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There is a critical need for accessible neuropsychological testing for

basic research and translational studies worldwide. Traditional in-person

neuropsychological studies are inherently difficult to conduct because testing

requires the recruitment and participation of individuals with neurological

conditions. Consequently, studies are often based on small sample sizes, are

highly time-consuming, and lack diversity. To address these challenges, in

the last decade, the utilization of remote testing platforms has demonstrated

promising results regarding the feasibility and efficiency of collecting patient

data online. Herein, we tested the validity and generalizability of remote

administration of the Montreal Cognitive Assessment (MoCA) test. We

administered the MoCA to English and Hebrew speakers from three different

populations: Parkinson’s disease, Cerebellar Ataxia, and healthy controls via

video conferencing. First, we found that the online MoCA scores do not differ

from traditional in-person studies, demonstrating convergent validity. Second,

the MoCA scores of both our online patient groups were lower than controls,

demonstrating construct validity. Third, we did not find differences between

the two language versions of the remote MoCA, supporting its generalizability

to different languages and the efficiency of collecting binational data (USA

and Israel). Given these results, future studies can utilize the remote MoCA,

and potentially other remote neuropsychological tests to collect data more

efficiently across multiple different patient populations, language versions,

and nations.
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1 Introduction

Neuropsychological testing is essential for understanding
cognitive processes and brain functionality across various patient
groups, languages, and countries. Neuropsychological research
provides insight into how different areas of the brain function,
allowing for neuroanatomical localization and network level
understanding of different brain regions (Grahn et al., 2009; Zald
and Andreotti, 2010; O’Halloran et al., 2012). By testing individuals
with brain disorders, we have advanced our understanding of brain-
behavior relationships and gained a more detailed understanding
of cognition (Lezak, 2000). In cognitive research, there is often a
selection bias, focusing mainly on cortical function (Parvizi, 2009;
Janacsek et al., 2022; Saban and Gabay, 2023). As a result, the role of
subcortical regions is often overlooked (Saban et al., 2018a,b, 2021;
Soloveichick et al., 2021).

However, studying patients with subcortical brain pathologies
can help us understand the role of these regions in cognition
(Rossetti et al., 2011; Malek-Ahmadi et al., 2018; Saban and Ivry,
2021; Saban and Gabay, 2023). For instance, neuropsychological
testing of people with Parkinson’s disease (PD) provides insights
into the function of the basal ganglia (BG) (Orozco et al., 2020).
Similarly, studying individuals with Cerebellar Ataxia (CA) helps
us understand the function of the cerebellum (Saban and Gabay,
2023).

Parkinson’s disease and CA are neurodegenerative disorders
that affect the central nervous system, leading to profound impacts
on motor processes. In PD, the loss of dopamine-producing
neurons in the substantia nigra results in motor symptoms, such
as tremors and rigidity. However, cognitive impairment is also a
manifestation of PD, with deficits in executive function, attention,
and memory (Kandiah et al., 2014; Weintraub et al., 2015; Moustafa
et al., 2016). CA leads to difficulty in coordination, balance, and fine
motor control. Cognitive impairment in CA is also expected as the
disease progresses, especially in attention and executive functions
(Fancellu et al., 2013; Tran et al., 2020; Malek et al., 2022). Motor
function is frequently evaluated via the United Parkinson’s disease
Rating Scale (UPDRS, Goetz, 2003) in PD, and in CA via the
Scale for Assessment and Rating of Ataxia (SARA, Schmitz-Hübsch
et al., 2006). Testing the cognitive profiles of both the PD and
CA populations can allow researchers to better understand how
subcortical brain structures relate to human cognitive abilities. The
Montreal Cognitive Assessment (MoCA; Nasreddine et al., 2005), a
globally recognized test, is commonly used by healthcare providers
and researchers to screen and assess cognition in a wide variety of
neurological diseases, including both PD and CA.

