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Introduction: This study delves into the intricacies of emotional contagion and

its impact on performance within dyadic interactions. Specifically, it focuses on

the context of stereotype-based stress (SBS) during collaborative problem-solving

tasks among female pairs. Through an exploration of emotional contagion, this

study seeks to unveil its underlying mechanisms and e�ects.

Methods: Leveraging EEG-based hyperscanning technology, we introduced an

innovative approach known as the functional graph contrastive learning (fGCL),

which extracts subject-invariant representations of neural activity patterns from

feedback trials. These representations are further subjected to analysis using the

dynamic graph classification (DGC) model, aimed at dissecting the process of

emotional contagion along three independent temporal stages.

Results: The results underscore the substantial role of emotional contagion in

shaping the trajectories of participants’ performance during collaborative tasks in

the presence of SBS conditions.

Discussion: Overall, our research contributes invaluable insights into the neural

underpinnings of emotional contagion, thereby enriching our comprehension of

the complexities underlying social interactions and emotional dynamics.

KEYWORDS

emotional contagion, graph contrastive learning, graph representation learning,

stereotype-based stressor, graph classification

1 Introduction

Emotional contagion refers to the sharing of emotional states between individuals,

and it has been observed in both animal and human models that the infectivity of

negative emotions is much greater than that of positive emotions (Goldenberg and

Gross, 2020). Negative emotional contagion has a powerful effect on our relationships—

family, friends, teams, etc.—and can lead, for example, to depressive behavior in

healthy people who live with depressed individuals. It is urgent to understand the

mechanism of emotional contagion, especially negative emotional contagion. At present,

the emotional contagion models mostly adopt behavioral analysis and questionnaires,

which are often affected by subjects’ subjective factors. They have mainly focused

on behavioral experiment such as analyzing people’s posts containing emotional

information to extract affective evidence (Kramer et al., 2014), using the Positive And
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Negative Affective Schedule (PANAS) scale to measure positive

and negative emotions as a quantitive research (Alhubaishy and

Benedicenti, 2017) and the mathematical simulation model of

emotional contagion in crowd evacuation (Zhang et al., 2020).

Although behavioral analysis and questionnaires can provide

valuable insights into emotional contagion, they have limitations in

terms of capturing the neural mechanisms, timing, and subtleties of

this phenomenon. To overcome these limitations, researchers have

turned to EEG-based hyperscanning, a technology that records

electroencephalographic (EEG) data from multiple participants

simultaneously. This approach complements traditional behavioral

analysis and questionnaires by providing a more direct and precise

real-time examination of the underlying brain activities associated

with emotional contagion. EEG-based hyperscanning technology

has proven effective in capturing brain states during affective

communication. For instance, when an individual experiences

specific emotions such as sadness, joy, or fear, their brain activity

may influence the brain activity of others they interact with, thus

bearing implications for emotional contagion (Liu et al., 2018).

However, the significant inter-subject variability of emotion-

related EEG signals poses a great challenge for cross-individual

emotional representation extraction (Shen et al., 2022). In most

cases, the accuracy of the intra-subject emotion classification is

higher than that of inter-subject classification with the same

classifier (Li et al., 2020; Suhaimi et al., 2020). This limitation

in the generalization of emotion classifiers may be attributed to

individual differences in EEG-based emotional representations,

influenced by factors such as personality, dispositional affect, and

genotype (Hamann and Canli, 2004). Furthermore, individual

variance in patterns of brain connectivity reveals that the inter-

subject contrast plays a significant role in cognitive analysis (Finn

et al., 2015). These previous findings suggest that EEG emotional

representation should not be extracted without considering the

individual difference.

In this study, we investigated whether women who experienced

social identity threat could transmit their stress to womenwhowere

not under threat, using a process known as stereotype-based stress

(SBS) contagion and examined how this collective stress affected

women in a dyadic performance context. Previous research has

shown that SBS contexts typically engender a variety of behavioral

and physiological SBS responses including sustained vACC

activation, unique neural network configurations, and enhanced

connectivity between regions integral for emotion (dACC, vACC,

and mPFC) and saliency networks (IPL, insula, and STS). This

evidence collectively suggests increased emotional processing

and heightened awareness of negatively arousing or stressful

information (Forbes et al., 2018; Liu et al., 2020, 2021; Amey et al.,

2022). We sought to understand if threatened women can transmit

their stress to otherwise non-threatened partners, does it hurt or

benefit the woman directly under threat, and to what extent can

this come at a cost to their otherwise non-threatened partners?

