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Objective: Mechanical vibration is an e�ective way for externally activating Ia

primary endings of the muscle spindles and skin mechanoreceptors. Despite

its popularity in proprioception and postural control studies, there is still no

review covering the wide variety of vibration parameters or locations used in

studies. The main purpose of this scoping review was thus to give an overview of

general vibration parameters and to identify, if available, the rationale for justifying

methodological choices concerning vibration parameters.

Methods: Three databases (Pubmed, CINHAL, and SPORTDiscus) were searched

from inception to July 2022. Included articles were to focus on the study of

muscle spindles and skin mechanoreceptors vibration in humans and assess

postural control. Following inclusion, data regarding demographic information,

populations, vibration parameters and rationale were extracted and summarized.

Results: One hundred forty-seven articles were included, mostly targeting lower

extremities (n = 137) and adults (n = 126). The parameters used varied widely but

were most often around 80Hz, at an amplitude of 1mm for 10–20 s. Regarding

rationales, nearly 50% of the studies did not include any, whereas those including

one mainly cited the same two studies, without elaborating specifically on the

parameter’s choice.

Conclusion: This scoping review provided a comprehensive description of the

population recruited and parameters used for vibration protocols in current studies

with humans. Despite many studies, there remain important gaps of knowledge

that needs to be filled, especially for vibration amplitude and duration parameters

in various populations.

KEYWORDS

vibration, proprioception, postural reactions, vibration parameters, methodological

rationale

1 Introduction

Mechanical vibration of muscles, tendons and skin has been widely used as an effective

way for externally activating Ia primary endings surrounding the non-contractile central

portions of the muscle spindles and skin mechanoreceptors. This approach is further used

to assess proprioception (i.e., sense of joint movement and position), motor and postural

control (Roll and Vedel, 1982; Kavounoudias et al., 1999, 2001; Kadri et al., 2020). In
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fact, the proprioceptive role of muscle spindles and cutaneous

mechanoreceptors has been studied with vibration formore than 50

years (Goodwin et al., 1972; Burke et al., 1976; Roll and Vedel, 1982;

Kavounoudias et al., 2001). In the absence of vision, mechanical

vibration of a superficial tendon generates an illusion of movement

coherent with the stretch of the vibrated muscle (Roll and Vedel,

1982; Roll et al., 1989). When applied during upright posture, it

can also elicit postural reactions (VIB-induced postural reactions

or VIB-PR) consistent with the postural function of the targeted

receptors. For example, bilateral vibration of Achilles tendons or

forefoot soles sends a false sensory information of forward leaning,

as if calf muscles were stretched or more body pressure was put

toward the front of the feet, respectively (Kavounoudias et al.,

1999, 2001). In the presence of normal postural and sensorimotor

control networks, a quick backward postural reaction is observed

in response to the sensory disturbance (Kavounoudias et al., 1999,

2001).

Vibration-induced effects were so far studied using various

biomechanical and neurophysiological tools. Microneurographic

recordings of nerve fibers provided evidence on the types of

somatosensory fibers that are preferentially activated when using

tendon or cutaneous vibration (Burke et al., 1976; Roll and Vedel,

1982; Ribot-Ciscar et al., 1989; Inglis et al., 2002). Others rather

investigated the biomechanical characteristics of VIB-PR based on

measurements obtained by a force platform, such as the center

of pressure (CoP) (Busquets et al., 2018; Baudry and Duchateau,

2020; Kadri et al., 2020; Oku et al., 2020), center of mass/gravity

(CoM/CoG) (El-Kahky, 2000; Yagi et al., 2000; Maurer et al.,

2001; Keshner et al., 2014; Mullie and Duclos, 2014; Cyr et al.,

2019), or using 3D kinematic analysis systems (Smiley-Oyen et al.,

2002; Ribot-Ciscar et al., 2004; Thompson et al., 2011; Mullie

and Duclos, 2014). Evidence supports that Ia fibers from muscle

spindle endings and slowly adapting cutaneous receptors are more

sensitive to vibration and likely responsible for VIB-PR (Roll

and Vedel, 1982; Vedel and Roll, 1982; Ribot-Ciscar et al., 1989;

Kavounoudias et al., 1999, 2001; Proske and Gandevia, 2009).

Then, research over the last decades mostly focused on comparing

VIB-PR between different populations to further explore their

diagnostic/therapeutic potential (El-Kahky, 2000; Bonan et al.,

2015; Caccese et al., 2021).

