
fnhum-17-1302647 November 2, 2023 Time: 16:12 # 1

TYPE Original Research
PUBLISHED 08 November 2023
DOI 10.3389/fnhum.2023.1302647

OPEN ACCESS

EDITED BY

Yuxiao Yang,
Zhejiang University, China

REVIEWED BY

Xiaoqian Mao,
Qingdao University of Science and Technology,
China
Wenzhe Liao,
Hebei University of Technology, China

*CORRESPONDENCE

Qiushi Fu
qiushi.fu@ucf.edu

RECEIVED 26 September 2023
ACCEPTED 25 October 2023
PUBLISHED 08 November 2023

CITATION

Hooks K, El-Said R and Fu Q (2023) Decoding
reach-to-grasp from EEG using classifiers
trained with data from the contralateral limb.
Front. Hum. Neurosci. 17:1302647.
doi: 10.3389/fnhum.2023.1302647

COPYRIGHT

© 2023 Hooks, El-Said and Fu. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted which
does not comply with these terms.

Decoding reach-to-grasp from
EEG using classifiers trained with
data from the contralateral limb
Kevin Hooks1, Refaat El-Said2 and Qiushi Fu1,3*
1Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States,
2College of Medicine, University of Central Florida, Orlando, FL, United States, 3Biionix Cluster, University
of Central Florida, Orlando, FL, United States

Fundamental to human movement is the ability to interact with objects in our

environment. How one reaches an object depends on the object’s shape and

intended interaction afforded by the object, e.g., grasp and transport. Extensive

research has revealed that the motor intention of reach-to-grasp can be decoded

from cortical activities using EEG signals. The goal of the present study is to

determine the extent to which information encoded in the EEG signals is shared

between two limbs to enable cross-hand decoding. We performed an experiment

in which human subjects (n = 10) were tasked to interact with a novel object

with multiple affordances using either right or left hands. The object had two

vertical handles attached to a horizontal base. A visual cue instructs what action

(lift or touch) and whether the left or right handle should be used for each trial.

EEG was recorded and processed from bilateral frontal-central-parietal regions

(30 channels). We trained LDA classifiers using data from trials performed by

one limb and tested the classification accuracy using data from trials performed

by the contralateral limb. We found that the type of hand-object interaction

can be decoded with approximately 59 and 69% peak accuracy in the planning

and execution stages, respectively. Interestingly, the decoding accuracy of the

reaching directions was dependent on how EEG channels in the testing dataset

were spatially mirrored, and whether directions were labeled in the extrinsic

(object-centered) or intrinsic (body-centered) coordinates.

KEYWORDS

electroencephalography, brain-machine interface, decoding, reaching, grasping,
visuomotor transformation

1. Introduction

In activities of daily living, an important motor function is reaching and interacting with
objects of interest. This ability can be severely limited in patients with upper-limb motor
impairment, such as stroke survivors and individuals with spinal cord injuries. Advances
in brain-machine (BMI) or brain-computer interfaces have provided the technological
foundation to decode information from neural signals associated with cortical activities to
drive assistive robots or support rehabilitation (Lebedev and Nicolelis, 2017; López-Larraz
et al., 2018). One of the extensively studied neural signal sources is electroencephalography
(EEG) due to its high temporal resolution, non-invasiveness, and portability (Al-Quraishi
et al., 2018; Orban et al., 2022). EEG-based BMI can be generally categorized into two types
or a mix of these two types: exogenous and endogenous (Abiri et al., 2019). The exogenous
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EEG BMI is driven by cortical activities evoked by external stimuli,
such as P300 signals (Fazel-Rezai et al., 2012) and steady-state
visual-evoked potentials (Zhang et al., 2021). In this framework,
the BMI can detect a user’s overt visual attention on a screen by
matching EEG signals to particular waveform shapes or frequencies
that are direct results of the stimuli. Therefore, it has great potential
in creating communication interfaces such as BMI spellers (Rezeika
et al., 2018). In contrast, the endogenous EEG BMI is driven by
neural activities that are modulated by spontaneous motor intent
as the users attempt to execute or imagine a specific motor action
(Pereira et al., 2017). This type of BMI is believed to be more
intuitive to use in movement control applications because the
motor intent can be directly mapped to a similar action of the
assistive or rehabilitation devices.

