based structuring of the perceptual-motor

map. This specific solution to the problem entailed formalizing a

number of concepts that are also central to the CC model. Figure 1

itemizes and illustrates these concepts for quick reference. More

complete descriptions of the concepts follow.
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FIGURE 1

Informal definitions of Core concepts are provided (see text for detail). The illustrations to the right of the definitions depict several of the concepts. The

top right panel depicts 2-dimensional motor (left) and perceptual (right) spaces that have already been structured by the trajectory crossings that occur

with vocal-motor exploration and speech practice. Junctures are represented as dots, clusters as groups of identically colored dots. Each cluster of a

particular color in motor space corresponds to one of the same color in perceptual space. Links between the motor and perceptual spaces are assumed

but not shown. The bottom right panel depicts a silhouette (left) and an exemplar (right) in relation to the motor and perceptual spaces, respectively. The

depiction of the silhouette highlights the idea that it describes a broad path through motor space. The depiction of an exemplar highlights its status as a

specific trajectory through perceptual space. The distinct layouts of clusters in the simplified motor and perceptual spaces illustrates that these spaces

have di�erent topologies.

Core concepts

The CC model assumes that motor wordforms are established

with reference to perceptual wordforms and that, once established,

the motor and perceptual forms are integrated during production

(Redford, 2019). We first formalized this hypothesis in the Core

model (Davis and Redford, 2019). In so doing, we defined a lexicon

of perceptual and motor wordforms with respect to a perceptual space

and amotor space.

The perceptual space is the set of all possible instantaneous

sounds, along with a distance metric and subsequent topology. The

motor space is the set of all possible articulatory configurations,

along with a distancemetric and subsequent topology. The perceptual

and motor spaces are grounded in the acoustic and articulatory

dimensions of speech. This grounding is assumed but not defined

in the CC model. In Davis and Redford (2019) the dimensions

were as follows. A point in perceptual space was represented by

coordinates measuring sound periodicity, Bark-transformed formant

values, the spectral center of gravity, the width of the spectral peak,

and the time derivatives of the formant and other spectral measures,

as well as the time derivative of amplitude. A point in motor space

was represented by coordinates measuring glottal width, the cross-

sectional areas of 8 regions of the vocal tract from lips to larynx, the

time derivatives of each of the cross-sectional areas, velum height,

the time derivative of velum height, and the direction and force

of the opening/closing movement of the jaw. Euclidean distance

metrics were used to calculate the relationship between points in

these spaces.

The perceptual wordform, defined with respect to perceptual

space, is called an exemplar. The label indicates our embrace of

exemplar-based accounts of phonology, sociolinguistic knowledge,

and perceptual learning. None of these topics are explicitly addressed

here. Instead, the exemplar is merely a precise whole-word perceptual

representation. It is a function that takes a moment in time as an

input and gives as an output a point in perceptual space. Such a

function describes a trajectory through perceptual space; it is called

an exemplar only when linked to a concept.

The motor wordform, defined with respect to motor space,

is called a silhouette. It is a temporally-structured memory of

the movements needed to achieve a wordform that communicates

a concept. It is built up over time whenever its concept is

successfully communicated. It is most analogous to the idea of

a generalized motor program (GMP) for skilled action (Schmidt,

1975, 2003), except that it is a more specific representation than

the GMP. Unlike a GMP, a silhouette is effector-dependent: it is

defined along dimensions determined by possible movements of the

speech articulators.

In first-word production, exemplars are purely exogenous

representations. Silhouettes are endogenous representations that

begin to emerge when the infant first successfully communicates

a concept C by targeting the exemplar, eC . The silhouette for the

concept, SILC , is a function that takes a point in time as an input, and
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FIGURE 2

Each panel shows the silhouette expanded from the previous panel to include an additional motor trajectory, whose path is shown in red. The regions of

the silhouette at four time steps are drawn—the region at the first time is shown in green, at the second time in blue, at the third time in purple, and at the

fourth time in pink—but theoretically infinitely many regions exist along the whole length of the silhouette. Silhouette expansion is a continual process.

Motor trajectory traces are added whenever communication succeeds.

gives as an output a region in motor space that describes a general

vocal tract configuration to be targeted by the motor system at that

time. As with the exemplar, the subscript C denotes the silhouette’s

link to the concept C. Each time C is successfully communicated,

SILC expands to include a trace of the motor trajectory, m, that

was executed. More specifically, for each time t, the region SILC(t)

expands the smallest amount possible such that (1) the new region

also includes m(t) (as well as the old region) and (2) the new

region is convex. In the CC model, new and old regions are also

weighted over time with the addition of new traces representing

successful communication ofC, which effectively skews the silhouette

in the direction of the most frequently used motor trajectories.

An illustration of motor silhouette expansion is shown in Figure 2.

Silhouette weighting is not shown; it is instead described at length

later in this paper.

First word production is the effective communication of a novel

concept C that has been learned along with eC from the ambient

language. The infant first achieves communication of C through

a matching and selection process that leverages motor trajectories

established through babbling and other vocal-motor exploration.

Because the trajectories in motor space are self-produced, they are

automatically linked to perceptual trajectories in perceptual space.

The linked motor and perceptual trajectories make up the perceptual-

motor map that is exploited during the matching and selection

process used to attempt a new word. This process computes the

distance in perceptual space between an exemplar and the perceptual

aspect of established motor trajectories through motor space. The

computation allows for the combination of multiple established

trajectories, one after another in time, to best approximate the

intended exemplar. Along the way, the matching and selection

process structures the perceptual-motor map by creating junctures,

which are motor points at which the speaker shifts from one

established trajectory to another nearby one.

Even during the initial stages of vocal-motor exploration, very

specific regions of motor space are passed over multiple times in

a variety of trajectories (e.g., the [A] region in babbled utterances

“bAbA” and “dAdA”). In Davis and Redford (2019), we proposed

that frequently traversed regions in motor space become populated

with junctures through the matching and selection process during

the first word stage of development. The specific suggestion was that

children create junctures when they combine chunks of previously

experienced perceptually-linked motor trajectories in their first word

attempts. For example, a child will first link the perceptual and

motor spaces of speech during the pre-linguistic period, including

with trajectories such as “bAbA" and “dAdA" produced during the

babbling phase. When this child first attempts the word “bottle” they

may seek to match its perceptual form by leveraging the “bAbA"

or “dAdA" trajectory. They may even combine these trajectories

to produce “bAdA" by following the (motor) path for “bAbA" and

then transitioning to the path for “dAdA" where the two trajectories

(nearly) meet in the [A] region of motor space. If the resulting “bAdA”

trajectory contributes to communicative success (e.g., receiving the

requested bottle), then the motor trace of the “bAdA" trajectory is

stored with a link to the concept “bottle.” This trace provides the first

outline for the silhouette associated with that concept (see Figure 2).

As junctures proliferate with vocal-motor practice and

vocabulary expansion, they are grouped together based on

their proximity to one another in motor space. These groupings

are clusters. A cluster designates a specific region in motor space

that is crossed over and over again while achieving similar sounds

within various words. Over developmental time, clusters begin to

serve as perceptual-motor units of control. They can be targeted

quasi-independently because they designate regions within motor

space that many trajectories go through, allowing the speaker to

target the region from many other locations within the space.