While testing cognition in PD and CA is crucial for
understanding cognitive processes and the human brain,
recruitment and testing of these individuals in person is
challenging. This is partly due to the rarity of CA, which
affects less than 0.03% of the population (Salman, 2018), and the
mobility restrictions faced by individuals with PD or CA. These
challenges often result in prolonged study periods (e.g., 2 years)
and small sample sizes, typically fewer than 15 participants (Breska
and Ivry, 2018; Olivito et al., 2018; Wang et al., 2018). Moreover,
many studies rely on participants from the same geographic area
or family (McDougle et al., 2021), which leads to a lack of diversity
in the sample and potential bias.

In addition, collecting sufficient data across multiple patient
groups for sensitivity or specificity testing can be a significant
challenge with traditional in-person testing methods. These
limitations highlight the need for alternative approaches to
data collection in neuropsychological studies. The challenges of
traditional in-person methods have led to the rise of online methods
in behavioral studies. Research shows that remote testing, including
video telehealth approaches, is as reliable and valid as in-person
testing (Casler et al., 2013; Chandler and Shapiro, 2016; Buhrmester
et al., 2018; Bilder et al., 2020; Geddes et al., 2020; Marra et al., 2020;
Saban and Ivry, 2021; Binoy et al., 2023).

Remote testing offers several advantages. For example, it
makes research participation more convenient for individuals
with neurological conditions by eliminating the need for travel
(Barbosa et al., 2020). It also allows for rapid data collection and
comprehensive assessments (Binoy et al., 2023), reaching a wider
and more diverse pool of participants (Saban and Ivry, 2021;
Binoy et al., 2023). However, online testing has its limitations.
For example, it may be biased toward those with internet access
and technological literacy, and home environment can vary
(Hewitt et al., 2020).

In recent years, remote methods have been increasingly used
to identify individuals with cognitive impairment. The Montreal
Cognitive Assessment (MoCA; Nasreddine et al., 2005), a globally
recognized test, is commonly used by healthcare providers and
researchers to assess mild cognitive impairment (MCI). The MoCA
has been employed to screen for mild cognitive impairment in PD
and CA (Saban and Ivry, 2021), and to evaluate cognition (Butcher
et al., 2017; Wu et al., 2017). However, a significant challenge lies
in making remote evaluations of cognitive impairment, such as the
MoCA, more accessible while ensuring their validity in both healthy
and clinical populations.

Accordingly, with the growing use of technology, there has
been a wide interest in the validity of administering the MoCA
test remotely. A validated telephone version of the MoCA (T-
MoCA) exists, which may be used when face-to-face (F2F)
administration is not feasible (Klil-Drori et al., 2022). This
telephone-based method could expand the recruitment pool to
include individuals who need videoconferencing access. However,
it is mainly useful for a simplified classification of patient cognitive
status (Carlew et al., 2020). A preliminary study tested the T-MoCA
on 21 PD participants, who also completed the traditional F2F
MoCA. The study found only a modest correlation between
the T-MoCA and traditional neuropsychological measures (verbal
delayed recall = 0.35, trail making = 0.21, digit span = 0.55, Stroop
interference trail = 0.39) (Benge and Kiselica, 2021). Another
study tested an electronic version of the MoCA (eMoCA) via a
touchscreen. The study compared the eMoCA to the regular paper
version on a sample of 40 healthy older adults in the same session,
finding a strong correlation (r = 0.68) between the two scores
(Wallace et al., 2019). However, to our knowledge, the eMoCA has
yet to be tested remotely on patients with PD or CA.

Several studies have investigated a video-conferencing version
of the MoCA. A recent study compared MoCA scores obtained F2F
with those obtained via video telehealth in a large sample of healthy
English-speaking participants (Loring et al., 2023). The study found
no differences between the two methods, supporting the validity of
remote MoCA administration. Another study on English-speaking
patients with mild-to-severe dementia found that the average
MoCA score was not different in those tested remotely compared to
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those tested F2F, with an excellent intra-class coefficient reliability
(ICC = 0.93) (Lindauer et al., 2017). Interestingly, a study amongst
Japanese-speaking older adults found that the ICC for the MoCA
was high overall but varied depending on the subgroup. The ICCs
were lower in healthy controls (0.53) compared to those with
mild cognitive impairment (MCI) (0.82) or dementia (0.82), and
depended on disease severity (Iiboshi et al., 2020). Given these
studies, it remains unclear whether online MoCA is valid in clinical
populations.