To this end, we designed an experimental paradigm of emotional

contagion by using discussion and learning scenarios, and try to

understand the neurological mechanism of emotional contagion

by using EEG-based hyperscanning technology combined with a

data-driven approach called functional graph contrastive learning

(fGCL). This method extracts the subject-invariant emotional

representations while preserving functional connectivity (FC)

information. Subsequently, we conducted a downstream analysis

to infer and explore the process of emotional contagion. The

formulation of fGCL is grounded on the assumption that the

neural activities of the subjects are in a similar state when

they receive the same segment of emotional stimuli (i.e., the

displayed CORRECT or WRONG responses on the screen). Based

on this fundamental idea, we aim to learn subject-invariant

representations of EEG signals in the embedding space underlying

similar mental activities. Specifically, fGCL mainly consists of two

components, i.e., the spectral-based graph convolutional network

(spectral GCN) encoder and a two-layer multi-layer perceptron

(MLP). It maximizes the similarities of the representations in

response to identical emotional stimuli while minimizing the

similarities between signals corresponding to different stimuli. In

the downstream analysis, we employ a classifier known as dynamic

graph classification (DGC), which utilizes the graph embeddings

extracted by the trained fGCL encoder as input to identify

emotional stimuli type (i.e., CORRECT or WRONG responses)

during emotional contagion within dyads. These representations,

extracted based on semantically meaningful settings, are expected

to be informative and generalizable for the downstream analysis.

The method presents three essential characteristics:

• The presented model can extract EEG signal representations

with inter-individual commonality and remove the individual

differences, which more effectively summarize the internal

neural activity pattern.

• A deep learning model that is more effective than traditional

statistical analysis and behavioral analysis methods to

investigate the emotional contagion mechanism.

• The graph data structure-based analysis is more aligned

with functional brain network structure and thus yield more

intuitive and informative results.

2 Method

2.1 Graph construction and analysis
procedure

As individual difference exists in inter-subject functional

connectivity (FC), a statistical dependency quantifies the

connection strengths between brain region of interests (ROIs)

(Mueller et al., 2013), and our aim is to preserve the FC information

for more effective emotional analysis. To this end, we adopt graphs,

which are naturally suitable for modeling brain topology. In this

approach, we project ROIs onto the nodes of a graph and the

weighted edges connect nodes; this overcomes the limitation of

traditional 2D grid-like structure, where models might fail to

explore and exploit the complex FC (Demir et al., 2021).

Given a dataset {(G
j
i , yi)}

N
i=1 with N individuals, where yi =

{0, 1} represents the label of i-th graph; G
j
i = {V

j
i , E

j
i } corresponds

to the j-th view within augmented views (see Section 3.7), where

Pearson correlations among ROIs are calculated as node features;

X
j
i ∈ RROIs×ROIs, where ROIs denotes the number of ROI in a
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graph; and xn = X[n, :]T is the ROIs-dimensional node feature

for node vn ∈ V , containing FC information. Partial correlations

between ROIs is used as edge features H
j
i ∈ RROIs×ROIs, where

hnn′ = H[n, n′]T is the edge feature of edge enn′ ∈ E .

As illustrated in Figure 1, the functional graph contrastive

learning (fGCL) encoder learns to extract embeddings of each

graph as subject-invariant representations (i.e., maximizing the

representational similarity of EEG signals belonging to the similar

scenario while minimizing it for dissimilar ones); by leveraging this

encoder, we construct a population graph where a collection of

subject-invariant embeddings of EEG signals represent as nodes.

Given this, the dynamic graph classification (DGC) classifier

is trained to perform classification task on three stages (early,

middle, and late). The results can be further utilized for emotional

contagion analysis (see Section 4.3).

2.1.1 The functional Graph Contrastive Learning
encoder

The fGCL encoder f takes N-paired graphs (minibatch)

{GA
i |i = 1, ..,N} and {GB

j |j = 1, ..,N} as inputs to generate

subject-invariant embeddings {zAi |i = 1, ..,N} and {zBj |j =

1, ..,N} of graphs for each type of trial (correct or wrong

feedback in our experiment). It adopts spectral graph convolutional

neural network consisting of two Chebshev spectral graph

convolutional layers (Defferrard et al., 2016), each followed by

a TopK pooling layer (Cangea et al., 2018) as model backbone

to capture representations and retain important nodes in the

iterative aggregation. Additionally, global average pooling layer

and global mean pooling layer are used to capture the global

information. Finally, a two-layer multi-layer perceptron (MLP) is

employed to output the graph embeddings. Similar to SimCLR

framework (Chen et al., 2020) with InfoNCE loss, we adopt

the contrastive loss function for the anchor embedding zAi
defined as:

L(zAi ) =

−log(
exp(sim(zAi ,z

B
i )/τ )

∑N
j=1 Ij 6=iexp(sim(zAi ,z

A
j )/τ )+

∑N
j=1 exp(sim(zAi ,z

B
j )/τ )

) (1)

where Ij6=i = {0, 1} is an indicator, which is set to 1

when j 6= i, and τ is a temperature factor to adjust the

attractiveness strength. Overall, this loss function increases the

attractiveness of positive pair (zAi and zBi ) and decrease the

attractiveness of negative pair (zAi and others) in the embeddding

space (Figure 2). The similarity between two embeddings is

computed by

sim(zAi , z
B
j ) =

zAi · z
B
j

||zAi || ||z
B
j ||

(2)

Eventually, the accumulated loss of the minibatch is

computed by

L =

N
∑

i=1

L(zAi )+

N
∑

i=1

L(zBi ) (3)

The spectral convolution blocks of fGCL comprise the

Chebyshev spectral graph convolutional operator (i.e., ChebConv

layer), which is defined by:

X′ =

K
∑

k=1

Z
(k)(X) · θ (k) (4)

where K is the Chebyshev filter size, Z(k)(X) is computed

recursively by Z(1) = X, Z(2) = L̃ · X, all the way to Z(k) =

2 · L̃ · Z(k−1) − Z(k−2), and L̃ denotes the scaled and normalized

Laplacian 2L
λmax
− I, where λmax is the largest eigenvalue of L. θ

(k)

are learnable parameters. To prevent overfitting, each ChebConv

layer is followed by a TopK pooling layer, which downsamples

graphs and reduces their dimensionality while retaining the most

relevant nodes (i.e., top K nodes), leading the model to focus

on meaningful information. The resulting embeddings of graphs,

optimized through graph contrastive learning, are then fed into the

downstream classifier for graph classification tasks.