However, there is still no published guideline covering

the key methodological aspects to consider when using the

VIB-PR paradigm. Methods and vibration parameters greatly

vary across studies, which makes it difficult to compare

results within the literature and draw adequate conclusions.

There are several parameters known to directly influence

vibration-induced effects and postural reactions, such as the

location of the vibrator and vibration’s frequency, amplitude

or duration (Taylor et al., 2017; Beaulieu et al., 2020). In

particular, it has been shown that muscle spindle afferents are

more strongly activated at vibration frequencies around 70–

80Hz (Roll and Vedel, 1982; Kavounoudias et al., 2001; Taylor

et al., 2017), although many studies have used frequencies

as low as 0.28Hz (Caccese et al., 2020, 2021) and up to

250Hz (El-Kahky, 2000). Too much heterogeneity and

lacking consensus significantly affect the overall impact of

VIB-PR research.

Some previous reviews on vibration applications (Taylor et al.,

2017; Aboutorabi et al., 2018) focused on particular population

such as older people (Aboutorabi et al., 2018), on a specific

body segment (Jamal et al., 2020) or on non-postural applications

of vibration such as the renowned vibration-induced kinesthetic

illusion paradigm (Taylor et al., 2017). Of note, “whole-body

vibration” should not be confounded with focal vibration used for

VIB-PR and kinesthetic illusions, as it uses a different technology

and does not target the same mechanisms and physiological

functions [cf. reviews on the topic of whole-body vibration (Lings

and Leboeuf-Yde, 2000; Rogan et al., 2017)]. VIB-PR literature is

thus filled with good pieces of information, but no review covered

the wide variety of vibration parameters or locations used so far.

The main purpose of this scoping review was thus to give

an overview of general vibration parameters (location, frequency,

amplitude, duration) used so far to describe the current state of

evidence and identify the most important knowledge gaps and

future opportunities. A second purpose was to identify, if available,

the rationale used by the authors for justifying their methodological

choices concerning vibration parameters. It should be mentioned

that the effect of VIB-PR will not be covered in the present scoping

review and should therefore be addressed in future studies.

2 Materials and methods

2.1 Study design and methodological
framework

Scoping reviews have been described as studies aiming “to map

rapidly the key concepts underpinning a research area and themain

sources and types of evidence available, and can be undertaken as

stand-alone projects in their own right, especially where an area is

complex or has not been reviewed comprehensively before” (Arksey

and O’Malley, 2005; Joanna Briggs Institute, 2015). Therefore, the

scoping review was the appropriate choice to review the extent

and range of the different studies using vibration-induced postural

reactions in human research. This particularmethod of analysis will

be useful to determine the value of undertaking a full systematic

review and to identify research gaps in the existing literature

regarding VIB-PR in humans (Arksey and O’Malley, 2005). The

review protocol was thus based on the methodological framework

suggested by Arksey and O’Malley (2005).

2.2 Identification and selection of studies

Three databases (Pubmed, CINHAL, and SPORTDiscus) were

searched from inception to July 2022. A combination of keywords

(with or without truncation), controlled vocabulary thesaurus and

Boolean operators were used for each database. The search terms

for Pubmed were: Vibrat∗ AND (postur∗ OR balance OR equilibr∗

OR “Postural Balance” [Mesh]) AND (tend∗ OR “Tendons” [Mesh]

OR cutan∗ OR “Mechanoreceptors” [Mesh]) and was then adapted

for each database. This led to the following keywords for CINHAL:

Vibrat∗ AND (MH “Balance, Postural” OR postur∗ OR balance

OR equilibr∗) AND (tend∗ OR cutan∗ OR mechanoreceptor).
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Finally, the search terms for SPORTDiscus were: Vibrat∗ AND

(postur∗ OR balance OR equilibr∗) AND (tend∗ OR cutan∗ OR

mechanoreceptor). Finally, a manual search was performed in

reference lists of the included studies to include articles that were

not found by the standard literature search in the three databases.

To be included, the articles had to (1) study muscular, tendinous,

or cutaneous vibration, (2) in humans, and (3) to assess postural

control. Articles were excluded if the protocols were focused on

(1) whole body vibration or (2) vibration platforms. The language

of the articles was limited to French and English. The literature

search was performed by two evaluators (MBC and MPP) who

individually screened the titles and abstracts before selecting the

articles included.