The endogenous EEG BMI is built with the assumption
that the spatial, temporal, and/or spectral characteristics of
EEG signals are associated with certain aspects of the intended
movement. For reaching and object interaction, previous research
has demonstrated that information about upper limb movement
direction and type can be decoded from EEG with various levels of
accuracy (Hammon et al., 2008; Wang and Makeig, 2009; Iturrate
et al., 2018; Ofner et al., 2018; Xu et al., 2021, see Tables 1, 2).
However, most of the existing studies have focused on the decoding
of movement intent within the dominant limb (mostly in right-
handed individuals) with only a few exceptions. Lew et al. (2014)
investigated reaching direction decoding for left and right limbs
in a couple of participants. They found no difference between the
decoding accuracies associated with two limbs, but the channels
that contributed most to the target discrimination were different
between left-hand and right-hand decoders. A recent study found
no difference between the accuracies of decoding grasp types
between two hands, although the distribution of cortical activity
patterns revealed significant lateralization for each hand (Schwarz
et al., 2020). These results are consistent with the rich evidence
that demonstrates the lateralization of motor control circuits for
each limb (Serrien et al., 2006; Walsh et al., 2008; Sainburg, 2014;
Schmitz et al., 2019). However, it is largely unclear the extent to
which information encoded in EEG signals is limb-dependent and
the extent to which two limbs can share the same BMI decoder for
detecting movement intent.

Reach-to-grasp movements involve complex visuomotor
transformations from visual space to motor space (Davare et al.,
2011). Task information is initially encoded in extrinsic object-
centered spatial coordinates, whereas the motor output is encoded
in intrinsic, effector-centered coordinates (Filimon, 2010). For
instance, to retrieve a cup of coffee from the same location on
the right side of the body, the left and right arms must produce
different reaching kinematics and muscle activations but both
hands may perform the same grasp action (power grasp). In this
example, the encoding of grasping action can be shared across two
limbs in both extrinsic and intrinsic coordinates, but the encoding
of reaching may only be shared across two limbs in extrinsic
coordinates. Non-human primate studies using cortical implants
have revealed that many neurons in the frontoparietal network
could encode movement information that is independent of the
limb performing the movement, whereas some neurons are more
tuned to limb-specific information (Kakei et al., 1999, 2001; Cisek
et al., 2003; Chang et al., 2008). These studies imply that cortical
activities could be associated with both extrinsic and intrinsic

information in humans, but how neuronal activities manifest as
EEG signals remains to be investigated.

The present study examines EEG-based decoding of reach-
to-grasp behavior by asking human participants to interact with
an object with either one of their hands. The object affords
different interactions that could be similar in extrinsic or intrinsic
coordinates. We tested the hypothesis that both the reaching
direction and hand action type are encoded in EEG signals in a
limb-independent fashion, thus allowing the same linear classifiers
to operate above chance level for both hands.

2. Materials and methods

2.1. Participants

Ten young adult participants (4 M, 6 F. Mean age 23.4)
enrolled in the study were all self-reported right-hand dominant.
They had normal or corrected-to-normal vision, and no history
of musculoskeletal or neurological disorders. All subjects were
naïve to the purpose of the study and gave informed consent to
participate in the experiment. The experimental protocols were
approved by the Institutional Review Board at the University of
Central Florida in accordance with the Declaration of Helsinki.

2.2. Experimental setup

The participants sat comfortably in front of a table where
a U-shaped object is located approximately 0.5 m from the
participant’s body. The object weighs approximately 900 g and
it has two vertical cylindrical handles attached to a rectangular
base (Figure 1A). The distance between the two handles is 19 cm.
The handles can be interacted with in two ways: touching the top
with the index finger, or grasping with all fingers and lifting the
object while keeping the object balanced. Therefore, there were 4
possible conditions to be performed by each hand (2 Actions × 2
Directions): Grasp Left handle, Touch Left handle, Grasp Right
handle, Touch Right handle. The exact condition for each trial
was given by visual cues using a customized LabView (National
Instruments, Austin, TX) program, displayed on a monitor located
2 m in front of the participants. The visual cue has a size of
10 cm × 10 cm and consists of four rectangles indicating different
conditions (Figure 1B). The participants were instructed to always
focus their gaze on the visual cue, which is at about eye level, during
the entire duration of each trial.

A 64-channel EEG ActiCap system (Brain Products, Germany)
was individually fitted to each participant’s head size to ensure a
proper connection of the electrodes. Conductive gel was applied to
each electrode to achieve an impedance level below 20 kOhms. The
electrode placement follows the international standard extended
10–20 system (Nuwer et al., 1998). Additionally, horizontal and
vertical EOG channels were added to help remove ocular artifacts
from EEG. The horizontal EOG electrodes were placed laterally
next to each eye, and the vertical channels were placed above
and below the right eye. EEG and EOG signals were recorded
with BrainAmp at a sampling rate of 500 Hz. The movement
of the wrists and the object were recorded at 120 Hz using an
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TABLE 1 Summary of previous within-hand results of decoding hand actions.