2.1.2 Downstream analysis on the outcomes of
emotional contagion

After the graph contrastive learning phase, individual

differences have been eliminated in the embedding space. This

means that the extracted representations preserve the commonality

of neural activity patterns in response to both correct and wrong

feedbacks. To fully utilize these aligned representations, we

adopt the dynamic graph classification (DGC) model to perform

emotional contagion state analysis.

Initially, the DGC takes a population graph with isolated nodes

as the input. By iteratively projecting node features onto a new

feature space, it is able to construct new edges based on the top-K

connection strengths defined as:

vP
′

i =
∑

j∈EP
(i,·)

h2(v
P
i || v

P
j − vPi ), E

P = KNN(VP)topK (5)

where || is the concatenation function and h2 denotes a fully

connected neural network with a set of learnable parameters 2.

Initially, h2 projects the node features vPi and vPi − vPj to obtain

the edge features eij, and the summation of these edge features is

used to update the node features. This process takes into account

both global information captured by vPi and local neighborhood

information captured by vPj − vPi . Edges are constructed by

selecting the top-K closest nodes through pairwise distance matrix

computations in the feature space for each individual node. During

each dynamic graph update, connections between closer nodes are

strengthened, while edges with more distant nodes are deprecated.

The final layer of the DGC is a fully connected neural network used

to predict the class of each node.

After the training procedure, the DCG have learned the pattern

of the neural response to the correct and wrong feedbacks. The

classification tasks are conducted based on the early, middle,

and late stages of the problem-solving tasks. When individuals

encounter the wrong feedback, there is stronger activation in brain
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FIGURE 1

The schematic overview of our study. (A) The experiment setting. Subjects in one dyad answer mathematical questions while recording their EEG

signals simultaneously. Each participant need to solve mathematical questions both individually and together with their partners before confirming

the final decision and receiving the feedback from the computer screen. (B) The illustration of functional graph contrastive learning. Given a

minibatch of graph data representing subjects in the same dyad, the fGCL encoder is able to extract subject-invariant graph embeddings. (C) The

illustration of dynamic graph classification. The DGC classifier dynamically updates the population graph, which is constituted of graph embeddings

as isolated nodes initially and predicts the label of each node ultimately. (D) The downstream analysis. The dataset is divided into early stage, middle

stage, and late stage according to the scenario of tasks to perform emotional contagion analysis using the trained DGC classifier.

FIGURE 2

The illustration of the construction of positive pair and negative pair in graph contrastive learning. In a minibatch, the embedding z
A

1 as an anchor

forms a positive pair with z
B

1 , and all other embeddings form negative pairs with z
A

1 .

regions associated with emotions, such as the vACC, dACC, and

mPFC. In the case of DMT-PST dyads, when DMT actors transmit

negative emotions to DMT partners and their own negative

emotions dissipate, the brain exhibits more distinct response

patterns for positive and negative feedbacks. This makes it easier

for the classifier to correctly classify the feedback types, reflecting

an improvement in classification performance. However, for DMT

partners, due to the influence of negative emotions, brain activity

becomes more complex, making it difficult for the model to

distinguish the correct patterns. As for the PST-PST dyads, there
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are no such phenomena, indicating that there is no fluctuation in

classification performance over time.

The algorithm of training the fGCL encoder and the

downstream classifier DGC are summarized in Algorithm 1.

Require: Collection of N batched double view data

B, the learning rate αl of fGCL, the learning

rate αg of DGC, batch size N, temperature T,

ratio r, kernel size K, maximum number of training

epochs of the fGCL MaxEpochf , maximum number of

training epochs of the DGC MaxEpochd;

1: Initialize the parameters of ChebConv and

TopKPooling blocks in fGCL with K and r and set

Epochsf ← 1, Epochsd ← 1;

2: while not converge and Epochsf ≤ MaxEpochf do

3: for batch Bb = {{(G
1
1 , y

1
1), (G

1
2 , y

1
2)}, ...., {{(G

N
1 , y

N
1 ), (G

N
2 , y

N
2 )}}}

∈ B do

4: Obtain graph embeddings {zbi |i = 1, 2, ..., 2N} by two

ChebConv and TopKPooling blocks and a

two-layer MLP;

5: Calculate graph contrastive loss by (1)-(3);

6: θf ← θf − αl
∂L
∂θf

7: αl ← Fl(αl) where Fl(·) is the multi-step learning

rate scheduler;

8: end for

9: Epochsf ← Epochsf + 1;

10: end while

11: Construct a population graph Gp on B with

isolated nodes using trained fGCLθf ;

12: while not converge and Epochsd ≤ MaxEpochd do

13: Dynamically reconstruct population graph Gp

using (5);

14: Calculate focal loss by (6), (7);

15: θd ← θd − αg
∂L
∂θd

;

16: Epochsd ← Epochsd + 1;

17: αg ← Fg (αg ) where Fg (·) is the step learning rate

scheduler;

18: end while

19: Output: fGCL encoder parameters θf and DGC

classifier parameters θd;

Algorithm1. The training algorithmof fGCL+DGC— learning graph

embedding and classification.