A few studies have demonstrated the feasibility and efficiency of
administering the MoCA on PD or CA participants through video
conferencing. One study on a small sample of English-speaking
PD patients (8) showed the feasibility of remotely administering
the MoCA to these patients with movement disorders. However,
this study did not compare the video conferencing patient data
to F2F results (Abdolahi et al., 2016). In a pilot study on a small
sample (n = 11) of English-speaking PD participants, participants
completed the F2F MoCA and videoconferencing MoCA 1 week
later (Stillerova et al., 2016). No differences were found between the
two methods of administration; however, due to the small sample
size, the validity of the videoconferencing MoCA remains to be
tested. While most prior studies have small sample size, one study
used a large database (n = 166) of PD participants. The researchers
assessed patients via videoconferencing, which included the MoCA,
showing feasibility of remote MoCA (Dorsey et al., 2015). Although
this study had a large sample of PD participants, no comparison
was made between patients and healthy participants. Online
administration of the MoCA on participants with CA has been
tested in a limited capacity by one study. In a pilot study
administering a modified online version of the MoCA on a small
sample of English-speaking CA participants (n = 18), no differences
were found between online administration and previous in-person
studies (Binoy et al., 2023).

As can be derived from reading previous literature, most
of the studies that used the remote MoCA were conducted in
English, with only one exception in Japanese. However, there is
a notable over-reliance on English speakers in cognitive science
(Blasi et al., 2022). English is the dominant language in the
study of human cognition and behavior, and both the subjects
of cognitive science studies and the researchers themselves are
often English speakers. This reliance on English as the primary
language of participants (and researchers) introduces a clear bias
in the measurement of cognitive functions and hinder cognitive
assessments (Blasi et al., 2022).

Online assessment allows for broader geographic reach and
more diverse patient populations, supporting the generalizability
of online testing in populations that do not consist solely of
English speakers. The MoCA has been translated into 36 different
languages, including Hebrew. While the in-person Hebrew version
has been validated (Lifshitz et al., 2012), the remote version has yet
to be validated in healthy or clinical populations.

To bridge the above-mentioned gaps, the current study aimed
to assess the validity and generalizability of administering the
MoCA online in two different languages (English and Hebrew)
and across three populations: PD, CA, and healthy controls. We
tested the convergent validity of the online MoCA by comparing
our online data to in-person studies in all three groups, predicting
no difference between the administration methods. The construct
validity was also tested by comparing our online patient groups

to healthy controls, hypothesizing similar patterns to previous
in-person literature. Lastly, we examined the generalizability of
online testing across different language-speaking populations:
English and Hebrew.

2 Materials and methods

2.1 Participants

A total of 120 participants were evaluated. The participants
responded to online advertisements (e.g., Facebook groups). For
interested individuals, we followed-up with an email and a video
call to describe the project in detail. Our initial recruitment email
indicated that participation would require the ability to use a
computer. Note that we ensured there were no video or audio
issues before starting each session, so it would not interrupt the
assessment. If there was any issue, we resolved it during the meeting
or, in rare cases, rescheduled the session. For each participant, we
obtained medical history, and we tested MCI using the MoCA
(version 8.1). This protocol was approved by Tel Aviv University
ethics committee and all participants provided informed consent.

See Table 1 for demographic information of all groups. Fifty
percent of the participants (n = 60) were assessed via the English
version, and the remaining participants via the Hebrew version
(Lifshitz et al., 2012). All participants reported that they speak only
one language, either Hebrew or English. For each language, we
administered the MoCA to 20 participants in each group: Control,
PD, and CA.

The Hebrew-speaking CA group consisted of 17 individuals
with a known genetic subtype of cerebellar ataxia (SCA3) and 3 with
degenerative disorders of unknown etiology. Their mean duration
since diagnosis was 6.1 (SD = 5.4) years and their SARA score was
12.1 (SD = 5.3). The English-speaking CA group consisted of 12
individuals with a known genetic subtype of CA (1 SCA1, 1 SCA28,
7 SCA3, 2 SCA5, 1 SCA6), and 8 with degenerative disorders
of unknown etiology. Their mean duration since diagnosis was
5.5 (SD = 3.6) years and their SARA score was 13.3 (SD = 4.9).
For the Hebrew and English-speaking PD group, we did not
include individuals with surgical intervention (e.g., DBS), and
all participants were tested while on their current medication
regimen. The English-speaking PD group’s mean duration since

TABLE 1 Demographic summary of all groups (Mean [SD] (range)).