2.3 Data extraction and summary of data

Data extraction was performed by MBC and MPP using

a standardized extraction grid custom-made for this scoping

review. Data related to demographic information, as well as the

different populations included in each article, were extracted.

Regarding data specific to vibration parameters (primary objective),

information on location, duration, frequency, and amplitude

have been extracted. Regarding data summary, qualitative data

were pooled and presented according to their frequency, while

quantitative data were extracted, combined, and described using

descriptive statistics (means and standard deviations). Regarding

the secondary objective, data for the rationale behind the vibration

parameters (including citations to other studies) were extracted

from the methodology section, when available. If the rationale was

not presented in the methodology section, the introduction was

screened for reference regarding the rationale.

3 Results

Out of the 599 articles obtained after the literature search in

the three databases and by manual search, 186 were assessed for

eligibility. Following full-text reviews, 147 studies were included

in the present review (Figure 1). Descriptive information of the

population and vibration parameters for all 147 included studies

can be found in Supplementary Data Sheet S1, while data regarding

rationale can be found in Supplementary Data Sheet S2.

3.1 Population studied

As presented in Figure 2, themajority of studies recruited adults

(n= 126 studies) in at least one of the tested groups. In most cases,

only adults were recruited as participants. However, in 20 studies,

adults were compared to the older adults, which was the second

most common group of participants across the included studies (n

= 32). Individuals were classified as “older adults” if the mean age

of the group was over 65 (Orimo et al., 2006; Sabharwal et al., 2015).

Themean age of participants across all studies was 39.8± 20.6 years

old. When separating participants according to their respective age

groups (as identified in the studies), the mean age for adults was

32.3 ± 12.7 years, 70.8 ± 5.2 years for the older adults, while

children and teens were respectively 8.9 ± 1.8 and 15.2 ± 1.5 years

old. Overall, a total of 1,666males and 1,608 females were recruited,

with some recruiting only males (Hayashi et al., 1981, 1988; Roll

et al., 1998; Vuillerme et al., 2001; Blouin et al., 2003; Stolbkov and

Orlov, 2009; Kanakis et al., 2014; Billot et al., 2015; Ema et al., 2020)

and others only females (Naessen et al., 1997; Spiliopoulou et al.,

2012; Maitre et al., 2013a,b, 2014; Mahmoudian et al., 2016; Fortin

et al., 2019; Oku et al., 2020).

Apart from age, three other subgroups were identified

(Figure 2). The first subgroup, called “Personal aspects,” comprises

studies that have tested participants presenting characteristics

relative to sports (Vuillerme and Cuisinier, 2008; Busquets et al.,

2018; Caccese et al., 2020, 2021), work [astronaut (Roll et al., 1998)]

and medication intake [estrogen supplements (Naessen et al.,

1997)]. The second and third subgroups include participants with

various neurological, cardiovascular or musculoskeletal conditions.

However, most specific characteristics within the three subgroups

were studied by fewer than five papers, except for Parkinson’s

disease (Smiley-Oyen et al., 2002; Valkovič et al., 2006; Vaugoyeau

et al., 2011; Bekkers et al., 2014; Hwang et al., 2016; Pereira et al.,

2016), stroke survivors (Lin et al., 2012; Bonan et al., 2013, 2015;

Duclos et al., 2015; Jamali et al., 2019; Sajedifar et al., 2020)

and vestibular disorders (Pyykkö et al., 1991; Lekhel et al., 1997;

Karlberg and Magnusson, 1998; El-Kahky, 2000; Yagi et al., 2000;

Maurer et al., 2001; Eysel-Gosepath et al., 2016; Wuehr et al., 2018).

3.2 Vibration parameters

3.2.1 Location
In general, studies targeted lower limb tendons or muscles to

elicit VIB-PR (n = 137). As presented in Figure 3, most studies

vibrated Achilles tendons (n= 85), followed by the tibialis anterior

(n = 29). Cutaneous zones (under the feet) were stimulated in 16

studies. Trunk muscles were targeted in nine studies and upper

limb structures (including tendons and muscles from the neck or

arms) in 16 studies.