3 Experiment

3.1 Participants

Eighteen white female students who granted written

consent participated in the study for payment. Participants

were recruited for the study if they expressed knowledge

of the stereotype that men are better at math than

women. Specifically, all participants responded with a

three or lower to the following question during a pre-

study screening: “Regardless of what you think, what is

the stereotype that people have about women’s and men’s

math ability” (1 = Men are better than women; 7 =

Women are better than men). Participants were paired into

nine dyads.

3.2 Procedure

Upon arrival to the lab, partners of each dyad met for the

first time while signing consent forms; they were then prepared

for EEG recording. Each member of the dyad was seated in

their own soundproof chamber in front of a computer screen

and iPad tablet. Dyads were randomly assigned to either an

SBS/diagnostic math test condition (DMT, n = 7 dyads) or a

control/problem-solving task condition (PST, n = 2 dyads). In

the DMT condition, one participant (referred to as the “actor")

was exposed to SBS by being told they would complete tasks that

were diagnostic of their math intelligence. They also completed

demographic questions that included a gender query, had pre-

recorded instructions read aloud to them in a male voice through

headphones, and were prepped for EEG recording by at least

one male experimenter. In contrast, the DMT actor’s interaction

partner (referred to as the “partner") and all participants in the

PST condition were informed that they would be completing

tasks that would inform researchers about the different types

of problem-solving techniques they prefer (Forbes and Leitner,

2014; Forbes et al., 2015), completed demographic questions that

excluded the gender query, had prerecorded instructions read

aloud to them by a female voice through headphones, and were

set up by female experimenters. Thus, DMT partners and both

participants in the PST condition were always placed in stereotype

neutral/stress-free contexts. That is, only the condition of the actor

varied across dyad conditions. After an initial set of instructions,

participants were connected via webcam on their iPad tablet to

facilitate face-to-face communication during the interactive math

task (described in Section 3.3). Participants were able to see one

another through the duration of the interactive math task. When

the interactive math task was completed, participants answered

a series of questionnaires alone (iPads were removed from the

EEG chambers), were debriefed, and were compensated for their

participation with cash or course credit.

3.3 Interactive math task

Actors and partners simultaneously completed a 100-problem

math task consisting of standard multiplication and division

problems (e.g., 10× 20=) that they solved both alone and together.

Initial pilot tests confirmed that the problems selected varied

in degree of difficulty (easy, medium, and hard), ensuring all

participants would solve problems correctly and incorrectly, thus

exposing them to both positive and negative performance feedback.

Actors and partners were first presented with the same math

problem to solve alone for 16 s. During this solo time, participants

were given three answer choices below each problem (A, B, or

C), with the answer to each problem randomly presented in one

of the three answer positions. Participants mentally completed all
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problems without scratch paper and made all answer selections via

a button box placed in their laps. This solo answer was used for all

performance outcomes in our analyses. After participants entered

their solo answer, they were prompted with a screen that said,

“Please discuss the answer to the problem with your partner." At

this time, participants were given 20 s to discuss their answers with

their partners. Participants were then given 5 s to change or confirm

their answer to the math problem they just solved alone. After

submitting their final response, participants received feedback for 2

s that indicated whether their final answer was correct or incorrect

(presented as the words CORRECT orWRONG written in black on

a white screen).

3.4 EEG recording

Consistent with Forbes’s research (Forbes et al., 2018),

continuous EEG activity was recorded from each member of

the dyad using an ActiveTwo head cap and the ActiveTwo

Biosemi system (BioSemi, Amsterdam, Netherlands). Recordings

were collected from 64 Ag-AgCl scalp electrodes and from bilateral

mastoids. Two electrodes were placed next to each other 1 cm

below the right eye to record eye-blink responses. A ground

electrode was established by BioSemi’s common Mode Sense active

electrode and Driven Right Leg passive electrode. EEG activity

was digitized with ActiView software (BioSemi) and sampled at

2,048 Hz. Data were downsampled post-acquisition and analyzed

at 512 Hz. In our data-driven analysis, we only consider the

feedback trials (i.e., CORRECT or WRONG responses) to better

capture elicited emotional patterns when participants are evoked

by stimuli.