Group Language n Age Females Education

Control English 20 47.5 [12.7]
(28–79)

11 16.1
[2.2] (11–20)

Control Hebrew 20 51.2 [8.6]
(34–66)

12 15.1 [3]
(9–21)

CA English 20 57.7 [12.7]
(29–79)

10 16.8 [2]
(12–20)

CA Hebrew 20 52.5 [12.1]
(34–88)

10 14.6 [3.4]
(11–22)

PD English 20 60.2 [7.6]
(48–80)

9 16.9 [3.3]
(12–27)

PD Hebrew 20 64 [8]
(48–77)

12 15.6 [2.1]
(12–19)
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diagnosis was 8 (SD = 4.9) years and their UPDRS score was
20.5 (SD = 5.3). The Hebrew-speaking PD group’s mean duration
since diagnosis was 6.3 (SD = 4.5) years and their UPDRS
score was 21.4 (SD = 12.6). All PD participants’ Hoehn and
Yahr scores were below 4. The diagnosis of both patient groups
was also based on self-report. Self-report assessment has evolved
considerably in recent years, emerging as a robust and effective data
collection method. Previous studies have found high concurrence
rates between self-report and clinician-determined diagnosis (Kim
et al., 2018; Winslow et al., 2018; Smolensky et al., 2020). The
age across all groups ranged from 47.5 to 64 years, and MoCA
scores did not change significantly within this age range (Rossetti
et al., 2011; Freitas et al., 2012). The years of education of all
groups ranged from 14.6 to 16.9 years, and it was found that
variance above 12 years of education did not affect the MoCA score
(Rossetti et al., 2011).

To calculate the required sample sizes, we conducted a power
analysis (alpha = 0.05; power = 0.99) using effect sizes derived from
five in-person studies that compared each patient group (PD or CA)
and a neurotypical group in the MoCA test (PD: Hoops et al., 2009;
Dalrymple-Alford et al., 2010; Hu et al., 2014; Kandiah et al., 2014;
Biundo et al., 2016; D = −1.152: large effect size; CA: Tunc et al.,
2019; Zhang et al., 2020; Chen et al., 2022; Schniepp et al., 2023; van
Prooije et al., 2023; D = −1.265: large effect size). These analyses
suggested a minimal sample size of 14 participants for each patient
group (PD = 13.39; CA = 11.38). As such, the sample sizes of our
groups (20) had sufficient power to detect group differences. To our
knowledge, no previous studies compared the three groups on two
different languages of the MoCA.

2.2 Online MoCA modification

Our online MoCA tests are in accordance with the official
instructions that appear on the MoCA website. Changes were
made to minimize deviations from standard F2F administration.
Six MoCA items (visuospatial and naming) were presented using
PowerPoint slides by the share screen Zoom option. For the
trail-making test, participants were asked to say the number-
letter sequence aloud (rather than drawing lines to connect the
circle) according to the instructions provided on the official MoCA
website for videoconferencing administration, which have been
validated in a healthy control group (Loring et al., 2023). The copy
cube stimulus slide contained “Cube copy” next to the figure to
closely mimic the paper and pencil presentation. Similarly, the draw
clock stimulus was presented on the screen during clock drawing.
Participants were instructed to draw the cube and the clock on
their own piece of paper and present their drawings in front of the
camera. Following the clock drawing, participants were instructed
to put the paper and writing utensils aside. Naming stimuli were
presented individually on the screen. Orientation for place and city
asked for the participant’s location.