At a higher level of abstraction, clusters represent turning points

in motor trajectories. These turning points can be conceived of

as linguistically-significant vocal tract constrictions—something

similar to “gestures” in Articulatory Phonology (Browman and

Goldstein, 1986, 1992), albeit with context-dependent timing that

is defined by the trajectory leading into and out of the turning

point. In perceptual space, clusters represent a quasi-static acoustic

goal associated with a particular articulatory configuration—

such as the sound that we might associate with a segment (e.g.,

[A]) or with a critical feature (e.g., the silence of stop closure).

Although it is possible to associate clusters with gestural or featural

descriptions of the phonology, we stress that they are simply units

of speech motor control. Clusters only exist at the level of the

perceptual-motor map. They do not necessarily create meaning

contrasts. They emerge from and remain embedded in a well-defined

perceptual-motor context.

Having introduced the Core concepts of perceptual and motor

spaces, exemplars, silhouettes, the perceptual-motor map, junctures,

and clusters, we are ready to describe the CCmodel. This model picks
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up after the first-word stage where the mathematical Core model

leaves off.

Architecture of the CC model

In Davis and Redford (2019), we modeled the first-word stage

of spoken language development and its structuring effects on the

perceptual-motor map. In this paper, we model word production at

a later stage in development; a stage when the perceptual-motor map

has already been structured with speech practice and so is already

discretized into clusters. This new focus entails making explicit the

relationship between wordform representations and the perceptual-

motor map. This relationship is critical to the perceptual-motor

integration of wordforms that is at the heart of speech production

in the theory.

The silhouette and exemplar activate clusters in motor and

perceptual space, respectively. In the CC model, sequential

information is preserved by the silhouette with the time-varying

activation of clusters in motor space.1 By contrast, the exemplar

activates all its clusters at the same time in perceptual space. The

time-varying activation of clusters in motor space is consistent with

the ecological–dynamic hypothesis that phonological representations

incorporate time-varying (i.e., dynamic) information (Fowler,

1980; Browman and Goldstein, 1986, 1992). The simultaneous

activation of clusters in perceptual space is consistent with the

structural hypothesis that paradigmatic relations are more important

than syntagmatic ones when acoustic-auditory categories serve as

speech motor goals (Diehl and Lindblom, 2004; Flemming, 2004).

Very importantly, the different activation patterns ensure unique

motor and perceptual contributions to wordform integration. The

silhouette-driven activation pattern highlights context-dependent

constraints on articulation. The exemplar-driven activation pattern

highlights the goal of attaining (more) context-independent sounds

in articulation. The different activation patterns and their specific

consequences are inspired by Lindblom’s (1990) H&H theory of

production. Lindblom proposes that speakers have two modes of

production, a hypo mode and a hyper mode, that serve as ends

of a speaking style continuum. The hypo mode results in highly

coarticulated speech. The hyper mode results in more context-

independent attainment of acoustic goals. The CC model reflects

these extreme modes in its different activation patterns of motor and

perceptual space.2

The silhouette and exemplar are integrated with cluster

activation. More specifically, the activation pattern across clusters in

motor space and the activation pattern across clusters in perceptual

space are combined and used to determine a trajectory through the

1 Time is modeled discretely for computational reasons, but the concept is

one of a continuous unfolding process (see Davis and Redford, 2019).

2 Style-shifting is not addressed in this paper, but can be modeled within CC

as the greater weighting of either the motor or perceptual activation pattern

during integration. A reviewer points out that style could also be modeled in

other ways within the model, including by the selection of specific formal or

casual exemplars of words or by changing the size of the look-back and look-

ahead windows of integration. This is also true. The main point here is that the

distinct motor and perceptual activation patterns in the CCmodel are meant to

incorporate the tension between “ease” and “distinctiveness” that is at the heart

of Lindblom’s H&H theory of production.

perceptual-motor map that guides speech movement. Look-ahead

and look-back windows specify the extent to which information

about the combined activation pattern in the future and/or past

is incorporated into the current activation pattern. At any given

time, the integration process thus results in the differential activation

of multiple clusters. As clusters represent perceptual-motor units

that are both spatial targets and perceptual goals, the simultaneous

activation of several of these at once means that articulation

represents a compromise between competing targets/goals.

Overall, the CC model claim is one of real-time speech motor

planning and execution. Speech motor control is not modeled

but the planning process remains compatible with current models

(e.g., Houde and Nagarajan, 2011; Guenther, 2016; Parrell et al.,

2019). In what follows, the production process from cluster

activation to perceptual-motor integration to the computation of

the (perceptual-)motor output trajectory is formally described. We

would point those interested in further detail to the source code,

which is available on GitHub (https://github.com/mayaekd/core).

Cluster activation

Let C be a word-sized concept. The speech plan for C is the

activation pattern of clusters in the perceptual-motor map that results

from the selection of the silhouette that corresponds to C, SILC,

and an exemplar, eC , chosen from among the set of exemplars

associated with C. The perceptual-motor map itself contains many

clusters: CLUSTER1, CLUSTER2, . . . , CLUSTERn. Each of these is made

up of some number of junctures; assume CLUSTERi is made up

of JUNCTUREi,1, JUNCTUREi,2, . . . , JUNCTUREi,mi
. The silhouette,

SILC , activates clusters in motor space while the exemplar, eC,

activates clusters in perceptual space. For the reasons explained

in the preceding section, the activation of clusters in motor space

varies across time; the activation of clusters in perceptual space is

simultaneous. The details of the activation patterns are as follows.

Activation in motor space
First, the silhouette activates the region in motor space

corresponding to the first step on the time interval. At the next time

step, it activates the next corresponding region. At the one after that,

the next region is activated, and so on until the path through motor

space associated with the entire silhouette has been traversed.

When a region in motor space is activated, the activation

immediately spreads across junctures that are inside that region or

within a certain distance of that region. Juncture activation spreads

evenly within the bounds of each cluster. This means that clusters are

activated as units within motor space. Clusters that are further away

from the region that is highlighted by a silhouette at a particular time

step will be less activated than those that are closer to the region or are

in the region itself, as depicted in Figure 3. More precisely, the motor

activation at time t of CLUSTERi is defined to be the average of the

motor activation of every juncture in that cluster:

MOTORACTIVATIONt(CLUSTERi) =
1

mi

mi
∑

j=1

MOTORACTIVATIONt

(JUNCTUREi,j)
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FIGURE 3

The activation process in motor space is shown. The region of the silhouette at a particular time step activates junctures that are overlapping with the

region or less than a certain distance away from it (distances shown by purple lines, left). Activation spreads evenly within a cluster. Activation levels are

determined by the distances of the junctures to the silhouette region. Activation strength of clusters is depicted by the relative transparency-opacity of

the clusters (right).

Where the motor activation of JUNCTUREi,j is defined to be the
highest when JUNCTUREi,j is contained in SILC(t) and to fall off
linearly as the distance between JUNCTUREi,j and SILC(t) increases,
bottoming out at zero:

MOTORACTIVATIONt(JUNCTUREi,j) = HIGHESTACTIVATIONMOTOR

−
(

DROPOFFSLOPEMOTOR × DISTANCE(SILC(t), JUNCTUREi,j)
)

We generally set

HIGHESTACTIVATIONMOTOR = 1

and

DROPOFFSLOPEMOTOR = 0.1.

Although we refer here to the motor activations of the junctures,

note that this should be thought of as an initial theoretical state of

the cluster that is quickly changed once the activation spreads within

a cluster.