3.5 Data preprocessing

For feedback analyses, the EEG signal was epoched and

stimulus-locked from 500 ms pre-feedback presentation to 2,000

ms post-feedback presentation. EEG artifacts were removed

via FASTER Fully Automated Statistical Thresholding for

EEG artifact Rejection (FASTER) (Nolan et al., 2010), an

automated approach to cleaning EEG data that is based on

multiple iterations of independent component and statistical

thresholding analyses. Specifically, raw EEG data were initially

filtered through a band-pass FIR filter between 0.3 and 55

Hz. The EEG channels with significant unusual variance

(absolute z score larger than three standard deviations from

the average), mean correlations with other channels, and Hurst

exponents were removed and interpolated from neighboring

electrodes using a spherical spline interpolation function. EEG

signals were then epoched and baseline corrected. Epochs with

significant unusual amplitude range, variance, and channel

deviation were removed. The remaining epochs were then

transformed through ICA. Independent components with

significant unusual correlations with EOG channels, spatial

kurtosis, slope in the filter band, Hurst exponent, and median

gradient were subtracted and the EEG signal was reconstructed

using the remaining independent components. Finally, EEG

channels within single epochs with significant unusual variance,

median gradient, amplitude range, and channel deviation were

removed and interpolated from neighboring electrodes within the

same epochs.

3.6 Source reconstruction

All a priori sources used in network connectivity analyses were

identified and calculated via forward and inverse models utilized

by MNE-python (Gramfort et al., 2013, 2014). The forward model

solutions for all source locations located on the cortical sheet

were computed using a three-layered boundary element model

(Hämäläinen and Sarvas, 1989), constrained by the default average

template of anatomical MNI MRI. Cortical surfaces extracted

with FreeSurfer were sub-sampled to ∼10,240 equally spaced

vertices on each hemisphere. The noise covariance matrix for each

individual was estimated from the pre-stimulus EEG recordings

after preprocessing. The forward solution, noise covariance, and

source covariance matrices were used to calculate the dynamic

statistical parametric mapping (dSPM) estimated inverse operator

(Dale et al., 1999, 2000). The inverse computation was done using

a loose orientation constraint (loose = 0.2, depth = 0.8) (Lin

et al., 2006). The dSPM inverse operators have been reported to

help characterize distortions in cortical and subcortical regions

and improve the bias accuracy of neural generators in deeper

structures, e.g., the insula (Attal and Schwartz, 2013), by using

depth weighting and a noise normalization approach. The cortical

surface was divided into 68 anatomical regions (i.e., sources) of

interest (ROIs; 34 in each hemisphere) based on the Desikan—

Killiany atlas (Desikan et al., 2006), and signal within a seed voxel

of each region was used to calculate the power within sources and

phase locking (connectivity) between sources.

3.7 Implementation details

After the data preprocessing, 18 female individuals formed nine

pairs, consisting of seven DMT-PST dyads and two PST-PST dyads.

We then applied a sliding window technique to all basic views (the

initial multi-ROI EEG time series without augmentation), denoted

as X , which has 768 time points and 68 ROIs. The width and step

size of the sliding window were set to 300 and 50, respectively,

resulting in 10 augmented views (68 * 300) for each basic view

(68 * 768). This augmentation increased the size of our dataset to

17,650 graphs, representing subjects who received either WRONG

or CORRECT feedback. This augmentation allows the model to

learn more general patterns. The dataset was split into training,

testing, and validation sets in a 7:2:1 ratio.

In the graph contrastive learning procedure, within a N-sized

minibatch, given a collection of graphs {G
j
i |j = 1, 2, 3, ...,K}

representing i-th mathematical question, where j is an index

denoting augmented views, i = 1, 2, ....,N. We enumerate all

possible pairs within these graphs to form positive pairs. Within

a dyad Dm consisting of subject DA
m and DB

m, the K augmented

views {G
j
i |j = 1, 2, 3, ...,K} of one of the members (e.g., DA

m)

represent the same mathematical question and exhibit similar
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neural activity patterns. Consequently, given one view G
j
i among

these K augmented views, it forms positive pairs with the other

views within the set, denoted as {Gk
i |k = 1, 2, 3, ...,K, k 6= j},

and negative pairs with views representing other mathematical

questions (i.e., {Gn
r |n = 1, 2, 3, ...,K, r 6= i}). Additionally,

when two subjects encounter the same mathematical question, one

augmented view of subject DA
m in the m-th dyad should form

positive pairs with the other K augmented views of subject DB
m

in the same dyad. This process results in a total of 2K * (2K −

1) / 2 positive pairs (190 in our experiments). We trained the

model for 700 epochs with early stopping and adopted a multi-step

learning rate scheduler and Adam optimizer. The initial learning

rate, weight decay, temperature, and batch size was empirically

set to 0.001, 0.02, 0.5, and 68, respectively. The filter size in the

Chebyshev spectral graph convolutional operator was set to 4, and

the ratio of the TopK pooling layer was set to 0.5.

After obtaining the encoder fθ , graph features can be extracted

as an embedding zi = fθ (Gi) ∈ Rd in the d-dimensional embedding

space forming isolated nodes in the population graph initially. In

the feedback type classification procedure, we use the basic view

dataset (without sliding window augmentation) to train the DGC

classifier for 100 epochs. We adopted focal loss, Equations (6) and

(7), for the classifier to mitigate the aftermath of imbalanced data.

We set αt and γ to 0.5 and 2 empirically.

FL(pt) = −αt(1− pt)
γ log(pt) (6)

pt =

{

p if y = 1

1− p otherwise,
(7)

All methods are implemented with Pytorch and trained with

GPU NVIDIA_GeForce_RTX_3090.

