
TYPE Opinion
PUBLISHED 30 November 2023
DOI 10.3389/fnhum.2023.1295993

OPEN ACCESS

EDITED BY

Moussa Antoine Chalah,
GHU Paris Psychiatrie et Neurosciences, France

REVIEWED BY

Shin-Yi Chloe Chiou,
University of Birmingham, United Kingdom
Peyman Mirtaheri,
Oslo Metropolitan University, Norway

*CORRESPONDENCE
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Introduction

Investigating the neural mechanisms underlying physical performance is a growing

research focus in the field of sport neuroscience. Sport is more andmore benefiting from and

contributing to a greater awareness of concepts such as neuroplasticity (i.e., the structural

and functional adaptations in specific brain and spinal circuits), and neuromodulation

techniques (i.e., the application of low-level intensity currents to induce polarity-specific

changes in neuronal excitability). Neuroplasticity is not widely comprehended in the field of

strength and conditioning; nevertheless, it fundamentally influences how athletes move and

perform in sports. Understanding the basic concepts of neuroplasticity can guide strength

training, which is defined as resistance exercise resulting in an increase in force capacity.

To perform multi-joint movements, the brain must coordinate with suitable muscle groups

to execute timely the muscle contraction. Thus, strength training related to motor learning,

necessitates complex inter- and intra-muscular coordination initiated in the motor cortex.

Furthermore, strength training results in use-dependent plastic changes over time (known

as long-term potentiation, Cooke and Bliss, 2006) in the central nervous system (CNS),

particularly within the motor cortex (Hortobagyi et al., 2021).

It is widely accepted that strength training requires neural adaptations in the early

stages of training (Sale, 1988; Hortobagyi et al., 2021). This assumption is underpinned

by research showing that initial stages of training lead to considerable enhancements in

force generation, without concomitant alterations in muscle mass (i.e., structural changes).

Specifically, motor unit adaptations in muscle force generation occur in the first few weeks of

training (Häkkinen et al., 1985). However, until recently, the literature on strength training

has not conclusively identified the parts of the CNS that are most responsible for these

adaptations. A recent primate study has shown that strength training-induced supraspinal

changes through the reticulospinal tract are associated with changes in muscle performance

(Glover and Baker, 2020). Recent meta-analyses (Siddique et al., 2020; Hortobagyi et al.,

2021; Gómez-Feria et al., 2023) have highlighted a trend toward a simultaneous rise in

corticospinal excitability and muscle strength coupled with a reduction in corticospinal

inhibition after undertaking resistance training. However, it is important to note that this

trend presents with a considerable degree of heterogeneity depending on the chosen training

modality (Gómez-Feria et al., 2023). To date, given the paucity of research on the neural

impacts of strength resistance training, it remains unclear how much strength training is

required to generate substantial and lasting neural changes.
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Hortobagyi et al. (2021) reviewed changes in neuroplasticity

underlying the increases in force induced by strength training

in various sites. Recent technological advances have provided

substantial new evidence of such neural adaptations. Beyond the

current knowledge of motoneuron firing patterns using high-

density surface electromyography and decomposition (Del Vecchio

et al., 2019), corticospinal excitability and intracortical inhibition

adaptations have been investigated with the advent of transcranial

magnetic stimulation measures (Kidgell et al., 2017). While it is

often claimed that strength training produces favorable changes in

brain plasticity with motor performance, it remains overlooked.

Besides electrophysiological measures, cortical neuroimaging

techniques with applicability on the field, such as functional near-

infrared spectroscopy (fNIRS) and electroencephalography (EEG),

can elucidate the role of the motor cortex and other cortical

brain areas and networks in response to strength training. In

terms of brain areas, the primary motor cortex (M1) is most

closely associated with exercise performance due to its role in

motor execution, but other motor control-related cortical areas

(premotor cortex, PMC; supplementary motor area, SMA and

inferior parietal cortex) have the potential to complete the puzzle

of the sites of neural adaptations. Our understanding is restricted

concerning the outcomes of strength training on brain regions and

their cooperation as functional networks, underpinning increased

motor functions. The unique cortical activation profiles linked with

superior muscle performance could unveil neural benefits. This

is in line with the neural efficiency hypothesis postulating that

experts possess a more efficient cortical processing (fewer neural

resources) than non-experts (Neubauer and Fink, 2009; Li and

Smith, 2022).