Activation in perceptual space
Although the exemplar is also a function on a time interval,

its set of points activate nearby junctures in perceptual space all at

once when the exemplar is selected. Similar to juncture activation

in motor space, activation spreads outwards from points along

the exemplar trajectory; activation also decreases in strength with

distance from the exemplar trajectory, and the activation is averaged

across the points in the exemplar. Again, activation spreads so that

all junctures within a particular cluster receive the same activation.

For an exemplar consisting of points p1, . . . , pr , and a cluster

CLUSTERi consisting of junctures {JUNCTUREi,1, . . . , JUNCTUREi,mi
},

we can write

[EXEMPLARACTIVATION(CLUSTERi) =
1

mi

mi
∑

j=1

EXEMPLARACTIVATION(JUNCTUREi,j)

where

EXEMPLARACTIVATION(JUNCTUREi,j) =
1

r

r
∑

k=1

(HIGHESTACTIVATIONPERCEPTUAL

−(DROPOFFSLOPEPERCEPTUAL

×DISTANCE(pk, JUNCTUREi,j))).

Like in the motor case, we generally set

HIGHESTACTIVATIONPERCEPTUAL = 1

and

DROPOFFSLOPEPERCEPTUAL = 0.1

Perceptual-motor integration

The silhouette and exemplar are integrated as follows to

produce speech output. First, the combined activation pattern

across the motor and perceptual spaces is computed. This pattern

consists of activation that varies by time and by cluster, and is

determined by the following equation for the activation at time t of

cluster CLUSTERi:

ACTIVATIONt(CLUSTERi) =
(

MOTORACTIVATIONt(CLUSTERi)

×EXEMPLARACTIVATION(CLUSTERi)
)
1
2

We take the geometric mean (multiplicative mean) of the two

activations rather than the arithmetic mean (additive mean) in

order to determine the combined activation of a cluster in a way

that ensures the correct sequencing of articulatory movements. The

geometric mean functions as an AND gate rather than as an OR

gate to activation—if the activation of a cluster in either motor or

perceptual space is zero, then the combined activation of that cluster

is zero. Multiple clusters may compete to influence articulation, but
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competing clusters should all be within some limited distance of the

region specified by the silhouette at that moment in time. If they

are not, they should not influence articulation at all. Although the

same constraint applies to both spaces, the constraint from motor

space is more important. By ensuring that zero activation of a cluster

in motor space cannot be overridden by some activation of the

cluster in perceptual space, we are ensuring that activation from

parts of the exemplar trajectory not relevant to the current time

do not have an overwhelming influence on the output trajectory at

that time.

The activation values of the cluster vary over time. When

activation is computed for a specific time t, this yields a set of

values ai(t), for i = 1, . . . , n, where ai(t) is the activation of

CLUSTERi. The CC model assumes that the motor system works

out a compromise among the various clusters. In the model, the

estimated outcome of this compromise at time t is computed

as the weighted average of cluster locations in motor space,

with the weights being the activations of the clusters at time t.

That is, the estimated motor coordinate list, ESTMOTOR(t), is

defined as:

ESTMOTOR(t) =

∑n
i=1 ai(t)×MOTORCENTER(CLUSTERi)

∑n
i=1 ai(t)

,

Where MOTORCENTER(CLUSTERi) is the motoric center

of CLUSTERi, which could be defined multiple ways, but

which we choose to define as the average of all the junctures’

motor locations.

When computed for each time step determined by the silhouette,

the result of integration is an output trajectory through motor

space that reflects the influences from perceptual space due to

the exemplar. Figure 4 provides an example of the integration

process over 11 time steps (t = 11). The combined motor and

perceptual activation pattern is shown in motor space, where relative

activation is depicted by the relative opacity of the clusters. The

trajectory (whose direction is light green to light blue) moves

through motor space over time, mainly within the path described

by the silhouette. This silhouette path is shown by the region in

motor space (the royal blue octagon) that is highlighted at each

time step. The full output trajectory for the selected silhouette–

exemplar pair is shown at time step 11 in motor space. It is also

shown in perceptual space along with the exemplar trajectory. It

is represented as a discontinuous trajectory in perceptual space to

illustrate that this space has a different topology than motor space

and because true discontinuities exist in perceptual space but never

in motor space.

Finally, a reminder that not every path through motor space

is physically possible because the dimensions of this space are not

(usually) independent of one another (e.g., the cross-sectional areas

of 8 regions of the vocal tract from lips to larynx and the time

derivatives of each of these cross-sectional areas). That said, the CC

model assumes a perceptual-motor map that has been structured

by experience. Under this assumption, there are a high number of

paths that exist between clusters. The path that the motor system

chooses to follow is estimated based on the linear combination

of cluster weighting. The output trajectory that results could be

predicted internally or it could be the trace of movement that has

happened. Either way, the output trajectory is a result of cluster

activations that are commands to the motor system; it is not itself

a control structure.

Learning and change in production

In the Core/CC model framework, an activated exemplar

represents the perceptual goal of speech production. The jointly-

activated silhouette constrains goal achievement by biasing

movement toward familiar paths through motor space. In first

and second language acquisition, these familiar paths are likely

to diverge very substantially from the perceptual goal. Over time,

path divergence narrows and production accuracy improves. This

happens in one of two ways: (1) via change in the structure of

the perceptual-motor map; (2) via change in the shape of existing

silhouettes. The Core model addressed the former type of learning;

the CC model captures the latter.

Practice-driven change

Recall that silhouettes are only established after the perceptual-

motormap is at least partially structured through prelinguistic speech

practice. First word production is based on the perceptual matching

and selection process that was described under the Core Concepts

section. This process gives rise to the first silhouettes. Once enough

silhouettes have been established, speech production is fast and

automatic because it is largely driven by silhouette–exemplar pairs

that are activated when concepts are selected for communication.

The repository of concepts with associated silhouette–exemplar

pairs is the expressive vocabulary. It is about half the size of

the speaker’s overall vocabulary (Brysbaert et al., 2016). The other

half is the receptive-only vocabulary. It includes only concept-

associated exemplars that the speaker may choose to target at

some point.

Production that is guided by the expressive vocabulary will

entrench structure at the level of the perceptual-motor map because

it constrains production to established motor paths. Accordingly,

it will also slow the rate at which speech production patterns

change. Some deviation from established paths is possible with the

expansion of a silhouette due to random noise.3 But, in general,

the perceptual-motor integration of wordforms greatly reduces the

exploration of new regions in motor space. Also, it is only with

a return to a matching and selection process that new junctures

and clusters can be generated (see Core Concepts). This means that

practice-based changes to speech are initially more likely to occur

at the level of wordform representation than at the level of the

perceptual-motor map once an expressive vocabulary of a certain

size is established. In the CC model, changes to the wordform

occurs because practice results in silhouettes with weighted regions.

These weighted regions encode frequency information and shift the

silhouette in the direction of frequently used output trajectories

3 Recall that the silhouette incorporates motor traces of words that were

successfully communicated. This allows for the influence of the periphery

(i.e., articulation) on representation. The periphery introduces noise into the

representation in any number of ways, including by virtue of poorly established

“functional synergies” (see, e.g., Smith and Zelaznik, 2004).
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FIGURE 4

The perceptual-motor integration of wordforms results in an output trajectory through the perceptual and motor spaces, which are linked via clusters.