References Task NCH Classifier design Window
size

Task phase Accuracy

Iturrate et al., 2018 Self-paced and selected
power or precision grasp

15 1–6 Hz, 2-class LDA 0.5 s Planning 69%

1 s Planning + Execution 78%

Ofner et al., 2018 Delayed onset with task
cue, four grasp types

59 0.3–3 Hz, 2-class LDA 1 s Execution 72%

Schwarz et al., 2020 Delayed onset with task
cue, two grasp types

58 0.3–3 Hz, 2-class LDA 1 s Execution 68%

Guo et al., 2019 Delayed onset with task
cue, two grasp orientations

64 0.1–40 Hz, 2-class SVM 0.01 s Planning 60%

0.01 s Execution 65%

Jochumsen et al., 2016 Cued force production
with three grasp types

25 0.01–5 Hz, 2-class LDA 1 s Planning 57%

Yong and Menon, 2015 Cued movement type,
grasp vs. elbow motion

25 0.01–5 Hz, 2-class LDA 2 s Motor imagery 61%

NCH denotes the number of EEG channels used in the classifiers. Note that accuracy numbers are rounded, and only the means are listed.

TABLE 2 Summary of previous within-hand results of decoding reaching directions.

References Number of
directions

NCH Classifier design Window
size

Task phase Accuracy

Hammon et al., 2008 3 256 Broad band, logistic classifier 0.3 s Planning 60%

0.5 s Execution 70%

4 64 Broad band, logistic classifier 0.5 s Planning 58%

Wang and Makeig, 2009 3 128 0–25 Hz, SVM 0.3 s Planning 80%

Lew et al., 2014 4 64 0.1–1 Hz, LDA 0.25 s Planning + Execution 75%

Wang et al., 2021 2 24 0.01–4 Hz, SVM 1 s Execution 80%

Kim et al., 2019 2 64 0–40 Hz, SVM 0.3 s Planning 79%

Sagila and Vinod, 2022 2 14 Broad band, SVM 2.5 s Motor imagery 73%

NCH denotes the number of EEG channels used in the classifiers. Note that accuracy numbers are rounded, and only the means are listed.

optical motion tracking system (OptiTrack, Corvallis, OR, USA).
Reflective markers were attached to the object and both wrists of the
participants (Figure 1A). The EEG and movement recordings were
synchronized by event triggers generated by the LabView program.

2.3. Experimental procedure

The participants start each trial with one of their hands placed
flat on the table in front of the center of the object. The color
of the visual cue square turns green at the beginning of each
trial instructing the participants to get ready. After 1 s, one of
the rectangles corresponding to the target task condition was
highlighted as a “Task” cue (Figure 1B). Subsequently, a “Go”
cue was given 2 s after the Task cue, which is defined as the
highlighted rectangle changing to gray coupled with a “ding”
sound. Participants were asked to perform the desired action
after the Go Cue with a natural speed. For Grasp conditions, the
participants should grasp the target handle, lift the object a few
inches off the table, and keep the object balanced. They must replace
the object back to the table following a chime sound (3 s after
Go). Note that the left and right handles of the object require

opposite hand and wrist actions to balance the object because
of the geometry and weight distribution. For example, the right
handle requires a compensatory torque in the clockwise direction,
which corresponds to the supination and pronation for the right
and left hands, respectively. For Touch conditions, the participants
placed the pad of the index finger on top of the target handle and
moved their hands back after the chime sound (2 s after Go). The
longer duration of the Grasp trials than the Touch trials was to
ensure participants had sufficient time to complete the required
action. After 20 trials of familiarization with the task conditions,
participants performed a total of 8 trial blocks. Each block consisted
of 40 randomized trials with each of the four conditions presented
10 times. Participants were instructed to switch hands between
blocks, and each block was performed by the same hand. There
was a total of 40 left-hand trials and 40 right-hand trials for each
condition.

2.4. Data processing

The reflective markers were grouped into marker sets and
formed rigid bodies whose centers were used to estimate the
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FIGURE 1

(A) Experimental set up. a, b, and c denote visual cue display, target
object, and wrist tracker, respectively. (B) Experimental trial design
and visual cue example. L and R denote left and right handles,
whereas T and G denote Touch and Grasp conditions, respectively.
In this example, the participant should grasp and lift the left handle,
as indicated by the highlighted “LG” rectangle.

movement of the wrists in MATLAB (Natick, MA, USA). The 3D
trajectories of the rigid-body centers were interpolated to account
for missing points (<2% of total samples), followed by zero-lag
smoothing with a 4-th order 5 Hz low-pass filter. Subsequently,
the trajectory data was differentiated to calculate wrist movement
velocities, which was then downsampled to 50 Hz. We define
movement onset as the time when the wrist velocity is first above
a threshold of 0.01 m/s and remains above the threshold for
more than 0.5 s.