3.2.2 Vibration duration
Duration varied greatly across studies, ranging from 0.03 s (dos

Santos Fornari and Kohn, 2008) to 3,600 s (Lapole et al., 2012;

Baudry and Duchateau, 2020). The mean duration for all duration

values was 110.5 ± 463.3. Using SPSS to identify extreme values,

the mean vibration duration across studies, once extreme duration

values (n = 12; ≤2 s or ≥900 s) were removed, the mean duration

was 36.5 ± 68.1 s, with 10 s and 20 s being the most frequent

durations (n= 20 each), followed by 30 s (n= 17).

3.2.3 Vibration frequency
Once again, this vibration parameter varied across studies, with

a range going from 0.05Hz (Maurer et al., 2001) up to 400Hz

(Inglis et al., 2002). As presented in Figure 3, vibration frequencies

are usually around 80Hz when targeting tendons/muscles (e.g.,

mean of 79.9 ± 35.4Hz for the lower limb), while being

more variable (mean: 69.8 ± 87.9Hz) when stimulating skin

mechanoreceptors under the foot.
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FIGURE 1

Adaptation of the PRISMA 2020 flow diagram for new systematic reviews. Adapted from Page et al. (2021).

3.2.4 Vibration amplitude
When data were available (111 out of 147 articles), vibration

amplitudes were extracted and pooled together. As shown in

Figure 4, the majority of studies selected vibration amplitudes

between 0.2mm and 3.0mm. Few studies opted for an amplitude

lower than 0.2mm [75 nm (Sacco et al., 2018); 200 nm (Lee et al.,

2012, 2013; Martin et al., 2015); 1.8mm (Oku et al., 2020)] or

higher than 3.0mm [5mm (dos Santos Fornari and Kohn, 2008)].

The most frequent amplitude was 1.0mm (n = 28), followed by

0.4mm (n = 21) and 0.5mm (n = 26). When looking at data

comparing vibration amplitude from cutaneous zones (such as

under the feet) to muscle/tendons (such as Achilles tendon or

triceps surae), amplitude ranges for cutaneous vibration tend to be

smaller (e.g., 0.2–1.8mm for the feet, mean: 0.7 ± 0.6mm) than

for tendons/muscles (e.g., 75 nm to 5mm for the Achilles tendon,

mean: 1.3± 1.0 mm).

3.2.5 Rationale for the selection of vibration
parameters

Seventy-one out of 147 studies did not include any rationale

nor reference to support the vibration parameters selected.

Additionally, 11 studies cited a source to support their rationale, but

it was located in the introduction instead of the methods. Out of the

65 studies that included any rationale in their methods, 18 studies

cited either previous work from a member of the research team (n

= 16) or referenced to unpublished pilot studies (n = 2). Finally,

53 studies supported their selection of vibration parameters from

other studies, most frequently from the works of Roll and Vedel

(1982) (n= 23) and/or Roll et al. (1998) (n= 23).

4 Discussion

The aim of this scoping review was to review the extent and

range of populations and vibration parameters currently used in

human research using the VIB-PR paradigm. By reviewing 147

original studies, our results demonstrated a high heterogeneity of

methods and vibration parameters, and often a lacking or imprecise

rationale to support those methodological choices.

Regarding the populations recruited, our results demonstrated

that adults around 32.3 ± 12.7 years old tend to be more present

in vibration studies. In support of this finding, mechanisms

underlying VIB-PR are incompletely understood and still require

fundamental research with younger and healthy participants (Kadri

et al., 2020, 2023). For example, Kadri et al. suggested a new

analytical method for precisely tracking spatiotemporal variables

related to the center of pressure. They found new evidence that
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FIGURE 2

Bar graph of the frequency of populations recruited in vibration studies.

the precise time-course of postural reactions is in fact characterized

by distinct phases that could be linked to different mechanisms

of sensorimotor integration. Similar observations based on CoP

displacements were also found in studies from different groups

of researchers (Kavounoudias et al., 2001; Capicíková et al., 2006;

Duclos et al., 2014). Also, Kadri et al. found that these patterns

varied between and within individuals. The neurophysiological

and behavioral correlates of these observations remain unknown

(Kadri et al., 2020, 2023), calling for further fundamental work

with neurologically and physically healthy individuals. In terms

of knowledge gaps, however, our review highlights a greater need

for studies testing VIB-PR with other populations than healthy

adults. Collecting normative values from all age groups would help

generalize findings to larger and more diverse populations and

provide useful data for comparing with sub-populations having

specific pathological conditions or personal characteristics.