3 Results

First, to assess the convergent validity of the online MoCA, we
compared our online results to previous in-person studies (called
“literature value”) using a one-sample t-test. For the literature value,

we obtained the mean and standard deviation from relevant papers.
Papers were selected based on their relevance (healthy, CA, and
PD groups), with studies that administered the MoCA in-person
and published within the last 15 years. The MoCA literature value
used for the healthy control group comparison was taken from
the original in-person MoCA validation study (Nasreddine et al.,
2005). The literature value for the PD and CA groups were derived
from five in-person studies for each group (PD: Hoops et al., 2009;
Dalrymple-Alford et al., 2010; Hu et al., 2014; Kandiah et al., 2014;
Biundo et al., 2016; CA: Tunc et al., 2019; Zhang et al., 2020; Chen
et al., 2022; Schniepp et al., 2023; van Prooije et al., 2023).

The average MoCA score for our control group was 27.3, which
is a value that falls within the normal range (>26). We did not
find a significant difference from the literature value [µ = 27.4;
n = 90, t(39) = 0.491, p = 0.626, effect size = 0.078]. Similarly,
the online MoCA scores for the PD and CA groups were not
significantly different from the literature values [PD: µ = 25.096,
n = 523, t(39) = 1.770, p = 0.085, effect size = 0.280; CA: µ = 24.689,
n = 195, t(39) = 0.846, p = 0.403, effect size = 0.134]. Given that
the literature values were obtained in-person, these results show
that our online approach produces typical results, supporting the
convergent validity of the online approach in all groups.

Second, since these patient groups typically show lower MoCA
scores than healthy controls, we assessed the construct validity of
the online MoCA by comparing our online neurotypical group
to our patient groups. Third, to assess generalizability to other
languages, we compared our Hebrew-speaking participants to our
English-speaking participants. To achieve these last two goals, we
carried out a two-way analysis of variance (ANOVA; in R software)
with Group (Control, PD, CA) and Language (Hebrew, English) as
the independent variables, and the MoCA score as the dependent
measure. See Figure 1 for a comparison of the three groups and
two languages (n = 60/Language).

As expected by previous literature, this analysis showed that
there was a significant main effect of Group on the MoCA
score [F(2,114) = 7.100, p = 0.001, effect size = 0.110]. Planned-
comparison analyses revealed that the Control group performed
significantly higher than the two patient groups, which did not
differ significantly from each other [PD vs. Control: t(78) = 2.785,
p = 0.006, effect size = 0.623; CA vs. controls: t(78) = 3.766,
p = 0.0003, effect size = 0.842; PD vs. CA: t(78) = 1.139, p = 0.258,
effect size = 0.255]. There was no significant main effect of
Language [F(1,114) = 0.292, p = 0.590, effect size = 0.002]. Finally,

FIGURE 1

The average MoCA score as a function of group and language. The
score for each participant is a dot. The black dotted line is the
literature value of healthy control participants. Error bars = SE.
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we did not find a significant interaction effect between Group and
Language [F(2,114) = 0.464, p = 0.630, effect size = 0.008]. These
results demonstrate the construct validity and generalizability of the
online MoCA test.

We also examined the degree of overlap between the
distributions of the two language versions of the MoCA, as shown
in Figure 2. The overlap was defined as the intersection of the
ranges of the two distributions, and we calculated the integral of the
pointwise minimum of these densities over this range. The degree
of overlap between the two distributions was found to be 91% (out
of 100), indicating a high degree of overlap. This suggests that the
two language distributions are similar to each other.

4 Discussion

Our study provides evidence supporting the equivalence of
online MoCA testing with traditional in-person testing. We
evaluated the validity of online MoCA administration in three
groups: PD, CA, and healthy controls. The results indicate
construct validity for online MoCA administration. As anticipated,
the patient groups (PD and CA) scored lower than the healthy
control group, reflecting the known cognitive impacts of these
conditions. Interestingly, we observed no differences between
the English and Hebrew versions of the test in each group.
Our findings suggest that online MoCA testing is generalizable
across two different language versions and can be valid across
three populations.