All EEG data processing was performed in MATLAB using
EEGLAB features (Delorme and Makeig, 2004). The EEG data
was first re-referenced (Common Average) and bandpass filtered
from 0.3 to 4 Hz with a zero-phase Hamming-windowed sinc
FIR filter (Widmann et al., 2015). This low-frequency range has
been shown to contain information about reach-to-grasp behaviors
in previous studies (see Tables 1, 2). The filtered data was then
downsampled to 50 Hz. We segmented the data in two ways
(Figure 2). The first dataset was defined as epochs from the
Ready cue to the Go cue, i.e., [−1, 2] s with respect to the Task
cue. This dataset was used for investigating the planning phase
(no movement) of the trials. The second dataset was defined as
epochs of [−1, 2] s with respect to the movement onsets that
were defined in the wrist movement analysis. This dataset was
used for investigating the execution phase of the tasks. For both
datasets, we implemented independent component analysis using
AMICA (Palmer et al., 2012) and subsequently performed artifact
removal using ADJUST algorithm (Mognon et al., 2011) with EOG
signals as correlates. As the final step of the EEG processing, we
rejected epochs based on movement data. Specifically, a trial is
excluded from the planning dataset if the movement onset occurred
before 0.5 s prior to the Go cue, leading to a trial rejection rate of
1.1 ± 1.0%. The rejected trials were considered to have movement
occurred too early, which would generate execution-related cortical
activities that should not occur in the planning phase. For the
execution dataset, we rejected all trials that were excluded from
the planning dataset with additional rejections if a trial had a
movement onset before “Go” cue, or if participants did not move

FIGURE 2

Data processing flow chart. EEG data was segmented to form two
data sets. Movement data was used to determine which trial should
be rejected.

during a trial. This led to a trial rejection rate of 3.0 ± 1.6%. These
rejected trials were considered to have movement occurred too
early (which may cause substantial corrective movements during
task execution), or a lack of execution stage. Both scenarios can
make the neural activity of the trial an outlier for the execution
dataset.

2.5. Classifier design

The primary goal of the decoder in the present study is
to perform binary classification between two task conditions
using EEG signals. The classifiers used in previous studies had
various designs that differed in feature selection methods and
classifier types. In this study we choose to extract spatiotemporal
patterns from a set of 30 electrodes that cover the bilateral
frontal, central, and parietal areas (Figure 3A). Specifically, we
define a standard montage with the electrode order in the data
as follows: F1, F3, F5, FC5, FC3, FC1, C1, C3, C5, CP5, CP3,
CP1, P1, P3, P5, F2, F4, F6, FC6, FC4, FC2, C2, C4, C6,
CP6, CP4, CP2, P2, P4, P6. The spatiotemporal patterns were
then classified by linear discriminate analysis (LDA) classifiers.
Specifically, the classifications were performed within shifting
time windows that were 400 ms long with a shifting step size
of 100 ms. This represents a 270-dimensional data vector in a
given time window for one trial. We used principal component
analysis (PCA) to reduce the dimensionality of the feature space,
and we kept the principal components (PC) that explain the
first 85% of the variance within the trial pool (see below). The
loadings of these PCs formed the feature vectors (approximately
20 dimensional on average) used for training and testing the
classifiers. Importantly, we used the following three different
decoding configurations.
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FIGURE 3

(A) Standard electrode montage used for classification. For mirrored montage, the green and blue regions are flipped with respect to the midline.
(B) Within-hand classification setup. Cross-validation was used for each pair of conditions. (C) Cross-hand classification setup. Two conditions from
one hand were used for training and two conditions from the other hand were used for testing. For Panels (B,C), the red letter in the three-letter
condition code represents the factor being classified. Each table represents a set of four classifiers that decode the same information, i.e., hand
action or reaching direction.

2.5.1. Within-hand decoding
This is the common configuration used in past research, where

trials from a pair of experimental conditions were pooled. In this
study, we have eight different experimental conditions as a result of
four task conditions performed by either hand. We define them as
three-letter codes following the order: Reaching direction, Action
type, and Hand. For example, a Left Grasp task performed by the
right hand is abbreviated LGR, and a Right Touch task performed
by the right hand is RTR. Each of these conditions included 40
trials except those that were excluded. To perform within-hand
decoding in each time window, a pool of trials was created from a
pair of experimental conditions that differ either in Action type or
Reaching direction. The classifier performance was evaluated as the
average accuracy from 10 repetitions of 10-fold cross-validation.
This configuration allows us to examine the extent to which hand
action and reaching direction can be decoded within the same hand
(Figure 3B).

2.5.2. Normal cross-hand decoding
To investigate how neural information associated with reach-

to-grasp is shared across two hands, we used trials from one
hand to train the classifiers which were tested on data from
the contralateral hand. Note that determining which conditions
can be considered as the same class across two hands is not
trivial. Specifically, the class labeling was performed in two ways:
Extrinsic and Intrinsic (Figure 3C). Extrinsic labeling considers
spatial congruency in the extrinsic object-centered coordinate. For
example, the left hand grasping the right handle (RGL) and the
right hand grasping the right handle (RGL) were labeled as the
same class for a classifier. In contrast, intrinsic labeling considers
joint space congruency in the intrinsic limb-centered coordinate.
For example, the left hand touching the right handle (RTL) and
the right hand touching the left handle (LTR) were labeled as
the same class for a classifier, since the hands were reaching
the contralateral side handles. This configuration requires pooling
trials from four experimental conditions, two from each hand. The

classifier performance was evaluated by using conditions from one
hand as the training set and conditions from the other hand as the
testing set.