Apart from healthy adults, the other subgroups identified

by the scoping review were older adults and individuals with

different pathologies or sociodemographic characteristics (n = 32

for older adults and n = 46 for all other studies combined).

The main objective behind studies that tested these populations

was to investigate how their specific particularities influenced

VIB-PR observations. Older adults were the second most often

studied population, probably because of the well-known age-related

decline in sensory processing and postural control (Goble et al.,

2011; Eikema et al., 2013, 2014). Thus, they present a relevant

model to verify the validity of the VIB-PR paradigm and identify

novel biomarkers of fall risks and sensorimotor dysfunctions

(Abrahámová et al., 2009; Eikema et al., 2013; Bekkers et al., 2014;

Ito et al., 2020). The same logic applies to pathologies affecting

somatosensation, such as stroke (Kessner et al., 2016) or Parkinson’s

disease (Conte et al., 2013). As discussed above, studying how

VIB-related mechanisms of sensorimotor processing are affected

in these populations requires comparative data from age-matched

controls, thus further supporting the importance of studying VIB-

PR in older participants. For example, a study using VIB-PR to

compare elderly fallers and elderly fallers suffering fromParkinson’s

disease suggested that it might affect specifically medio-lateral
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FIGURE 3

Vibration frequency parameters for each body area. Data are presented in box plot, with each vibration frequencies value represented by a circle and

the means by an X. The number of studies assessing each frequency is presented next to the body area.

stability (Bekkers et al., 2014). Therefore, future studies could focus

on this direction to better understand why medio-lateral stability

declines in Parkinson’s disease.

Regarding vibration location, our scoping review highlighted

the fact that most studies focused on the ankle joint, and more

specifically studied the Achilles tendon (Figure 3). This finding is

not surprising since the ankle joint is known to generate strong

postural reactions (Dettmer et al., 2013; Maitre et al., 2013a; Baudry

and Duchateau, 2020; Kadri et al., 2020). Moreover, this joint is

crucial for controlling the anteroposterior sway when standing

in antigravitational postures (Arnold et al., 2009; Spink et al.,

2011). One other possible explanation is that most seminal studies

on VIB-PR (15 out of 20 studies) published before 2000 were

performed on the Achilles tendon or muscles/tendons from the

triceps surae. Therefore, it might be easier to compare their findings

to previous results obtained from the same muscles/tendons.

However, different patterns of VIB-PR have been observed when

targeting the tibialis anterior tendons vs. the Achilles tendon (Kadri

et al., 2023), which puts into question why only the Achilles tendons

are chosen in most studies. Testing other musculotendinous

structures would give a more complete picture of regulatory

mechanisms involved in keeping balance in different directions and

using different joints. For example, including peroneus muscles

in future studies could be of great interest to study sensorimotor

processing and postural control in the medio-lateral direction,

especially in populations presenting higher risks of instability in

this direction. Although conceptually linked, VIB-PR elicited when

stimulating different locations distributed across the whole body

(Figure 3) might not underlie the exact same mechanisms, nor

are they testing the same neural loops. Our review stresses out

the importance of knowing and filling these gaps of knowledge.

In particular, only a few studies investigated VIB-PR elicited by

stimulation of trunk, knee and hip muscles, despite their important

role in postural control (Gribble and Hertel, 2004; Vuillerme et al.,

2007; Bizid et al., 2009). In the same way, cutaneous afferent inputs

from the foot sole or parts of the skin stretched when moving

provide valuable proprioceptive information to regulate posture

and movement (Inglis et al., 2002; Aimonetti et al., 2012). However,

few studies focused on cutaneous vibration, or tried to disentangle

the contribution of cutaneous receptors to the overall impact of VIB
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FIGURE 4

Vibration amplitude for each vibration frequency. This bar graph

represents the associations between the various vibration

amplitudes associated with their vibration frequency. The data were

included in this graph only if both the amplitude and frequency

were present in an article. The circles represent each amplitude

value, and the mean is represented by the X.

when targeting musculo-tendinous structures. The most eloquent

demonstrations originate from studies published 40–50 years ago

using anesthetized joint and skin afferents, and even exposed

tendons during surgeries and found that VIB-induced illusory and

proprioceptive effects were preserved. Although it underscored

the core role of muscle afferents in proprioception, it cannot

completely rule out the potential influence of joint and cutaneous

afferents. More recent work found that certain types of cutaneous

receptors such as Meissner or Pacinian corpuscles are responsive to

frequencies of vibration within the ranges observed in the present

review (i.e., 30–300Hz) and that their activation by VIB influenced

movement detection (Weerakkody et al., 2019). Of note, none

of those previous studies having studied the complex interaction

between skin and muscle afferents with VIB were realized in

postural contexts. Altogether, this review highlights the paucity of

evidence available on how cutaneous receptors contribute to the

VIB-PR phenomenon (around 10% of the included studies), leaving

once again a gap of knowledge to fill in order to better understand

the regulatory mechanisms involved in keeping balance.

