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Editorial on the Research Topic

Neural computations for brain machine interface applications

Along with a flowering of deep learning, there has been a renaissance of brain-computer

interface (BCI) research. One of the most active research areas of the BCI aims attention at

a wide range of clinical endeavors, such as studies on prosthetic limb muscle control (Vilela

and Hochberg, 2020), neurorehabilitation (Bamdad et al., 2015) or epilepsy (Vidyaratne

and Iftekharuddin, 2017; Alkawadri, 2019). A typical clinical application of the BCI aids

an individual with central nervous system (CNS) injuries or disabilities, such that it

compensates for associated dysfunctions resulting from the impairment. Beyond the scope

of clinical purposes, there has also been various research on controlling an external system

solely via neural signals (Trejo et al., 2006; Khaliliardali et al., 2015). In this editorial, with

insights from carefully selected studies, we explore recent progress in the computational

aspects of BCIs. Further, we discuss how such studies can make convergent contributions

to benefitting the human-machine alignment.

All five studies on this topic astonishingly broadened our knowledge of computational

tools for BCIs. Three of them, in particular, shed light on employing deep learning

techniques in various BCIs. Cui et al. contemplated interpretability issues of the BCIs

relying upon deep learning. Interpretability is a desirable trait for BCIs; as an interpretable

BCI may provide fruitful insight into cognitive and/or neural mechanisms related to

kinematics, learning and memory in particular. Deep learning, whilst often boosting

decoding performance of the BCI, can be difficult to interpret. This study thus evaluated

various interpretation schemes for deep BCI and demonstrated the best practice of utilizing

such techniques. Also, Sun et al. introduced the EEG-completion-informer (EC-informer).

The authors investigated how the number of EEG acquisition channels can be finely

reduced and successfully demonstrated how virtually generated channels can compensate

for the information gap. Hence, this approach eliminates extensive computing costs while

preserving key factors with minimal loss—exhibiting robust applicability. Yang et al.

presented a novel patient-specific approach to predict epileptic seizures based onmultimodal

neural data and an adversarial model. The domain-adversarial training with the multimodal

data enables the model to extract invariant features of individuals and improves the

model’s stability, which can be otherwise reduced by subject variability. Thereby, this work
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successfully demonstrated how the BCI can be generalized across

the subjects particularly in the clinical domain.

Meng et al. rigorously examined the effect of various gaze

fixation positions and covert attention on BCI performance. The

work revealed that subjects’ performance on the given BCI task was

not affected by the position of gaze fixation and covert attention,

suggesting, at least for the motor imagery BCIs, the system can

be gaze-independent. As a result, the authors provided precise

instructions on the extent to which the end-users of BCIs can

behave freely. A precise user guide relaxes some burdens on users,

granting them a better BCI experience. Unlike the first four non-

invasive BCI studies, Wan et al. demonstrated the effects of non-

stationary neural signals on an intracortical-BCI (iBCI) decoding

performance. Considering recording degradation and neuronal

property variation, the study served as a reference for a model

and its training scheme in chronic iBCI. The study gave a decent

guideline for developing the BCI systemwith non-stationary neural

signals as its input, which is commonly encountered.

Despite a large volume of contributions to advancement of

the BCI decoders, in this topic improving interpretability (Cui

et al.), generalizability (Yang et al.) and robustness (Sun et al.;

Meng et al.; Wan et al.) of the decoder, most BCIs potentially

suffer from the human-machine value alignment issues, namely

sharing human values with the machine. The alignment theory

views both a human and a machine as learning systems, such that

two learners actively learn to accomplish a given task through a

sequence of interactions within a closed loop. One study (Müller

et al., 2017) established a mathematical model for the coadaptation

to formulate and solve an asymmetric nature of a communication

paradigm of the BCI. They suggested the error rate of human-

to-machine communication can minimized by an interactive joint

adaptation process via noise-free machine-to-human feedback. Not

to mention the significance of the machine’s decoding performance

to which a large volume of studies have devoted (Craik et al., 2019;

Glaser et al., 2020), how crucial it is for users to adequately explore

and exploit the BCI has been constantly emphasized as the key

factor of a successful brain-actuated system (Perdikis and Millán,

2020).

As a potential solution for the human-machine value alignment

problem, deploying a cognitive model in the loop can minimize

the burden on two learners. A cognitive model can be defined as a

computational model of cognitive processes of interest built based

on neural and/or behavioral data. The model’s variables reflect

various aspects of the cognitive function under investigation from

which an inference on an individual’s cognitive status can be made,

at least within the given context. One good example is the temporal

difference (TD) model, initially inspired by animal reward-seeking

behaviors (Sutton and Barto, 1987; Sutton, 1988). There has been

an attempt to leverage critical variables of the computational model

of human reinforcement learning for predicting user intention,

showing that the decoder’s performance with the given cognitive

model can be significantly improved (Kim and Lee, 2018). This

model can also be supplemented with a model of human intuition

on physics, called an intuitive physics engine (IPE). The IPE makes

physical inferences based on human-like physical understanding

(Smith et al., 2019). In the context of the BCI system serving

a user as a physical aid, for instance, the IPE would generate

several possible human-like inferences based on simulations of

committing human-like actions. Further, decoded signals and the

inferences can be combined to align the machine with the human’s

demanding objective more precisely. By harnessing the cognitive

model, machines in BCIs would become more human-like. As

a result, we anticipate the cognitive models to aid machines in

understanding intentions with an exponential increase in precision,

thereby easing the learning burden of both the machine and the

user in the loop.
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