Activation strength due to the silhouette and exemplar is depicted by the relative transparency/opacity of the clusters. These clusters are shown here in

motor space for a silhouette that is 11 time steps in length. The region of the silhouette (blue octagon) is shown at each time step in this space. The

resulting trajectory incorporates directional information (line shading from green to cyan blue). The trajectory is also shown in perceptual space, with the

exemplar trajectory (dots shading from blue to pink). It is discontinuous in perceptual space because the topology of this space is di�erent from that of

motor space.

that meet with communicative success. The details of the weighting

algorithm are as follows.

Weighted silhouettes
Recall that the silhouette highlights time-varying regions of

motor space. The highlighted region is computed as the convex hull

of the points associated with previously experienced trajectories (see

Davis and Redford, 2019; Sections 2.5.2, 2.5.3). In the CC model, the

convex hull is partitioned into simplices (n-dimensional “triangles"),

each of which are assigned a weight. This means that, at each time,

the highlighted region in motor space, returned by the function that

is the silhouette, is a weighted homogenous simplicial complex. More

specifically, let SILC,n be the silhouette for concept C at a particular

time in development, denoted by n. Assume the current silhouette

is T (relative) time units long, and let k be a sufficiently large

number. Then SILC,n is defined to be a function with domain [0,T]

that takes an input of a particular time and gives an output of the

weighted region corresponding to that time in the form of a weighted

simiplicial complex. That is, SILC,n(t) = (R1, . . . ,Rk, v1, . . . , vk),

where each Ri is a simplex, and vi is the weight of that simplex, and

the following are satisfied:

1.
⋃k

i=1 Ri is a homogenous simplicial complex, where Ri is the

simplicial complex consisting of Ri and all of its faces; and

2. The union of the simplices,
⋃k

i=1 Ri, is convex.

As before, the silhouette is built recursively by expanding it over

time to include motor trajectories that have been successfully used

to communicate a selected concept (see Figure 2). But now that the

regions specified by a silhouette are weighted, new motor trajectories

will either add weight to the regions that it passes through (see Case

1) or it will affect the overall shape of the silhouette (see Case 2). The

two cases are briefly described here.

Assume the speaker uses SILC,n to successfully communicate

C using the motor trajectory M. Then the next iteration of the

silhouette, SILC,n+1, will be defined at time t in the following way:

Case 1. If M(t) is a point that is already in one of the simplices

in SILC,n(t), then SILC,n+1(t) is the same as SILC,n(t) except with the

FIGURE 5

Both the upper and lower diagrams show how regions of a silhouette

are reweighted as motor traces are absorbed by the wordform. In a

given row, the leftmost panel shows the initial weighted region,

SILC,n(t); the middle panel shows the point, M(t), that will be added; the

rightmost panel shows the resulting region, SILC,n+1(t), with new

weights. The numbers indicate the weights of the simplices. The upper

diagram shows a simplicial 1-complex and the lower diagram shows a

simplicial 2-complex.

weight of the simplex (subregion) containingM(t) increased by one.

Similarly, if M(t) is contained in multiple simplices—that is, if it lies

on a shared boundary—then SILC,n+1(t) is the same as SILC,n(t) but

with all the simplices containing M(t) having their weight increased

by one. This case is illustrated in Figure 5.

Case 2.On the other hand, ifM(t) is totally outside SILC,n(t), then

SILC,n+1(t) is created by adding a minimal number of simplices to

SILC,n(t) to create a homogenous simplicial complex in which M(t)

is now contained, with the weights of the new simplices being 1.

Examples of this case are illustrated in Figure 6.

The integration of a weighted silhouette, SILC , and an exemplar,

eC , will be similar to the integration described in the previous section
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FIGURE 6

Each row of panels shows how a silhouette region, SILC,n(t), changes

with the inclusion of an additional point, M(t). In a given row, the

leftmost panel shows the initial region, SILC,n(t), with the numbers

indicating the weights; the middle panel shows the point to be added,

M(t); the rightmost panel shows the new resulting shape and

weighting of the region, SILC,n+1(t).

butmust take into account the weighting. The only thing that changes

is how we compute the motor activation of a juncture. Suppose

SILC(t) = (R1, . . . ,Rk, v1, . . . , vk). Then we define the weighted

motor activation of JUNCTUREi,j to be the weighted average of the

activations that come from each region:

MOTORACTIVATIONt(JUNCTUREi,j) =
1

∑k
s=1 vs

×

k
∑

s=1

vs

× (HIGHESTACTIVATIONMOTOR

− (DROPOFFSLOPEMOTOR

× (DISTANCE(Rs, JUNCTUREi,j))))

The e�ect of practice on accuracy
To examine the effect of practice on learning and change in the

model, we can use the silhouette at iteration n to produce an output

trajectory that is absorbed as a motor trace into the silhouette; the

new silhouette is then used for production at iteration n + 1. When

we do this repeatedly (= practice), learning occurs with changes to the

silhouette. Figure 7 shows what this change looks like, step-by-step, in

a 3-dimensional space. The space represents the topology of clusters

in both motor and perceptual space since these were identical in

the simulation to facilitate the visualization of silhouette movement

toward the exemplar in perceptual-motor space.

Imagine that the z-axis in Figure 7 represents a close–open

vocal tract dimension in motor space and the aperiodic–periodic

sound dimension in perceptual space, which do roughly correspond

to one another. This would mean that activation of clusters near

the x − y plane would result in consonantal-like articulations and

that activation of clusters that are further above the x − y plane

would result in vowel-like articulations. The silhouette, exemplar,

and output paths in Figure 7 all travel from clusters near the x − y

plane toward those furthest from this plane and then back again—a

path that describes a CVC-shaped word. The upper-left panel shows

a starting silhouette (blue triangular shapes) that might be an early

representation of this word in that it is both far away from the

exemplar trajectory (blue to pink dots) and is itself built up from

only a few motor trajectories. With each of the 6 iterations of practice

shown, the silhouette’s path expands and changes shape: its weight

gets distributed more toward the exemplar.

Practice-based changes to the silhouette mean that, with time,

the output trajectory will draw nearer to those clusters that are

especially activated by the exemplar. This effect of practice is more

easily visualized in 2-dimensional space than in 3-dimensional space.

Figure 8 therefore displays the results of a simulation in 2D space

where, similar to Figure 7, clusters are separated to model vowel-

vs. consonant-like articulations and the motor and perceptual spaces

have identical layouts. With this in mind, the exemplar trajectory

shown in purple in the figure again describes a CVC trajectory. The

silhouette in blue highlights a path that diverges from this trajectory.

The output trajectory, which is linearly interpolated in red, is shown

as a dotted line after the first time the exemplar and silhouette are

integrated; it is shown as a dashed line after 50 iterations of the

simulation and as a solid line after 200 iterations. Overall, the figure

illustrates the expansion of the output trajectory in the direction of

the larger exemplar trajectory with changes to the silhouette resulting

from speech practice.