Finally, vibration frequency, amplitude and duration also

varied greatly across studies (Figures 3, 4). There is good

fundamental evidence supporting the impact of changing vibration

frequency on the rate of muscle afferents depolarization and

kinesthetic illusions (Roll and Vedel, 1982; Ribot-Ciscar et al.,

1989). However, there are few evidence to support how changing

the frequency actually impacts postural reactions, and all were

obtained from healthy participants (Kavounoudias et al., 2001;

Polonyova and Hlavacka, 2001; Schofield et al., 2015). For vibration

duration, even when extreme values were removed, our results

showed that the mean duration across studies was 36.5 ± 68.1 s,

i.e., with almost 190% of variation. Choosing the most appropriate

duration, even for other applications such as illusions, remains

mostly arbitrary due to lacking empirical data (Seizova-Cajic et al.,

2007). Recent work suggested that VIB-PR evolves dynamically

over time, with at least a first phase of rapid postural reaction (first

2–3 s), followed by a later phase (at least 8 s) where postural control

tends to restabilize (Capicíková et al., 2006; Duclos et al., 2014;

Kadri et al., 2020, 2023). We would at least recommend choosing

longer durations instead of shorter ones, in order to avoid missing

relevant behaviors and underlying mechanisms of control. In Kadri

et al. (2020, 2023), there were many participants who did not even

reach their maximal amplitude of reaction after 10 s of vibration.

The specific effect of amplitude remains difficult to study. In our

experience, technical specs of most vibration motors purchasable

online show a non-linear relationship between vibration frequency

and amplitude. Both parameters are modulated by only one

controllable input: the strength of the electrical current. Increasing

this electrical input increases both the frequency AND amplitude

(up to a certain physical limit). In order to keep the amplitude

fixed, the vibration device must be designed accordingly through

advanced engineer skills. To our knowledge, this issue has never

been raised before, despite several authors having reported using

custom-made vibration apparatus (Ivanenko et al., 2000; Goble

et al., 2011; Bekkers et al., 2014; Billot et al., 2015; Cofré Lizama

et al., 2016). Some authors, however, used accelerometers to

measure the amplitude (Courtine et al., 2007; Lubetzky et al.,

2016). In general, illusory perceptions of movement were increased

by using higher vibration amplitudes (Schofield et al., 2015;

Taylor et al., 2017), possibly through a greater pool of spindle

afferents activated, but this has yet to be demonstrated for

VIB-PR. In any case, it would be appropriate to include, in

future studies, a more complete description of the apparatus

used and the general specs (e.g., type of electric motors,

size of the apparatus,. . . ). Furthermore, in their seminal work

Goodwin recognized that their vibrator had an amplitude of

about 2mm but when applied on the participant, the amplitude

was dampened to ∼0.5mm. From what we read in the included

studies, none verified if the desired VIB parameters (amplitude,

frequency) were conserved after having installed the vibrators on

participants. One study however verified the impact of changing

the tensile strength applied to the vibrator when strapping it

the ankle and found that postural reactions were influenced

when using higher vs. lower levels of tightness (Maitre et al.,

2021). Unfortunately, they did not measure how different levels

of tightness influenced VIB parameters, nor did they consider

this effect as potentially explaining their results. Nevertheless,

we believe that future studies should investigate this unexplored

methodological factor.
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This lack of knowledge about vibration parameters, especially

when applied in postural contexts, might explain why a supporting

rationale was not provided in almost half of the included studies.

On the other hand, many based their methodological choices on

two seminal papers from Roll and coworkers (Roll and Vedel, 1982;

Roll et al., 1989). Of note, neither of these studies by Roll’s group

applied VIB in postural contexts. They rather investigated which

sensory afferents best responded to VIB, which parameters (mostly

frequency) resulted in the strongest activation of those receptors

and how different parameters and modes of VIB application

influenced kinesthetic illusions perceived by the participants.