2.5.3. Mirror cross-hand decoding
Given our understanding that motor control for each limb

is partially lateralized to the contralateral hemisphere, we also
investigated the extent to which spatial patterns of cortical activities
may be shared across two hands in a mirrored fashion. We
extended the classification configuration of the normal cross-hand
decoding described above, by using a mirrored electrode montage
for the testing data from the contralateral hand. The mirroring
was performed with respect to the midline, which creates a new
order: F2, F4, F6, FC6, FC4, FC2, C2, C4, C6, CP6, CP4, CP2,
P2, P4, P6, F1, F3, F5, FC5, FC3, FC1, C1, C3, C5, CP5, CP3,
CP1, P1, P3, P5. The pooling of trials for each time window
remains the same as the normal cross-hand decoding, i.e., from
four experimental conditions with either extrinsic or intrinsic class
labels. Note that the feature extraction PCA was performed on
the trial pool after mirroring the montage. The mirrored montage
effectively creates a mirrored spatial distribution of EEG signals,
treating left-hemisphere activities as right-hemisphere activities
and vice versa for the testing data. In other words, the mirrored
montage favors EEG spatial patterns that encode information in
a manner that is consistent between two hands across ipsilateral-
contralateral hemispheres. In contrast, the standard montage favors
EEG spatial patterns that are consistent between two hands across
right-left hemispheres.

2.6. Statistical analysis

We applied the three decoding configurations to both the
planning and execution datasets. The peak decoding accuracy
for a given decoding setup (Figure 3; e.g., within-hand action
decoding using RGL/RTL conditions) was identified for the same
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pool of trials across multiple time windows within each dataset.
For planning, the start of the time windows spans from the Task
cue to 1.5 s post Task cue. For execution, the start of the time
windows spans from the movement onsets to 1.5 s post-onset.
This led to a total of 15 time windows for each decoding setup
in each phase, and the greatest decoding accuracy (and its timing)
among these was selected to represent the corresponding decoding
setup. We considered a threshold of 59.3% for a peak decoding
accuracy to be significantly above the chance level (p < 0.05),
given that each classifier was tested with approximately 80 total
samples (Combrisson and Jerbi, 2015). Statistical comparisons were
performed on peak decoding accuracies and the timings of peak
decoding accuracies. We first used two-way repeated ANOVA
to examine if the peak performance of an Action classifier or a
Direction classifier may be different between subsets of data used
for training and testing. Since we did not find significant effects of
the two factors involved in these ANOVAs, we averaged the results
across subsets of data from the same classifier group, and used
two-tail paired t-tests to compare classifier performance between
specific classifier groups.

3. Results

3.1. Characteristics of limb movements

We estimated the limb movement by tracking marker sets
attached to the wrist. The movement onsets with respect to
the “Go” cue was similar across all experimental conditions
(338.5 ± 113.7 ms). There were substantial differences in
movement characteristics between the Grasp and Touch conditions
starting from the beginning of the movements (Figure 4). This
is because the wrist must supinate before contacting the object
to align the hand grasp axis with the vertical handle in the
Grasp conditions, but not Touch conditions. Furthermore, Grasp
conditions feature double peak vertical velocity profiles due to
the need to lift the object off the table after reaching. The peak
vertical velocity of reaching movement occurred at approximately
0.4 s after movement onset in all experimental conditions, and
the object contact occurred at approximately 0.8 s after movement
onset. The second vertical velocity peak occurred approximately
at 1.2 s after movement onset. Overall, the movement recordings
suggest that the motor behavior of the left and right hands
were very similar in task conditions that share the same task
goals.

3.2. Within-hand decoding performance

For every group of four binary classifiers that decode the
same information (Figure 3B), we did not find any significant
differences in peak decoding accuracies or the timings of the peak
accuracies. Specifically, classification performance was found to
be similar between left and right hands. Therefore, we report the
results that are averaged across classifiers from the same group, i.e.,
Action and Direction decoders. In the planning phase, the peak
decoding accuracy was 62.0 ± 3.5% for Action and 64.0 ± 3.9%
for Direction, with most participants having above chance level

FIGURE 4

Velocity profiles in different experimental conditions. Right-hand
and left-hand profiles are shown at the top and bottom of each
panel. Time 0 s is movement onset. Thick and thin lines represent
the mean and standard deviation. For horizontal velocities (red),
positive values represent moving to the right. For vertical velocities
(blue), positive values represent moving upward. (A) Grasping the
right handle, (B) grasping the left handle, (C) touching the right
handle, (D) touching the left handle.

accuracies (Figure 5A). The timing of the peak accuracy was
0.78 ± 0.19 s and 0.60 ± 0.16 s post Task cue for Action and
Direction classifiers, respectively. Paired t-tests revealed that the
peak Direction decoding accuracy occurred significantly earlier
than the peak Action accuracy (p = 0.045). In the execution phase,
the peak decoding accuracy was 73.6 ± 5.7% for Action and
68.9 ± 8.8% for Direction, and all participants had above-chance
level peak accuracies (Figure 5B). The timing of the peak accuracy
was 1.07 ± 0.22 s and 0.76 ± 0.22 s for Action and Direction
classifiers, respectively. A paired t-test revealed that the peak
Direction decoding accuracy occurred significantly earlier than the
peak Action accuracy (p = 0.002). Overall, these results suggest
that motor intent can be decoded for hand-object interactions and
reaching directions with our binary classification setup for both
hands.