There is also great interest in sport in the development of

methods to enhance muscle strength by modulating neural drive.

In contrast to EEG-fNIRS techniques, which measure neural

correlates of behavior, non-invasive brain stimulation (e.g.,

transcranial -direct or alternating- current stimulation, tCS) offers

the possibility of perturbing neural information processing and

measuring its effects on behavior. Indeed, tCS can be used as

a neuromodulatory ergogenic resource for healthy individuals

to induce neuroplasticity and increase muscle strength (Lattari

et al., 2016; Antunes Faria Vieira et al., 2022). In other words, tCS

provides a powerful tool for investigating causal brain-behavior

relationships, complementing correlative techniques such as

functional EEG-fNIRS neuroimaging (Polanía et al., 2018).

Thus, this opinion article aims to highlight the potential of an

actual integration of the use of complementary neuroimaging

(fNIRS-EEG) and neuromodulation (tCS) techniques with

objective behavioral performance metrics (force, velocity)

during strength training (Figure 1). They will enable the

mapping of hemodynamic (fNIRS) and electrophysiological

(EEG) activation and connectivity patterns across various brain

regions associated with motor control during strength training

in a realistic environment. In addition, recording the effects

elicited by tCS through wearable neuroimaging can enhance

understanding of the cortical activation profiles engaged during

strength training.

Brain profile monitoring

The aim of strength training is to provide appropriate

physiological stimuli to achieve adaptations, including neural

adaptations. In addition to an athlete’s physical effort, internal

load measures refer to the acute responses of the physiological

system to a given dose of exercise. Seidel-Marzi and Ragert (2020)

proposed the use of neurodiagnostic tools such as EEG or fNIRS

in sports performance diagnostics. This is particularly relevant for

strength training, where neuroscience research could provide new

insights for athlete profiling and a better understanding of how the

brain develops during resistance training programs. Only a limited

number of studies have examined EEG signals during traditional

forms of resistance exercise involving significant muscle mass. The

finding that different resistance training protocols involving squat

movements provide uniquemaps ofmotor related cortical potential

indicates the importance of the acute program variables (intensity

and volume) to physical development in individuals (Comstock

et al., 2011). During bench press movements while recording EEG

signals over a single electrode, Engchuan et al. (2017) observed a

significant increase in beta and gamma amplitudes as compared to

baseline conditions. Unilateral explosive resistance training results

in a decrease inmotor related cortical amplitudes with concomitant

increases in maximal force, rate of force development (RFD), and

surface electromyography (Falvo et al., 2010). Herein, reduced

cortical drive led to submaximal force generation, which resulted

in to the proposal of an enhanced neural economy hypothesis

for activation in motor task processing distinguishing expert and

novice athletes (Li and Smith, 2022). Furthermore, an EEG study

showed that the most fatiguing strength training protocols were

associated with the greatest increase in cortical activity (Flanagan

et al., 2012). Concerning the type of muscle contraction performed

during the squat exercise, the increase in movement control-

related areas such as the PMC, SMA, and M1 during the eccentric

movement suggests a less efficient process when compared to the

concentric movement, but may lead to an increased potential for

force capacity production (Kenville et al., 2020). Previous EEG

and fNIRS studies suggest that the prefrontal cortex (PFC) plays

a critical role in the regulation of cortical motor drive during

eccentric movement, particularly when compared to isometric and

concentric contractions (Perrey, 2018; Borot et al., 2023). After

performing biceps curl exercises until muscle failure, Li et al.

(2022) observed a decrease in the efficiency of brain networks in

the beta frequency band associated with motor control processes.