Intriguingly, the simulation result shown in Figure 8 indicates

a period of relatively rapid change in production followed by a

longer period of very marginal change. This unanticipated result is

qualitatively similar to well-described patterns of early gains followed

by plateaus in the motor learning literature (Adams, 1987; Newell

et al., 2001). It also suggests that unsupervised speech practice is

unlikely to drive substantial changes to production after a certain

point. This is probably a good thing. After all, the persistent effect

of “accent” in highly-proficient second language speakers would be

hard to account for in the model if sheer practice were sufficient

for a speaker to match exogenously-derived exemplars. Still, the

result also suggests that other mechanisms besides practice are

needed to describe the steep and relatively prolonged increase in

speech production accuracy that is observed during the first 3 years

of childhood. One possibility, not modeled here, is that feedback

from listeners shapes learning— especially in children’s speech when

utterances are too short to present much in the way of context for the

listener. This possibility is already an assumption of the overarching

theory. Recall, that motor traces are only absorbed into the silhouette

if communication is successful (Redford, 2019). Another possibility

is that the production process can be perturbed to facilitate learning

in such a way that merits, say, a return to the (slow) matching and

selection process. If the speaker returns to the process of finding best

perceptual matches between established motor trajectories and novel

exemplars, new junctures may be created where different established

trajectories near each other in motor space. The creation of new

junctures may change the shape of existing clusters or establish new

ones, thus changing the overall the structure of the perceptual-motor
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FIGURE 7

Silhouette change over time with each iteration of practice in a 3D perceptual-motor space where the perceptual and motor spaces have identical

layouts. The upper-left panel shows the starting silhouette (blue triangular shapes), the exemplar trajectory (blue to pink dots), and the output trajectory

(red to orange dots). Reading from right-to-left and then top-to-bottom, the figure illustrates how the silhouette changes in shape as it incorporates the

output trajectory from each prior production.

FIGURE 8

Change in output trajectory over time with iterations of practice in a 2D perceptual-motor space where the perceptual and motor spaces have identical

layouts. (Upper) Silhouettes are shown as blue squares (left) or blue polygons of varying-opacity (center and right) to indicate weighting; the exemplar

trajectory is traced in purple; the output trajectory in red. (Lower) The output trajectory is depicted after 1 iteration (dotted line), 50 iterations (dashed

line), and 200 iterations (solid line). Reading from (left-to-right), the output trajectory is shown to change shape to better approximate the exemplar

trajectory over time.

map in the direction of new ambient language input. Alternatively,

the speaker may focus on the acoustic-perceptual shape of the word

resulting in the up-weighting of contributions from the exemplar to

overall cluster activation patterns during the integration process with

consequences for the shape of the output trajectory. The theory allows

for all of these alternatives.

Novel word production

Although it is necessary to account for changes to known word

production in a developmentally sensitive theory of production, it is

not sufficient. This is especially true under the assumption of whole-

word production as this assumption begets the problem of novel

word production. Since we hypothesize that the default production

strategy is silhouette–exemplar integration once an expressive

vocabulary is established, the CC model adopts a silhouette-based

approach to novel word production. Although the approach is

motivated by the model architecture, it also allows us to capture an

empirical finding from the literature on nonword repetition: the effect

of vocabulary size on production accuracy in children’s speech and in

adult second language speech.

Not surprisingly, older children repeat nonwordsmore accurately

than younger children and adults with more exposure to a second
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language repeat nonwords in the target language more accurately

than those with less exposure. But accuracy also varies independently

from age and experience with vocabulary size: children with smaller

vocabularies repeat nonwords less accurately than children with

larger vocabularies (e.g., Metsala, 1999; Verhagen et al., 2022);

college-aged adults with smaller second language vocabularies

produce less native-like renditions of nonwords than those with

larger vocabularies (Bundgaard-Nielsen et al., 2012). Importantly, it

is a child’s expressive vocabulary size that correlates with production

accuracy; not their overall vocabulary size (Edwards et al., 2004;

Munson et al., 2005). In addition to vocabulary size, the production

accuracy of novel words, or nonwords, varies with properties of

the given nonword, including its “wordlikeness” and the relative

frequency of its phonological patterning (e.g., Edwards et al., 2004;

Guion et al., 2004; Munson et al., 2005; Redford and Oh, 2016).

In brief, nonwords that obey the phonotactics of the (target)

language and/or contain high frequency phonotactic patterns are

repeated more accurately than those that are less “wordlike” with

respect to phonotactics and/or contain less frequent patterns. The

latter findings suggest that nonword production relies on existing

wordform representations (Edwards et al., 2004; Guion et al., 2004;

Redford and Oh, 2016).4 The CC model implements this hypothesis.

When there is no silhouette for a given word, the speaker leverages

the silhouettes that do exist to generate an archi-silhouette, or

an A-silhouette, to provide the time-varying information needed

to guide production. The A-silhouette is built by pulling together

silhouettes from the nearest phonological neighbors of the targeted

novel word form. In the psycholinguistic literature, phonological

neighbors are wordforms that differ from one another by one

phoneme (Luce and Pisoni, 1998). In the CC model, they are based

on similarity in perceptual space, which is defined using the distance

metric on that space. The algorithm for building an A-silhouette is

described next.

Building an A-silhouette
Recall that the CC model has a function that measures distances

between points in perceptual space. Let dPERC be a function that

measures the distance between perceptual trajectories (see Davis and

Redford, 2019). The function operates by (1) aligning trajectories in

perceptual space so their endpoints line up, using linear interpolation

if necessary to fill in points, so that every point in one trajectory

corresponds to one in the other, (2) finding the distances between

corresponding points, and then (3) taking the average of these

distances.

Now, suppose the speaker is attempting a new word W with

exemplar E. Let k be a parameter with a fixed value representing

the number of similar words from which to build an A-silhouette

for W. For each word wi (i = 1, 2, 3, . . . ) in the expressive lexicon,

let ei be its corresponding exemplar and let SILi be its corresponding

silhouette. Assume that the expressive words are already ordered by

perceptual closeness to W; that is, dPERC(w1,W) ≤ dPERC(w2,W) ≤

dPERC(w3,W) ≤ . . . Then w1,w2, . . . ,wk are the k perceptually

closest words to W in the expressive lexicon, and their silhouettes,

SIL1, SIL2, . . . , SILk, are chosen to build the A-silhouette.

4 For a substantially di�erent interpretation of these findings see Gathercole

(2006).

We assume that the chosen silhouettes have already been

modified so that they are aligned with each other in time. The A-

silhouette is a silhouette ASIL such that at each time t, ASIL is defined

as a combination of SILi(t) for i = 1, 2, . . . , k. More specifically,

fix t and let SILi(t) = (Ri,1,Ri,2, . . . ,Ri,ni , vi,1, vi,2, . . . , vi,ni ) where

Ri,1,Ri,2, . . . ,Ri,ni are the ni subregions making up SILi(t) and

vi,1, vi,2, . . . , vi,ni are their respective weights. The weights are scaled

so that the maximum weight at time t is the same for each

silhouette. That is, let MAXWEIGHTi = max(vi,j)j=1,2,...,ni , meaning

MAXWEIGHTi is the maximum weight of the regions in the ith

silhouette (at time t). Then we use v′i,j to denote the scaled version

of vi,j, and we define v′i,j =
vi,j ×max(MAXWEIGHTi)i=1,2,...,k

MAXWEIGHTi
. That

is, for each region, we take the original weight, multiply it by the

maximum weight of all the regions in all the silhouettes, and then

divide that by the maximum weight of the regions in that silhouette.

Finally, the regions from all the silhouettes at time t are combined

using the newweights. The combination process is demonstrated first

with an example. The general process is given afterwards.