3.3. Normal cross-hand decoding
performance

In the normal cross-hand decoding configuration, we used
the same standard electrode montage for both limbs. Here we
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FIGURE 5

Peak accuracies and the corresponding timing of within-hand decoding (A) during the planning phase, and (B) during the execution phase. For all
panels, Act and Dir denote the Action classifier and Direction classifier groups, respectively. Red letters in the condition code represent the factor
being classified. Green lines denote the threshold of 59.3% for above-chance level accuracy. The green values after the classifier type (Act or Dir) in
the decoding accuracy panels are the numbers of participants (out of 10) who had above-chance level peak accuracy on average for the
corresponding group of four classifiers. Asterisks represent significant differences (p < 0.05).

focus on comparing the average peak classification performance
between different groups of four classifiers (Figure 3C). In the
planning phase, we did not find Action decoding to differ between
extrinsic and intrinsic labeling (59.5 ± 2.3% on average). Both
labeling methods had about half of the participants showing
above-chance level accuracy. In contrast, the peak accuracy
of Direction decoding was significantly higher with extrinsic
labeling than intrinsic labeling (p = 0.042), with more participants
showing above-chance level accuracy (Figure 6A). No timing
differences were found for peak accuracies (0.80 ± 0.13 s post
Task cue on average). In the execution phase, Action decoding
peak accuracies were similar between extrinsic and intrinsic
labeling (69.3 ± 3.5% on average), and all participants were
above chance level (Figure 6B). No significance was found
between the two labeling methods for Direction decoding peak
accuracy, but more participants were above chance level with
extrinsic labeling. Additionally, we found that the timing of peak
accuracy was earlier for Direction than Action decoding only with
intrinsic labeling (p = 0.006). In sum, the cross-hand decoding
configuration showed that Action classification was not dependent
on the class labeling methods, but Direction classification
performance favors extrinsic labeling in both planning and
execution phases.

3.4. Mirror cross-hand decoding
performance

In the mirror cross-hand decoding configuration, we used the
standard electrode montage for the training limb and mirrored
electrode montage for the testing limb. We again focus on
comparing the average peak classification performance between
different sets of four classifiers (Figure 3C). In the planning
phase, we did not find Action decoding to differ between extrinsic
and intrinsic labeling (59.4 ± 2.1% on average), which was
also at a level similar to the normal cross-hand configuration.
For the peak accuracy of Direction decoding, we found it
to be opposite to the normal cross-hand configuration. The
intrinsic labeling was significantly more accurate than extrinsic
labeling (p = 0.049), with more participants showing above-
chance level accuracy (Figure 7A). No timing differences were
found for peak accuracies (0.74 ± 0.14 s post Target cue

on average). In the execution phase, Action decoding peak
accuracies were again similar between extrinsic and intrinsic
labeling (69.8 ± 5.1% on average), and all participants were above
chance level (Figure 7B). This result was similar to the normal
cross-hand configuration. The Direction decoding performance
in this phase followed the same pattern as the planning phase.
Intrinsic labeling was found to be significantly more accurate
than extrinsic labeling (p = 0.001), with more participants above
the chance level. Furthermore, we found that the timing of peak
accuracy was also earlier for Direction than Action decoding
with intrinsic labeling (p = 0.003). In sum, the cross-hand
mirror decoding configuration showed that Action classification
was not dependent on the class labeling methods, but Direction
classification performance favors intrinsic labeling in both planning
and execution phases.

4. Discussion

In this study, we examined the decoding of motor intent for
reaching and object interaction using low-frequency component
of EEG signals from bilateral frontal-central-parietal areas. It
was found that both the intended hand-object interaction and
the reaching direction can be decoded with 2-class classifiers
during motor planning phase and execution phase, and the
peak decoding accuracies for the left and right hands were
similar. Furthermore, for the first time, we demonstrated that
a classifier trained with EEG data from one limb can decode
movement direction and action type for the contralateral
limb. Importantly, the success of such cross-hand decoding,
especially for movement direction, was dependent on how
EEG channels were organized and how movement direction
was represented.