4 Experimental result

4.1 Graph embedding e�ectiveness
analysis

We visualize the feature attraction of graph embeddings and

raw features in the dataset. Figures 3, 4 indicate that the positive

pairs have higher feature attraction than that of negative pairs.

In addition, the feature attraction of negative pairs is close

to 0, which verifies the effectiveness of fGCL in reducing the

attraction of negative pairs and heightening the attraction of

positive pairs. Conversely, the feature attraction on raw features

display no significant differences, indicating identical similarity

between positive and negative pairs.

4.2 Impact of emotional contagion on
performance over time

Initial examinations of performance revealed a condition

by time interaction, Wald2χ (2) = 13.72, p = 0.001. Specifically,

DMT partner’s performance decreased over time (B = −0.005

(SE = 0.002); Wald2χ (1) = 7.45, (95% Wald LL CI = −0.009;

UL CI = −0.002), p = 0.006); for every one unit increase in

time (trial number), the log odds of getting the question correct

decreased by 0.005 units. In contrast, DMT actors and PST

dyad members exhibited no over-time changes. Their performance

remained stable (p’s > 0.11). Moreover, simple contrasts between

conditions revealed performance differences between DMT actors

and partners over the course of the task. At the beginning of

the task, DMT partners had a higher probability of getting a

question correct in comparison to the DMT actor (p = 0.002) and

PST dyad members (p = 0.034). At the end of the task, DMT

partners had a lower probability of getting a question correct in

comparison to the partner (p = 0.004) and were largely comparable

to PST dyad members (p = 0.089). DMT actors did not differ

from PST dyad members (p = 0.35). Thus, at the end of the task,

DMT partners underperformed in comparison to the actors. These

findings support the possibility that DMT actors benefited from

dyadic interactions at the expense of their partners.

4.3 Contagion stage analysis

In the analysis of the contagion stage, we divided the

basic view dataset into training, testing, and validation sets

in a 7:2:1 proportion. Subsequently, we extracted subject-

invariant embeddings using the trained fGCL encoder for the

classification task.

Table 1 presents the results of ablation experiments conducted

on various models, including KNN, SVM, MLP, and DGC, aimed

at classifying feedback types within the basic view dataset. Notably,

we employed embeddings extracted by the fGCL encoder as inputs

for the KNN, SVM, and MLP models. The experimental results

demonstrate that our model exhibits superior performance in the

task of feedback type classification while maintaining a balance

between sensitivity and specificity. However, it is worth noting that

the absence of the fGCL encoder leads to a noticeable degradation

in the performance of the DGC model.

4.3.1 Individual-level classification
We further examined our hypothesis that whether the

emotional contagion occur over the period of sustained

interpersonal interaction. To this end, we divided the trial

sequence into three stages averagely: early stage, middle stage and

late stage to (0 ∼ 1/3), (1/3 ∼ 2/3) and (2/3 ∼ 1) respectively

and evaluate them separately by our model. The result in Table 2

revealed that the classification performance of DMT actors in

DMT-PST dyad is better than DMT partners in DMT-PST dyad

in Table 3 entirely, and the accuracy and the F1 score of DMT

actors in DMT-PST dyad represents an evident increasing trend

especially from the early stage to the middle stage, and the late

stage was superior to the other stages. In contrast, that of DMT

partners in DMT-PST dyad displayed a relatively less increment

in the accuracy and F1-score. This may additionally reflect that

the emotional contagion evolve cumulatively over the sustained

interpersonal communication, this, in turn, affects the neurological

representation when encountering negative event, and thus

resulting in the poor classification performance of recognizing
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FIGURE 3

The feature attraction of graph raw features and contrastive features.

FIGURE 4

The probability density function of attractions on graph raw features and contrastive features.

TABLE 1 The entire-period feedback type classification results on the basic view dataset.

Models ACC AUC F1 Score SEN SPEC

fGCL + KNN 63.80± 0.15% 66.07± 0.55% 62.93± 0.15% 58.63± 0.43% 63.96± 0.05%

fGCL + SVM 59.11± 0.22% 63.19± 0.39% 52.32± 0.25% 51.21± 0.53% 55.96± 0.45%

fGCL + MLP 58.11± 0.32% 63.19± 0.39% 58.61± 0.25% 54.38± 0.53% 58.13± 0.18%

DGC w/o encoder 61.11± 0.12% 63.19± 0.39% 58.61± 0.25% 57.00± 0.53% 64.96± 0.45%

fGCL + DGC (ours) 65.12 ± 0.45% 69.79 ± 0.35% 64.90 ± 0.06% 64.71 ± 0.35% 65.53 ± 0.05%
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the pattern of neural response of DMT partners in DMT-PST

dyad. On the contrary, DMT actors in DMT-PST dyad release

negative emotions by transmitting them to their partners, this then

gradually break the disordered response pattern resulting in the

improvement of classification performance.