This suggests that acute bouts of strength exercise modulate the

functional characteristics of electrophysiological brain networks in

an intensity-dependent manner. Currently, there are few studies

on the response to resistance exercise using fNIRS. Exercising

with slow unilateral knee-extension movement at 50% 1RM

eliciting higher metabolic stress increased oxygenation changes

in the contralateral and ipsilateral prefrontal cortex (Formenti

et al., 2018), indicating higher cortical resources in untrained

participants with fatigue. When examining force levels (0 to

40% 1RM) during the execution of a barbell squat, a positive

correlation was found between force and cortical activity in the
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FIGURE 1

Brain functional state: Assessment of brain activity using a combination of electroencephalography (EEG) and functional near-infrared spectroscopy
(fNIRS) signals in relation to resistance exercise movements and/or the impact of non-invasive transcranial current stimulation (tCS) on task-related
neuronal activity levels. EEG records neuro-electrical signals related to cortical neuronal activity via scalp electrodes, whilst fNIRS measures dynamic
fluctuations in the concentration of oxygenated blood flow via optodes. Brain profile: Combined EEG and fNIRS allow for non-invasive real-time
monitoring of the neurometabolic status of various cortical motor brain areas during simple to complex movements in strength training. The
illustrated layout enables investigation of the motor cortical regions over both hemispheres with 4 EEG electrodes (gray filled circles) and 4 fNIRS
optodes (4 fNIRS transmitters -blue circles- and one receiver -red circles-) on each hemisphere. It is not possible to access deep brain structures
using surface EEG and fNIRS. Load biofeedback: The precision strength training module is able to quantitatively measure and model both the internal
(brain profile) and external (kinematics and kinetics) loads that individuals consider by a biofeedback approach, and propose adjustments to the
training program based on changes in force capacity. The external load feedback delivers real-time performance data on the actual barbell velocity
(linear velocity transducer) and/or rate of force development (orange force plate) achieved during each repetition of movement.

motor system as determined with fNIRS (Kenville et al., 2017).

Taken together, a combination of EEG and fNIRS have the potential

to act as effective monitoring tools in exploring the relationships

between applied loads and associated brain processing, starting

from action selection in the dorsolateral PFC to action sequencing

in the SMA, and to action performance in the PMC and M1.

In addition, exploring functional changes in the brain following

strength training may offer valuable insights into the brain–

behavior relationship in both experts and novices. Combining

fNIRS with EEG proves beneficial, as EEG can measure neuronal

activity at a high temporal resolution for a transient state of the

brain. On the other hand, fNIRS can reveal cortical correlates of

brain state changes under the neurovascular coupling phenomenon

(Sood et al., 2016).

Brain state regulation

The CNS has the capacity to increase muscle strength by

increasing motor unit recruitment. Consequently, changes in the

global pattern of cortical activity across multiple brain areas

and corticospinal excitability may contribute to improved muscle

strength. Neuromodulation technique brought by tCS may be

an interesting way to maximize strength training outcomes by

modulating the oscillatory brain state in a distributed set of

functionally connected brain regions (Seidel-Marzi and Ragert,

2020). Here, the functional state of the brain compared to

resting conditions can be referred to the dynamic changes in the

concentration of oxygenated blood flow (fNIRS) and a global state

of fluctuations in a neural assembly (EEG), often associated to

neuromodulation (Harris and Thiele, 2011). Compared to other

non-invasive brain stimulation techniques, tCS is currently the

most widely used neuromodulation technique in sport and exercise

science. By applying a low-intensity direct current (1–2mA) to

the scalp, anodal tCS is generally accepted to increase cortical

excitability by lowering the resting membrane threshold of cortical

neurons, whereas cathodal tCS decreases neuronal excitability

(Polanía et al., 2018). Synaptic plasticity in the motor cortex

associated with muscle strength training can be modified by tCS.

Despite methodological differences in study design, experimental

tasks, tCS parameters and montages in different studies, a number

of systematic reviews and meta-analyses over the last 5 years (Alix-

Fages et al., 2019; Holgado et al., 2019; Machado et al., 2019;

Chinzara et al., 2022; Maudrich et al., 2022) seem to indicate that

tCS could be an effective method to increase maximal muscle

strength and endurance, but with small amplitude benefits. A
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plausible explanation for the improvement in muscle strength

is that tCS-induced changes in corticospinal excitability increase

motor unit recruitment, leading to greater muscle strength during

contraction (Lattari et al., 2018). Increased muscle strength

is associated with improved force-time characteristics, which

enhances the ability to perform common sports skills such as

jumping, sprinting and change of direction tasks, and reduce the

risk of injury (Suchomel et al., 2016).