4.1. Comparing within-hand decoding
accuracy to existing research

The experimental setup and classifier designs used in past EEG-
based studies vary substantially, which makes direct comparison
challenging. The feature vector used in classification can be
extracted in different ways to capture spatial, temporal, or
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FIGURE 6

Cross-hand classification peak accuracies and timings (A) during the planning phase, and (B) during the execution phase. Ext and Int denote
extrinsic and intrinsic class labeling methods, respectively. Green lines denote the threshold of 59.3% for above-chance level accuracy. Green values
below the labeling method type (Ext or Int) are the numbers of participants (out of 10) who had above-chance level peak accuracy on average for
the corresponding group of four classifiers. Asterisks represent significant differences (p < 0.05).

FIGURE 7

Cross-hand mirror classification peak accuracies and timings (A) during the planning phase, and (B) during the execution phase. Ext and Int denote
extrinsic and intrinsic class labeling methods, respectively. Green lines denote the threshold of 59.3% for above-chance level accuracy. Green values
below the labeling method type (Ext or Int) are the numbers of participants (out of 10) who had above-chance level peak accuracy on average for
the corresponding group of four classifiers. Asterisks represent significant differences (p < 0.05).

spectral patterns. The classifiers can be linear such as LDA and
shrinkage LDA, or non-linear such as support vector machines
(SVM). Nevertheless, we listed some results from similar studies
for decoding hand-object interaction and reaching directions in
Tables 1, 2, respectively. Note that the primary goal of the
present study was not to compete for higher within-hand decoding
accuracy. Instead, by comparing our within-hand configuration
to existing research, we can validate our experimental protocol
and classifier design to support the main objective of cross-hand
decoding.

For hand-object interactions, most studies focused on
classifying different grasp types, but they differ in the actions

after grasp configurations were formed: some required lifting
the object whereas others did not. Generally, the decoding
accuracies were higher during motor execution than motor
planning or imagery. This is likely due to the need to send
efferent information for muscle contraction and the receiving
of sensory information during motor execution. Overall, our
results are consistent with these studies, showing 2-class decoding
accuracy above 60% and above 70% during planning and
execution phases for both hands. The relatively high accuracy
we achieved in execution may be related to the significant
difference between the two hand-object interactions used in
our experiment. The grasping condition requires finger force
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to maintain the grasp, wrist torque to balance the object, and
arm force to overcome the object’s weight. In contrast, the
upper limb muscle activations were much lower in the touch
condition where only a light contact was made between the index
fingers and the object.

For reaching directions, most of the existing studies used
center-out reaching movements, without a functional goal after
reaching is completed. There were more variations in classifier
design with some implementing more sophisticated feature
selection and classification algorithms. Our decoding accuracies
during both planning and execution for the left and right hands
were lower than those from previous studies. One explanation is
that our classifier is relatively simple without capturing spectral
information or creating non-linear decision boundaries, which
may lower the ability to discriminate information related to
reaching target representations. Another potential cause is that
some of the previous studies did not use EOG to remove
artifacts associated with eye movements, which can be highly
predictive for target visual locations. Nevertheless, our decoding
accuracies for movement direction were still significantly above
the chance level. One important feature of our experimental
task is that participants must perform distinct hand actions after
reaching the object in the Grasp conditions, i.e., balancing a
left-heavy or right-heavy object depending on which handle was
grasped. However, such follow-up actions did not significantly
increase the peak decoding accuracy in comparison to Touch
conditions where different hand actions were not needed. Based
on the timing of the peak accuracy, the peak decoding accuracy
for task direction during execution was approximately aligned
with the end point of reach for both the Grasp and Touch
conditions, but before the final stage of sustained object interactions
(Figure 4). Furthermore, the timings of the peak decoding accuracy
for action were later than the timings for direction decoding
in both planning and execution phases. These results indicate
that the directional information was mostly associated with the
reach movement, independent of the subsequent hand-object
interactions.

4.2. Decoding hand actions with
classifiers trained using data from the
contralateral hand

Our results show that cross-hand decoders for discriminating
between Grasp and Touch conditions were above chance
level in some participants during the planning phase, and
in all participants during the execution phase. Interestingly,
we did not find any significant difference between different
class labeling methods (i.e., extrinsic or intrinsic), or whether
mirror electrode montage was used for the contralateral hand.
The lack of dependence on class labeling indicates that the
discriminative information in the classifier was unlikely to
be associated with the actual torque direction the hand was
exerting during the Grasp conditions. Otherwise, the opposite
hand torque direction required by the two handles may favor
either extrinsic or intrinsic labeling to discriminate against the
Touch condition. For example, for the left-hand training pair
LGL/LTL, if the EEG signals carry intrinsic information of

the torque direction, i.e., supination, the intrinsic labeling of
testing pair RGR/RTR would yield higher accuracy because the
extrinsic testing pair LGR/LTR had incongruent hand torque
representation (pronation). Moreover, the fact that mirroring
electrode montages did not affect decoding accuracy suggests
that the spatial distribution of the discrimination-supporting EEG
patterns may be symmetric about the midline, which indicates a
lack of hemispheric lateralization.