Specifically, our classifier was evaluated using leave-one-dyad-

out cross-validation, and the results of DMT-PST dyad and PST-

PST dyad are shown in Tables 2, 3, respectively, which shed

light on our aforementioned hypothesis. Regarding the result of

DMT actors inside DMT-PST dyads, our model achieved the

classification accuracy as 60.66 ± 0.14% at the early stage of

problem-solving; this accuracy then increased at the middle stage

to 69.33 ± 0.25% and raised to 71.33 ± 0.17% at the late

stage. Conversely, the results for DMT partners within DMT-

PST dyads displayed a distinct pattern. The accuracy increased

from 59.38 ± 0.25% in the early stage to 64.21 ± 0.15% in the

middle stage, with marginal change observed in the late stage,

yielding an accuracy of 64.76 ± 0.12%. Analyzing this pattern, it

becomes apparent that at the early stage of problem-solving, no

substantial difference in brain activity existed between DMT actors

and DMT partners, indicating that the emotional contagion effect

was relatively dormant. As the problem-solving process advanced

to the middle stage, the emotional contagion effect commenced

within DMT-PST pairs, with DMT actors gradually transmitting

the negative emotions stemming from pressure to DMT partners.

As a result, the classifier exhibits a significant increase in its ability

to differentiate the neural responses of DMT actors when facing

different types of feedback. In the final stage of problem-solving,

the emotional contagion effect within DMT-PST pairs subsided,

with DMT actors transferring their negative emotions to DMT

partners. Consequently, the classifier’s classification performance

on DMT actors continues to increase over time, while there is no

such pronounced trend observed on DMT partners. In addition,

the results of PST-PST dyads in Tables 4, 5 display no significant

changes in the accuracy; this might suggest that the emotional

contagion does not appear in PST-PST dyads and thus the neural

pattern differentiation in all stages is vague.

Overall, the findings suggest that DMT partners appear to

play a role in buffering the negative emotions of DMT actors,

particularly when considering the progressive evolution of the

tasks. Conversely, individuals in the PST-PST dyads experiencing

SBS-neutral contexts show no significant difference in their

processing of feedbacks. In addition, DMT actors and those in the

PST-PST dyad were processing performance feedback in a similar

manner especially in the middle and late stages of the tasks. These

outcomes lend support to the idea that SBS contagion unfolds

progressively over time.

5 Discussion

Overall, our findings suggest SBS-based emotional contagion

can occur within female dyads in problem-solving contexts and

has different consequences on performance for each member

of the dyad. While working together on a math task, DMT

partners performed worse over time, whereas DMT actors (i.e.,

those under SBS) performed better and comparable to dyads

working in SBS-neutral contexts. Importantly, DMT partners

showed evidence of “catching" this initial stress response from

the threatened actor. This, in turn, had direct ramifications

for DMT partners’ performance. In contrast, these relationships

were not evident among PST dyad members interacting in

SBS-neutral contexts.

5.1 Inference of performance decrement
in dyadic interaction

Results provide further insight into the dynamic relationship

between two individuals performing in domains where their

common identity is devalued. Although it seems conceivable

that the performance of both DMT actors and partners would

suffer when solving problems together in a negatively stereotyped

domain, the results provide further support for the notion that non-

threatened partners help buffer initially threatened actors from the

deleterious consequences of SBS over time, at their own expense.

These findings are consistent with past studies showing that the

presence of a female role model or competent female partner

alleviates performance decrements otherwise typically evident in

stereotype threatening contexts (Marx and Roman, 2002; McIntyre

et al., 2005; Thorson et al., 2019). Results expand upon this study in

several ways. Most notably, by demonstrating that the transference

of an individual’s stress response onto their partners may be one

important factor in buffering women from SBS during dyadic

problem-solving interactions, particularly during initial stages of

the interaction. Conversely, like past studies demonstrating that

increased emotional processing of feedback in SBS contexts has a

negative impact on individuals’ performance when alone (Forbes

et al., 2015, 2018), findings from this study demonstrate that

this effect extends to partners in a dyadic interaction, providing

a potential mechanism for underperformance effects among

these individuals in group problem-solving contexts moving

forward. These results not only contribute to our understanding

of stereotype threat and its impact but also underscore the

complex interplay of emotions, support, and performance within

dyadic interactions.

5.2 E�ciency in timescale and implications
for contagion hypotheses

Present results provide novel insight into how contagion

manifests on the order of milliseconds, a much more rapid

timescale than previously assumed, to affect performance

accordingly using neuroscience methodologies. Moreover,

the design of the present study provides a novel yet realistic

platform to examine emotion contagion phenomena via EEG

or fMRI methodology in future studies. By using iPads, it was

possible to capture simultaneous EEG activity in a controlled

manner while still allowing participants to have real-time face-

to-face interaction. This design also provides implications for

contagion hypotheses specific to the mimicry and proximity

literature. Because participants only communicated through

an iPad webcam, participants were only able to view their

partner’s face and hear their voice through the webcam during
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TABLE 2 The individual-level classification results of DMT in DMT-PST dyad across early, middle, and late stages with entire period on the basic view

dataset.