In weightlifting, many technical movements require athletes

to perform rapid muscle contractions in a short period of time.

Athletes with a high RFD, an important index of explosive strength,

have a faster rate of muscle contraction and can complete motor

tasks more quickly. It has been suggested that RFD is closely related

to the recruitment of nerves to motor units per unit time, the

frequency of nerve impulses and the type of muscle contraction

(Aagaard et al., 1985). Therefore, any improvement in RFD may be

due to the increased cortical excitability induced by tCS. However,

there are few studies on the enhancement of RFD by tCS (Lu

et al., 2021 for the non-dominant limb). A major issue in the field

of tCS is the fixed-dose approach, where all individuals receive

exactly the same dosage of tDCS, even though we know that

individual differences in head and brain anatomy significantly alter

how much current enters the brain and where it goes. Real-time

assessment of brain activity by EEG and fNIRS and modification

of stimulation parameters have been proposed to apply close-loop

brain-state dependent brain stimulation (Bergmann et al., 2016). It

has been suggested that the effects of tCS may be better understood

by examining broader brain networks rather than specific local

brain regions (Soleimani et al., 2023). Thus, the assessment of

brain state based on EEG-fNIRS monitoring combined with force

parameter data requires computational tools that explain the

observed intra- and inter-individual variability in tCS responses to

resistance exercise and training. Next studies should use machine

learning algorithms to analyze data from behavioral outcomes,

neuroimaging and physiological characteristics collected from

individuals during resistance exercise (Hart et al., 2021). Once

important factors for successful tCS outcomes have been identified,

a strategy can be proposed to improve the application of tCS by

personalizing the dosage (current intensity) for each individual

(Albizu et al., 2023). In other words, as with precision medicine, a

purely data-driven approach is proposed, using supervisedmachine

learning algorithms to account for individual differences (Kim

et al., 2022). Evidence-based medicine is now a widely recognized

and established practice with a proven track record (Sackett, 1997).

The same is true in sports science, where large amounts of data

are collected to individualize coaching as much as possible in

the hope of improving performance. Precision training can take

into account a large amount of objective data such as movement

kinematics, force and cortical signals, which would be processed

by computational approaches to help the expert make decisions

(Teikari and Pietrusz, 2021) and identify inter-individual and

intra-individual variations. Velocity of execution is a reliable

indicator of intensity (neuromuscular demand) for programming

and monitoring strength training and fatigue management, both

on a daily basis and in long-term periodization (González-

Badillo and Sánchez-Medina, 2010). In addition to the potential

benefits of real-time velocity monitoring during training, the use

of real-time brain activation assessment, which neurofeedback

training provides (Gong et al., 2021), can track the internal load

(brain functional state) exerted on the limbs during strength

training, while improving self-regulation (Figure 1). This will allow

a more personalized strength training approach to be generated for

each individual.

Conclusion and future directions

Despite important advances in athletemonitoring technologies,

there is a limited body of work investigating the effects of strength

training on brain function and exercise-induced neuroplasticity.

Integrating brain statemonitoring seems essential to understanding

the interplay between strength training and performance. Future

research investigating the neural adaptations to resistance training

would be well served by focusing on the use of appropriate

portable brain imaging methods to track brain functional state

and provide guidance on the tCS dosage. In future experimental

research and actual sports training, tCS technology tailored to

each individual can be used to increase limb muscle strength in

athletes and further increase in overall exercise capacity, which

would have extremely practical implications for muscle strength

training and the prevention of sports injuries. Such research could

have significant implications for optimizing resistance training

programmes for athletes and healthy populations, and could lead

to a conceptual shift in the way practitioners design and implement

resistance training to improve muscular strength.
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