In both studies, it was demonstrated that perceived movement

velocity reached a maximal value for a vibration frequency of

about 60–80Hz (or 70–80Hz), with 80Hz being the peak value.

Once this “critical value” was exceeded, the individual response

to the vibration was found to decrease (Roll and Vedel, 1982;

Roll et al., 1989). These observations were obtained with an

amplitude ranging from 0.2 to 0.5mm with a duration never

exceeding 20 s (Roll et al., 1989) or 0.5, 1 or 2 s (Roll and

Vedel, 1982). Although such findings are highly relevant and

impactful for the field, it remains uncertain if they can directly

apply to VIB-PR since sensorimotor networks involved in the

processing of VIB-induced afferents are probably not the same

in postural vs. non-postural contexts. Moreover, as presented

in Supplementary Data Sheets S1, S2 many studies (34 studies

out of the 76 studies that included a rationale; 44.7%) cited at

least one of these two papers to support their methodological

choices, even if some of them used different parameters then those

suggested by Roll and coworkers. A sound rationale to support

the use of parameters exceeding the known limits of efficiency for

depolarizing spindle afferents, such as around 80Hz for frequency,

was rarely provided. Therefore, our results underscore the critical

need for establishing valid rationales to guide methodological

choices in the field of VIB-PR. This knowledge gap is of the utmost

importance; understanding the impact and standardizing vibration

parameters are required for drawing adequate conclusions and

enabling comparisons between studies.

As a first step toward this standardization, and in the absence

of sound empirical knowledge of all parameters influencing VIB-

PR, it is relevant to consider what parameters have been most

often used in the field. The most “typical” vibration protocol

found in the present review tends to generate a 20 s vibration

at 80Hz and around 1mm of amplitude. This finding is similar

to what has been described in a previous review focused on

muscle vibration-induced illusions (Taylor et al., 2017) and is in

accordance with previous results suggesting that muscle spindle

afferents respond in an optimal “harmonic” 1:1 ratio at frequencies

around 70–80Hz (Roll and Vedel, 1982; Roll et al., 1989). As for

the amplitude, previous results suggested that increasing vibration

amplitude from 0.1mm to 0.5mm resulted in stronger, larger

and faster vibration-induced illusions of movement (Schofield

et al., 2015). Finally, >20 s durations might be necessary to

encompass the most important mechanisms and behaviors at play

during vibration applications. However, the short- and long-term

neuroplastic adaptations of a sustained application of vibration

has not been sufficiently addressed. The available evidence at least

encourages future research to choose an appropriate duration based

on the specific mechanism/behavior being targeted. For example,

if eliciting tendon reflexes is what the research team is aiming for,

short vibration bursts of 0.03 s have been shown to be sufficient (dos

Santos Fornari and Kohn, 2008). On the other hand, if a research

team aims to describe the time course of CoP displacement, induce

lasting neuroplastic changes or investigate sensory-reweighting

mechanisms necessary for reaching postural re-stabilization when

a sensory source is no longer recognized as appropriate (Kadri

et al., 2020, 2023), a longer vibration duration such as >10 s should

be considered.

Our review has some limitations inherent to the study design.

First, the quality of the included studies was not assessed in

order to highlight some biases. However, scoping study usually

does not seek to assess quality of evidence (Arksey and O’Malley,

2005). Also, due to the nature of a scoping review, our results

are not weighted according to the studies’ quality. Future studies

should, therefore, focus on synthesizing the results in a systematic

review and recommend specific vibration parameters. Until then,

we suggest that results from studies using vibration should be

discussed with caution, especially regarding the purposes of the

research and/or when conducting clinical assessments in clinical

setting because of the variation inherent from the vibration

parameters applied.

5 Conclusion

This scoping review provided a comprehensive description

of the population recruited and parameters used for

vibration protocols in current studies with humans. This

study is a first step toward improving the standardization

of VIB-PR methodology to ensure a higher impact and,

eventually, transfer to clinical applications. Despite a

large number of studies, there are still important gaps in

knowledge that need to be filled, especially for younger

populations or pathological conditions, as well as vibration

amplitude and duration parameters. Furthermore, we

strongly encourage future work to appropriately support

each methodological choice regarding VIB-PR parameters and

protocols, based on the best available evidence and sound

scientific rationales.
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