Our current study has four primary limitations. Firstly, while
our total sample size was 120 participants, each subgroup consisted
of only 20 individuals. This limited sample size per subgroup
restricts our ability to assess the specific items within the MoCA
for each subgroup. This limited sample size per subgroup also
restricts our ability to assess cognitive abilities within each specific
subtype (e.g., SCA3 vs. SCA6). Future research could benefit from
utilizing the remote MoCA to recruit larger sample sizes for
each group. This would also allow for a more detailed analysis
of individual MoCA items. Secondly, a more direct comparison
between in-person and online administration could be achieved by
conducting both types of assessments with the same participants

from the PD and CA groups. This approach would provide a
direct measure of validity by comparing these two testing methods.
Third, conducting tests and experiments online may introduce
an inherent selection bias, as participants are expected to have
computer proficiency, potentially skewing the results in favor of
technology-proficient populations. In our study, some participants
found the attention and sentence repetition tasks more challenging
due to internet connectivity issues that may obscure the audio.
However, in general, participants provided positive feedback stating
that they found the remote format to be more convenient, saving
them the time and cost associated with traveling to an in-person
testing site. Finally, there is also a potential selection bias in favor
of participants with less disease severity who are more capable of
participating in online studies. These considerations offer possible
directions for future studies aiming to further our understanding of
online cognitive assessments.

One interesting point of comparison is the eMoCA, which
enables automated testing (Wallace et al., 2019). We propose that
the videoconferencing MoCA has some advantages for PD and CA
patients, as can be observed from our study. Videoconferencing
MOCA is a simpler alternative as opposed to eMoCA which
requires mailing a touchscreen tablet to participants or installing
an application onto the participant’s device. Videoconferencing
methods can also simplify the process for older participants
who may not be as skilled with technology. Video conferencing
allows researchers to maintain an adaptable human presence for
participants to interact with while performing the assessment.
Since videoconferencing involves a researcher who can mediate
the computer interface, this allows a more accessible approach
than the eMoCA, which requires independent work with a tablet
and application. Additionally, the eMoCA is not available in
all languages, including Hebrew. However, one limitation of
videoconferencing methods compared to the eMoCA is that
videoconferencing requires an administrator to be present, while
the eMoCA is fully automated.

Despite these limitations, our study underscores the potential of
the online MoCA in facilitating multinational data collection. The
creation of a multinational database for patients with neurological
conditions, especially rare conditions such as CA, can lead to a
more representative and diverse sample size. Given that the MoCA

FIGURE 2

Histogram of the MoCA score as a function of language. The degree of overlap between the two distributions is 91%.
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is available in many languages, the remote version of the MoCA
offers researchers an opportunity to gather more representative
data across multiple language-speaking populations. This could
help overcome major limitations in neuropsychological research
(Saban and Ivry, 2021) related to language barriers and constraints
imposed by the neurological conditions being tested.

We collected data from 120 participants in a 1-month period.
Thus, the online approach is not only valid but much more efficient
in terms of data collection. Our sample included individuals
who are currently residing in more than 20 USA states, such
as New York and California, and different cities in Israel, such
as Jerusalem and Tel Aviv. Accordingly, our online sample is
much more geographically diverse than a typical laboratory-based
study. Recruitment across countries and different populations is
critical for diversity and, potentially, better representation of the
population. Our remote videoconferencing MoCA shows promise
in the avenue of telemedicine, which is especially useful for
early detection and screening of neurodegenerative conditions that
require long-term repeated evaluation of symptoms. This would
improve accessibility for rural and underserved populations, as well
as those with mobility restrictions.

Remote testing presents an encouraging avenue for broadening
the scope and depth of neuropsychological research. It opens
possibilities for investigating interactions between other areas
of function, such as motor abilities, and comparing conditions
like PD and CA with other neurological conditions, such as
Huntington’s disease. There is a need for future studies to develop
new strategies to validate remote diagnostic tests, such as the
SARA and the UPDRS.

Our promising results underscore the potential use of
technological advancements to revolutionize both research and
clinical communities. Establishing the validity of online cognitive
assessment is particularly vital in the era of tailored therapy and
biomarker development. Online cognitive batteries using large and
diverse cohorts can allow researchers to profile cognitive abilities
more accurately in different pathologies. The increased efficiency
in collecting data and diversity in sample sizes resulting from
binational efforts could significantly enhance our understanding
of PD and CA. The impact of technological advancements could
lead to improved diagnosis, treatment, and care for individuals
affected by these conditions. It is our hope that neuropsychological
assessment developments will continue to evolve in tandem with
technological capabilities, ultimately benefiting patients worldwide.
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