Suppose we have 3 aligned silhouettes, SIL1, SIL2, SIL3, and

suppose that at time 2, each silhouette consists of two regions, R1,1
and R1,2; R2,1 and R2,2; and R3,1 and R3,2, respectively, where they

overlap as shown in Figure 9. Suppose these regions have respective

weights v1,1 = 3 and v1,2 = 4; v2,1 = 5 and v2,2 = 8; and v3,1 = 2 and

v3,2 = 1. That is,

SIL1(2) = (R1,1,R1,2, 3, 4) where R1,1 and R1,2 are the pink triangles

SIL2(2) = (R2,1,R2,2, 5, 8) where R2,1 and R2,2 are the purple triangles

SIL3(2) = (R3,1,R3,2, 2, 1) where R3,1 and R3,2 are the blue triangles

Then scaling the weights as described above yields a maximum

weight of 8 for each region; that is,

v′1,1 = 6, v′1,2 = 8, v′2,1 = 5, v′2,2 = 8, v′3,1 = 8, v′3,2 = 4.

Then we will define the combination of these regions, ASIL(2),

to be the weighted region shown in red. That is, ASIL(2) =

(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15, 8, 4, 1, 10,

20, 10, 9, 5, 6, 16, 16, 8, 1, 8, 1), where Ti are the red triangles shown in

Figure 9.

Returning to the general case where the selected

silhouettes are SIL1, SIL2, . . . , SILk, we define ASIL(t) =

(T1,T2, . . . ,Tn, v1, v2, . . . , vn) where T1,T2, . . . ,Tn is a triangulation

of the convex hull of all the regions making up all the SILi(t). For

each i, the weight vi of the region Ti is defined as follows: either (1)

vi is equal to the sum of the weights of all the original regions that Ti

lies inside, or (2) vi = 1 if it lies in none of the original regions but is

still part of the convex hull.

That is, ASIL(t) = (T1,T2, . . . ,Tn, v1, v2, . . . , vn) such that

1. T1 ∪ T2 ∪ · · · ∪ Tn = CONVHULL(R1,1,R1,2, . . . ,R1,n1 ,R2,1,R2,2,

. . . ,R2,n2 , . . . ,Rk,1,Rk,2, . . . ,Rk,nk )

2. Each Ti is a simplex (an “n-dimensional triangle")

3. The regions do not overlap each other more than at a boundary:

interior(Ti) ∩ interior(Tj) = ⊘ for all 1 ≤ i < j ≤ n

4. For every set A = {Ri1 ,j1 , . . . ,Rim ,jm }, either
⋂

a∈A a = ⊘ or
⋂

a∈A a = Tk1∪Tk2∪· · ·∪Tks for some k1, k2, . . . , ks ∈ {1, 2, . . . , n}
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FIGURE 9

(Left) Regions corresponding to three motor silhouettes at a particular time; each silhouette at this time has a two subregions, with weights labeled.

(Center) The regions with scaled weights. (Right) The weighted combination of the regions.

5. vℓ =



















∑

Ri,j containing Tℓ

v′i,j if at least one Ri,j contains Tℓ, i.e. if this

sum is nonzero

1 otherwise

The e�ect of vocabulary size on accuracy
According to the process outlined above, exemplars of words that

belong only to the receptive vocabulary are attempted by combining

the silhouettes of perceptually similar words that belong to the

expressive vocabulary. But how good is this combined form? To what

extent will it allow for a path through motor space that overlaps

with the clusters activated by the novel exemplar in perceptual space?

In this section, we demonstrate that the answer to these questions

depends on the size of the expressive vocabulary. More specifically,

we show that the goodness of the A-silhouette depends on the

goodness of the perceptual matches to the novel wordform. The

goodness of the perceptual matches in turn depends on the size

of the speaker’s expressive vocabulary, V , in relation to the larger

vocabulary, L.

The larger vocabulary, L, is a theoretic construct that represents

the set of words in a language over which the phonology is defined.

The size of L depends on what exactly it represents. L could

represent the size of a dictionary vocabulary or the size of an

adult’s overall vocabulary (10,000 words to 200,000 words) or the

expressive vocabulary only, that is, half of the overall vocabulary

size (Brysbaert et al., 2016). Alternatively, L could represent the total

number of words required for normal every-day communication.

We estimate that number here as 2500 words. This number is

based on Nation and Waring’s (1997) synthesis of research findings

on the relationship between vocabulary size and second language

acquisition for pedagogical purposes. Nation andWaring suggest that

“a vocabulary size of 2,000–3,000 words provides a very good basis

for language use.” This suggestion is based on the vocabulary size

needed to achieve over 90% coverage of English texts aimed at young

adult readers (e.g., 2,600 words result in 96% text coverage and a

density of 1 unknown word occurring every 25 words). Insofar as

young adults are perfectly good speakers of their native language,

a vocabulary of roughly 2500 wordforms should adequately cover

the phonological space of a language. It therefore provides a good

basis for L.

Given that the words in L describe the phonological space for a

particular language, it is clear that a subset V of L may fail to do so.

And, if it fails to do so, then the A-silhouettes that are built up from

wordforms in V are unlikely to reliably provide accurate information

regarding the best path to take through motor space in order to

approximate an exemplar that represents a novel word target. In

particular, supposeW is the novel word, and suppose the A-silhouette

is going to be built from the k words in V that are perceptually closest

to W. What is the probability that these k words from V are actually

some of the closest words toW in all of L? To make it more concrete,

let k = 3 and let “best" be a synonym for “perceptually closest toW.”

We can ask:

• What is the probability that the 3 best words in L are contained

in V (and thus are also the 3 best words in V)?

• What is the probability that 3 of the 4 best words in L are

contained in V?

• What is the probability that 3 of the 5 best words in L are

contained in V?

More generally:

• What is the probability that 3 of the 3 + r best words in L are

contained in V?

And even more generally:

• What is the probability that k of the k + r best words in L are

contained in V?

Naturally, this probability increases as the size of V increases. In

particular, if n is the number of words in L and m is the number of

words in V , the probability that k of the k + r best words in L are

contained in V , i.e. that the k best words in V are a subset of the k+ r

best words in all of L, is:

r
∑

i=0

(k+ r)!

(k+ i)!(r − i)!
×

(n− k− r)!

(m− k− i)!(n− r −m+ i)!
×

m!(n−m)!

n!

(assuming k ≤ m and k + r ≤ n). This is illustrated in Figure 10

for an L of size 2,500, and various values of k and p(= k + r). As the
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FIGURE 10

The probability that an expressive vocabulary of size m, drawn randomly from a larger vocabulary size of 2,500 words, contains at least k of the p words in

L that are the closest perceptual matches to an exemplar that represents some novel word.

size of V increases (as we move right on the x-axis) the probability

that the speaker’s expressive vocabulary includes enough of the larger

vocabulary’s perceptually closest words to W also increases. This

increase differs somewhat depending on the value of k, which, recall,

is the number of words that are chosen to create the A-silhouette,

and the value of p(= k + r), which is the number of words in L that

are perceptually “close enough" to the novel word that any subset of

k of those words could be used to create a very good A-silhouette

for guiding production. The data here suggest that if V is 500—

which is approximately the size of a typically-developing 3-year-old’s

expressive vocabulary (Shipley and McAfee, 2019)5—then it has a

good chance (about 70%) of containing at least 1 of the 5 best words

in L, but a poor chance (about 15%) of containing at least 3 of the 7

best words. This observation begs the question of how many closest

perceptual wordforms are needed to generate an A-silhouette that will

yield a good approximation of the novel word target. The data in the

figure suggests that if in general any 3 of the closest 6 words to a goal

word will yield a good A-silhouette, then good A-silhouettes can be

reliably generated when V is 70% of L, or 1,750 words.