Periods ACC AUC F1 Score SEN SPEC

Entire 68.28± 0.05% 70.49± 0.05% 70.50± 0.06% 66.67± 0.08% 67.63± 0.20%

Early 60.66± 0.14% 64.13± 0.06% 64.21± 0.17% 58.85± 0.29% 65.62± 0.25%

Middle 69.33± 0.25% 64.35± 0.27% 68.23± 0.31% 64.51± 0.35% 64.52± 0.34%

Late 71.33± 0.17% 73.31± 0.06% 72.64± 0.22% 72.83± 0.28% 67.50± 0.31%

TABLE 3 The individual-level classification results of PST in DMT-PST dyad across early, middle, and late stages with entire period on the basic view

dataset.

Periods ACC AUC F1 Score SEN SPEC

Entire 63.33± 0.05% 67.87± 0.06% 67.20± 0.08% 66.67± 0.10% 63.01± 0.13%

Early 59.38± 0.25% 62.12± 0.13% 64.96± 0.35% 60.00± 0.46% 67.14± 1.17%

Middle 64.21± 0.15% 63.19± 01.39% 68.59± 0.26% 68.20± 0.37% 64.96± 01.45%

Late 64.76± 0.12% 68.16± 0.08% 65.18± 0.14% 67.70± 0.18% 65.12± 0.21%

TABLE 4 The individual-level classification results of PST1 in PST-PST dyad across early, middle, and late stages with entire period on the basic view

dataset.

Periods ACC AUC F1 Score SEN SPEC

Entire 75.03± 0.01% 85.54± 0.09% 82.48± 0.01% 72.06± 0.01% 68.09± 0.05%

Early 76.67± 0.05% 80.62± 0.25% 79.17± 0.15% 67.31± 0.03% 63.96± 0.05%

Middle 75.11± 03.12% 84.19± 01.39% 84.35± 0.13% 75.61± 0.25% 74.96± 0.45%

Late 74.12± 01.45% 83.79± 0.35% 83.21± 0.11% 64.71± 0.35% 63.53± 0.05%

TABLE 5 The individual-level classification results of PST2 in PST-PST dyad across early, middle, and late stages with entire period on the basic view

dataset.

Periods ACC AUC F1 Score SEN SPEC

Entire 59.83± 0.03% 66.38± 0.03% 69.13± 0.02% 58.46± 0.05% 63.96± 0.05%

Early 57.17± 0.31% 61.69± 0.21% 63.37± 0.22% 56.19± 0.43% 62.96± 0.05%

Middle 56.31± 0.19% 60.12± 0.14% 59.37± 0.13% 53.19± 0.21% 55.36± 0.12%

Late 55.97± 0.13% 59.12± 0.13% 58.13± 0.12% 55.39± 0.13% 51.96± 0.03%

the interaction. This suggests that vocal patterns and facial

expressions may have played an integral role in facilitating

contagion effects (Hatfield et al., 1993; Neumann and Strack,

2000). Findings provide a more nuanced understanding of the

contagion process while also providing a better understanding of

a heretofore largely unexamined question in the literature: how

social identity threats and SBS manifest in dyadic interactions to

have paradoxical effects on performance. More importantly,

findings provide further insight into the many ways the

gender gap in STEM domains can be perpetuated but also

one day nullified.

5.3 Graph-based approach for subject
invariant emotional representation
extraction

Graph structures naturally align with the brain’s topology,

allowing for the effective modeling of anatomical regions

of interest while preserving functional connectivity (FC)

information. The proposed fGCL model harnesses semantically

meaningful information, i.e., graphs corresponding to the

same mathematical problem, to construct both positive and

negative pairs. This innovative approach significantly mitigates

inter-subject variability in EEG data and has been evaluated as

optimal. The subject-invariant representations extracted from

FC graphs are well-aligned within the common embedding

space. Furthermore, the fGCL employs a spectral graph network

capable of convolving across the entire node set with FC

connections, integrating valuable cognitive information (Cohen,

2018).

5.4 Limitations and future works

Regarding the limitations of the study, it is important

to note that when considering EEG data and the spatial

limitations associated with the methodology, conclusions based

on precise brain locations should always be interpreted with
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caution. Results should be replicated and expanded upon in

future fMRI studies. However, given the temporal constraints

of fMRI methodologies in relation to the findings in this study

(i.e., these effects may occur on the order of milliseconds),

this approach could also present challenges. Additionally, the

proposed fGCL encoder was validated with EEG data of young

female students (mean age = 25.18 years) and optimized

with semantical auxiliary task. It is well-known that age

plays a significant role in emotion processing, and different

age ranges may exhibit distinct emotion patterns (Ebner and

Fischer, 2014). Therefore, further studies should be conducted

to encompass various age ranges for a more generalized

encoder model.

6 Conclusion

In this study, we addressed a critical issue in previous emotional

contagion research: the neglect of subject-level differences. The

proposed self-supervised learning approach eliminates individual

differences by increasing the attraction of positive pairs and

reducing the attraction of negative pairs. This alignment results

in neurophysiologically meaningful representations of EEG signals

in the embedding space, effectively removing subject-specific

information. Based on this foundation, we employ a dynamic

graph classification model to analyze the temporal effect of

emotional contagion. The results suggest that DMT actors and

individuals in PST dyads processed feedback in a similar manner,

but distinctions emerged in DMT partners’ processing patterns,

supporting the idea that SBS contagion unfolds gradually over time.

Notably, DMT partners appear to buffer the negative emotions

of DMT actors.
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