One possible explanation of our results is that the classifier
may capture the neural signatures of a bilateral network that
encodes hand actions. Indeed, functional magnetic resonance
imaging (fMRI) studies revealed that many nodes within the
bilateral frontoparietal areas in humans, such as posterior parietal
cortex and dorsal premotor cortex, allow limb-independent
discrimination between grasping and touch (Gallivan et al.,
2013) or between power and precision grasps (Turella et al.,
2020). However, the same studies also showed that there are
areas where hand action related neural activities are more limb-
dependent. An important note is that the BOLD signals generated
using fMRI do not directly translate to EEG patterns. The
lateralized cortical activities in fMRI may not be strong enough
to provide discrimination power as EEG signal sources for hand
action classification in the low-frequency band we used. An
alternative explanation of the present result is that the peak
action decoding may partially depend on neural processes that
are not specifically related to the type of hand posture. Note that
the peak accuracy occurred during the sustained action phase
where grasping required keeping the balance of the object and
touching required light touch. It is possible that the grasping
conditions is associated with brain regions that are critical to
online error monitoring and error correction, such as anterior
cingulate (Carter et al., 1998; Kerns et al., 2004) and supplementary
motor area (Coull et al., 2016). Both of these areas are aligned
with the midline and could lead to symmetrical distributions of
EEG signals.

4.3. Decoding reaching directions with
classifiers trained using data from the
contralateral hand

Unlike hand action decoding, the cross-hand classification
performance of reaching direction showed clear dependency
on both the class labeling and electrode montage. Specifically,
extrinsic labeling was superior in normal cross-hand configuration,
whereas intrinsic labeling was superior in cross-hand mirror
configuration. These findings indicate that the extrinsic
representation of reaching direction is likely to be encoded
by EEG patterns that are lateralized in a spatially consistent
fashion that is independent of the limb performing the task,
i.e., biased toward the right- or left-hemisphere. In contrast,
the intrinsic representation of the reaching direction is
likely to be encoded by EEG patterns that are consistently
organized in the ipsilateral-contralateral direction with
respect to the limb performing the task. A recent EEG study
found that decoding reaching direction for the right limb
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performing reaching in two different arm postures was more
accurate using extrinsic target labeling than intrinsic target labeling
(Yoshimura et al., 2017). Our result is consistent with this study,
although it did not examine cross-hand decoding. Non-human
primate research has shown that neurons across the frontoparietal
network are tuned to reaching targets in both extrinsic and intrinsic
coordinates. A representation gradient may exist such that parietal
regions and premotor regions are more likely to encode reaching
direction extrinsically for both arms, whereas primary motor areas
are more likely to encode reaching direction intrinsically for the
contralateral arms (Kakei et al., 1999, 2001; Cisek et al., 2003;
Chang et al., 2008). Human fMRI studies also support such gradient
(Bernier and Grafton, 2010; Cavina-Pratesi et al., 2010). Based
on these studies, we speculate that the decoding of the extrinsic
reaching direction in the present study may rely on information
carried in the parietal and premotor regions, particularly from
the dominant (right) hemisphere. In fact, it has been theorized
that the dominant hemisphere may be more involved in motor
attention and predictive control of limb dynamics (Rushworth
et al., 2003; Serrien et al., 2006; Sainburg, 2014), which are
prominent features of our experimental task. In contrast, we
speculate that the decoding of the intrinsic reaching direction in
our study may mainly rely on signals originating from the limb-
dependent representations in primary motor areas contralateral to
the limb being used.

4.4. Limitations and future work

We recognize several limitations in the present study. First,
we only examined the low-frequency band of the EEG signals
using a simple linear feature extraction method and classifiers.
Although the method we chose was very common in previous
research, there could be alternative classifier designs that can
yield higher classification accuracy. Second, we were not able to
perform reliable source analysis because we only had a small
number of participants, and we did not have the tools to acquire
electrode location data and MRI scans which are critical to perform
source localization. This prevented us from identifying location
information of the neural mechanisms underlying our results.
Third, we only used two hand action types and two reaching
directions. In real-world BMI applications where a broad range of
motor actions needs to be implemented, this may not be sufficient
to effectively control assistive or rehabilitation devices. We will
address these limitations in future experiments by improving our
methodology. Furthermore, EEG decoding of movement intention
was not limited to the classification of movement types. It has been
shown that arm and finger kinematics can also be predicted by EEG
signals (Agashe et al., 2015; Robinson and Vinod, 2016). Therefore,
we also plan to investigate the extent to which cross-hand decoding
of movement kinematics is viable.

5. Conclusion

In the present study, we demonstrated that EEG signals
could carry some information about upper limb movement that
is shared between two limbs, which enables classifiers trained

from one limb to decode the motor intent of the contralateral
limb. Furthermore, our findings provide new insights into
the visuomotor transformation process underlying reaching and
hand-object interactions by comparing extrinsic and intrinsic
labeling methods and electrode montages. Future work is
needed to examine how these findings can be used to improve
BMIs by allowing fast calibration processes or more robust
decoding algorithms.
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