The predicted effect of an A-silhouette that is built up from

a subset of “close enough” silhouettes is an output trajectory that

approximates the exemplar of the novel word that is being attempted.

Less good A-silhouettes result in less accurate output trajectories.

To test this prediction, and so the effect of vocabulary size on the

production accuracy, we simulated novel CVCV word production

given different expressive vocabulary sizes and an all-CVCV language

5 This assumes an expressive vocabulary that is half the size of the overall

vocabulary, which Shipley and McAfee (2019) place at about 1,000 words for a

typically-developing 3-year-old.

of 1,296 words. The language was built up from paths through a 2D

motor space and a 2D perceptual space. The spaces had 6 clusters

deemed consonantal articulations and 6 clusters deemed vocalic

articulations. These groups of 6 were separated from one another

in the y direction in motor space. The transformation from motor

space to perceptual space was one that maintained this consonant-

vowel separation, but shuffled the clusters in the x direction to

render different topologies for the two spaces.6 The 1,296 wordforms

were all the possible paths going from center-of-cluster to center-

of-cluster in a CVCV-like pattern (1, 296 = 6 consonants × 6

vowels × 6 consonants × 6 vowels). The silhouettes consisted of 7

uniformly-weighted square regions, with regions 1, 3, 5, 7 centered

on the appropriate CVCV clusters, and regions 2, 4, 6 falling evenly

between them. The exemplar paired with a silhouette was built by

taking the motor trajectory going through the center of the silhouette

and finding the corresponding perceptual trajectory based on the

transformation between the spaces.

6 Specifically, the clusters were 4 × 4 squares of 16 junctures, with the

horizontal distance between two adjacent junctures within a cluster being 1

and the horizontal distance between two adjacent clusters being 2. The vertical

distance between adjacent junctures within a cluster was 1 and the vertical

distance between the bottom row of clusters and the top row of clusters was

15. Let us designate the bottom-row clusters as “consonants” and the top as

“vowels.” The transformation between motor and perceptual space can then

be described as follows: If in motor space, the consonants from left to right

were C1 ,C2 ,C3 ,C4 ,C5 ,C6, then in perceptual space theywere C3 ,C4 ,C1 ,C2 ,C5 ,C6;

if in motor space, the vowels from left to right were V1 ,V2 ,V3 ,V4 ,V5 ,V6, then in

perceptual space they were V3 ,V4 ,V5 ,V6 ,V1 ,V2.

Frontiers inHumanNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fnhum.2023.893785
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Davis and Redford 10.3389/fnhum.2023.893785

In the simulation, the novel word was an exemplar randomly

selected from the language. The initial expressive vocabulary

consisted of 5 silhouette–exemplar pairs randomly selected from

the 1,296-word language (minus the novel word). An A-silhouette

was built from the 3 words in the expressive vocabulary that were

perceptually closest to the novel word. An output trajectory was

computed based on the integration of the A-silhouette and the novel

word exemplar. The distance in perceptual space between the output

trajectory and the novel word exemplar trajectory was calculated to

measure the accuracy of the output trajectory. The initial vocabulary

was then increased to 10 words by adding an additional 5 random

CVCV words to the expressive vocabulary. A new A-silhouette

was made, again using the 3 closest words, an output trajectory

computed, and the distance in space from the exemplar calculated.

The expressive vocabulary was next increased to 20, then 40, and so

on for a range of sizes up to 1,200. For each vocabulary size, the output

trajectory based on A-silhouette–exemplar integration was found and

the distance from the novel word exemplar calculated.

The entire simulation was run 20 times with different randomly-

selected novel words and expressive vocabularies. Figure 11 shows the

mean distance between output and exemplar trajectory as a function

of vocabulary size for the 20 runs. The data indicate increasing

production accuracy with increasing vocabulary size. The increase is

steeper early on and more gradual later on. The pattern qualitatively

matches the very robust increases in production accuracy seen during

the earliest stages of speech acquisition followed by slower gains but

continuing improvement.

Summary and conclusion

The CC model captures the observation that speech develops

with language use to address the problem of learning and change in

production. The child’s first words represent both a first attempt at

speech and a first attempt to communicate using language. Control

over speech action evolves in this communicative context with speech

practice. And we engage in a whole lot of practice. The estimate from

voice recordings of college-aged adults is that we speak about 16,000

words a day (Mehl et al., 2007). This kind of practice must have

implications for speech production. In our theory it does.

The theory assumes a dual lexicon and whole-word speech

production. The motor wordforms (silhouettes) in the lexicon are

endogenous representations built up with speech practice. The

perceptual wordforms (exemplars) are exogenous representations

that reflect ambient language patterns. Speech production is the

integration of these forms in the perceptual-motor map. The

perceptual-motor map is discretized with vocal-motor practice,

including speech practice, into language-specific clusters that

represent units of speech motor control. The perceptual aspect of

these units can be related to sound categories or to perceptual

features; the motor aspect to vocal tract constrictions similar in some

respects to the “gestures” of Articulatory Phonology except that do

not necessarily code meaning contrast. They are units that represent

both acoustic-auditory goals and spatial targets for the speech motor

system.

When a word is selected for output from the expressive

vocabulary, its silhouette and exemplar activate clusters in motor

and perceptual space. The silhouette contributes time-varying

information about movement through motor space within a window

of activation that allows contextual effects to emerge (i.e., syntagmatic

relations). The exemplar provides static information about the

acoustic-auditory goals to be achieved for successful communication

(i.e., paradigmatic relations). Perceptual-motor integration of the

forms results in an output trajectory that traces speech movement

due to the integration process. If the speech movement described

by an output trajectory results in successful communication, then

its trace is absorbed into the silhouette for the concept intended

and communicated. By this mechanism, the silhouette for a word

is shifted in the direction of the exemplar(s) of a word. This is the

practice-based mechanism for motor learning and change in the

model. Simulation results suggest that practice has a large initial

effect on production accuracy, and that this effect plateaus relatively

quickly, or is, at least reduced to only a very marginal effect over time.

Overall, the pattern recalls the power law function of motor learning

(see Newell et al., 2001).

Learning and change in the model also occurs with novel word

production. In a system where silhouette–exemplar integration is

the dominant mode of production, the accurate rendition of a novel

word requires a silhouette-like form to achieve the targeted exemplar.

The new silhouette, an A-silhouette, is created by combining

existing silhouettes, which are selected based on the closeness of

their perceptual counterparts to the novel-word exemplar. The

algorithm for combining existing silhouettes to generate an A-

silhouette relies on the model-internal fact that the expressive lexicon

is structured according to the perceptual and motor spaces within

which the dual wordforms reside. The receptive-only lexicon is also

structured by the perceptual space within which single wordforms

reside alongside their dual wordform neighbors. Although merely a

logical consequence of the CC model architecture, the phonetically-

structured lexicon of our theory parallels the well-established

psycholinguistic hypothesis of a phonologically organized lexicon

(Pisoni et al., 1985; Luce and Pisoni, 1998).

The integration of an A-silhouette and an exemplar associated

with a novel word results in an output trajectory. The extent to which

this output trajectory is similar to the exemplar varies naturally with

vocabulary size. Smaller vocabularies do not regularly allow for the

same quality of perceptual matches as larger vocabularies and so

the A-silhouettes that are created based on a small vocabulary result

in poorer production accuracy than those created based on larger

vocabularies. This implication of the model is consistent with the

effect of vocabulary size on nonword repetition accuracy in children’s

speech and in adult second language speech.

Why core?

The CC model provides an intellectual framework within which

to understand developmental changes in speech production. For

this reason, it also provides a framework for understanding the

emergence of individual differences in speech production, including

differences due to developmental disorder. The model perspective is

that these differences are the result of developmental trajectories that

are themselves defined by iterative processes that may compound

over time the effects of small differences in initial parameter

settings.

No existing linguistic or psycholinguistic theory of speech

production that we know of has been advanced with the particular
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FIGURE 11

The average distance of the output trajectory from a novel word exemplar given integration based on an A-silhouette built from the 3

perceptually-closest silhouettes to the novel word exemplar. Distances are shown as a function of vocabulary size (log-transformed). Dotted lines show

±1 standard deviation around the mean for the simulation, which was run 20 times.

aim of explaining change in a manner that naturally gives rise to

different outcomes. To the best of our knowledge, every instantiated

theory that handles adult spoken language production assumes

(more or less) current descriptions of the adult speech behavior

as its starting and ending point. They are teleological in this way.

For this reason, individual differences are often treated as specific

deviations from normativity rather than as the product of differing

initial conditions and constraints on development. The teleological

frame is, in part, the legacy of Saussure and his emphasis on the

synchronic over the diachronic. It is, in part, the legacy of Chomsky

and his emphasis on what is universal and so what might be

innate. Collective knowledge about speech and language has grown

enormously under these legacies. Our goal is to reframe some of

this existing knowledge within an emergentist framework to better

understand individual differences and to encourage new avenues of

empirical research.

Future directions

The Core/CCmodel framework emphasizes the role of variability

in learning and change. Recall that speakers can only target previously

experienced paths through motor space, even when attempting

a new perceptual goal (sound or word). Under this hypothesis,

noise in the periphery due to immature motor control provides an

important learning benefit, not least of which is better and more

thorough exploration of the motor space than would otherwise be

possible; and it is through exploration that junctures proliferate in

the perceptual-motor map in the first place. Clusters, the units of

speech motor control, are created from these junctures. Clusters

allow speakers to achieve language-specific acoustic-auditory goals.

The proliferation of junctures in motor space is a prerequisite for

doing so. The highly variable speech movements of children’s speech

compared to adults’ speech may therefore be what allows them to

acquire native-like speech sound articulation in a second language—

something that adult learners are purportedly unable to do. The

prediction is then for an increase in perceived accentedness in speech

with age of acquisition, but one that tracks more specifically with

age-related changes in the variability of speech movements. Age-

of-acquisition effects are, of course, well-described in studies of

second language speech—in fact, the age of 5–7 years has been

suggested as a cut-off for nativelike acquisition of a second language

speech category (e.g., Guion, 2003)–but the explanation for why

this might be is elusive. Our prediction suggests that the cut-off is

causally tied to the rapid leveling off of articulatory variability during

developmnet (see, e.g., Smith and Zelaznik, 2004). Also, note that,

just as children’s speech continues to exhibit greater variability than

adult speech until age 12–14 years, so too the age-of-acquisition

effect on second language speech is graded—there is not an abrupt

cut-off in native-like attainment of a second language at age 5 or

7 years across all individuals. Future research on second language

acquisition could investigate the extent to which greater variability

in the realization of sounds at one stage in development predicts

more accurate (= target-like) attainment of these sounds at a later

stage.

The Core/CC model framework also predicts a relatively abrupt

transition from a period of exceptionally high variability in the

production of novel words to a period of relative stability in

word production that corresponds to a change in strategy from

the matching and selection of existing motor trajectories to create

best perceptual approximations of novel exemplar trajectories

to a strategy based on an expressive vocabulary and so on

the integration of perceptual and motor wordforms. Consistent

with this, Vihman (2014) describes a shift in word production

around 2 years of age that she attributes to a shift away from

a strategy of schema-based production and toward template-

based word production. Our A-silhouettes might be considered

templates in that they are not word-specific, but rather an amalgam

of similar sounding words. Vihman (2014) also notes that a
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schema-based and templatic-based production strategy may co-exist

for some time during development, and that some children never

really exihibit a phase that can truly be described as templatic.

The CC model suggests that the path toward understanding

these individual differences is through more careful study of

the relationship between expressive vocabulary and phonological

development during the young preschool years. This study should

include not just the size of the expressive vocabulary, but also

its detail regarding its phonological structure in perceptual and

motor spaces.

In the CC model, the extent to which A-silhouettes allow for

matching exogenous wordform representations varies with the size

and structure of the expressive vocabulary. As already noted, this

pattern is consistent with the effect of vocabulary size on nonword

repetition accuracy in children’s speech. But a detailed consideration

of this relationship leads us now to wonder about an inflection

point in development when production is no longer driven by the

integration of the specific perceptual and motor wordforms that

are stored together in an expressive vocabulary. Rather, it could be

driven by the integration of perceptual wordforms and A-silhouettes.

What this might mean is a question for future research. But, to give

that research some structure, let us consider the problem in a little

more detail.

Under the simplifying assumption that an expressive vocabulary

is some random subset of the words in a language, it is clear

that an A-silhouette will provide as good guidance as a more

specific motor wordform once the expressive vocabulary reaches

a certain size. The question then becomes: What is that certain

size? This depends in part on the number of words needed to

adequately describe the language. In our simulations, the language

vocabulary was 2,500 words. This number of words was chosen

on the grounds that between 2,000 and 3,000 words is adequate

for everyday communication in English. We presume that this

means that a specific set of 2,500 words adequately describes the

phonology of English. But the number 2,500 was also chosen with

young children’s speech patterns in mind. In particular, 30% of 2,500

words is 750 words, which is a good approximation of a 3-year-

old’s expressive vocabulary size. And, since we know that 3-year-old

speech is different from adult speech, it was convenient to consider

the potential shape of A-silhouettes in this context. But the reader

will have also noted that 2,500 words falls well short of the average

expressive vocabulary size of a typical adult. In fact, the lower bound

estimate of an average adults’ expressive vocabulary size is 10,000

words; and, 30% of 10,000 words is even larger than our language

vocabulary estimate. Given this, by the logic of our own model,

10,000 distinct silhouettes are clearly not required to produce 10,000

words. This observation suggests several paths for future research,

including a version of the prior suggestion: more careful studies

of the structure and size of developing expressive vocabularies are

needed to better understand the relationship between the accuracy

with which a novel word can be produced and the size of the

expressive vocabulary.

Finally, the developmental perspective adopted here motivates

our view that perceptual experience and motor practice interact

and build on each other through time; together, they provide

the foundation for an individualized account of spoken language

patterns. The Core/CC model framework assumes the evolution

of speech perception and of perceptual wordform representations,

but addresses only the effects of motor practice on change. This

limitation argues for future research that has as its aim to understand,

in precise terms, how much of developmental change in the

sound patterns of speech is due to perception and how much

is due to production. It will also be important to determine

how exactly to tell the difference between the two. The Core

model framework suggests, consistent with much other theory,

that perceptually-driven changes should be in the direction of

increasing contrasts, and that motor-driven changes are in the

timing domain. But timing differences also give rise to contrast.

This is, in fact, the foundational insight on which Articulatory

Phonology was built (i.e., language-specific gestural coordination).

So, again, under the now well-articulated assumption of a dual

lexicon, future research will need to detail the separate and interacting

contributions from perceptual learning and speech motor learning

to understand the emergence and evolution of individualized

speech patterns.
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