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Objective: The objective of this study was to explore the distributed network 
effects of intracranial electrical stimulation in patients with medically refractory 
epilepsy using dynamic functional connectivity (dFC) and graph indicators.

Methods: The time-varying connectivity patterns of dFC (state-based metrics) 
as well as topological properties of static functional connectivity (sFC) and dFC 
(graph indicators) were assessed before and after the intracranial electrical 
stimulation. The sliding window method and k-means clustering were used for 
the analysis of dFC states, which were characterized by connectivity strength, 
occupancy rate, dwell time, and transition. Graph indicators for sFC and dFC were 
obtained using group statistical tests.

Results: DFCs were clustered into two connectivity configurations: a strongly 
connected state (state 1) and a sparsely connected state (state 2). After electrical 
stimulation, the dwell time and occupancy rate of state 1 decreased, while that 
of state 2 increased. Connectivity strengths of both state 1 and state 2 decreased. 
For graph indicators, the clustering coefficient, k-core, global efficiency, and local 
efficiency of patients showed a significant decrease, but the brain networks of 
patients exhibited higher modularity after electrical stimulation. Especially, for 
state 1, there was a significant decrease in functional connectivity strength after 
stimulation within and between the frontal lobe and temporary lobe, both of 
which are associated with the seizure onset.

Conclusion: Our findings demonstrated that intracranial electrical stimulation 
significantly changed the time-varying connectivity patterns and graph indicators 
of the brain in patients with medically refractory epilepsy. Specifically, the electrical 
stimulation decreased functional connectivity strength in both local-level and 
global-level networks. This might provide a mechanism of understanding for the 
distributed network effects of intracranial electrical stimulation and extend the 
knowledge of the pathophysiological network of medically refractory epilepsy.
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1 Introduction

Epilepsy is a neurological disorder disease characterized by 
paroxysms of synchronous and abnormal neurological activities of 
neuronal populations (Scharfman, 2007; Davis and Gaitanis, 2020; 
Royer et al., 2022). Patients with epilepsy may suddenly experience 
repeated seizures with no warning and no clear reason, and seizures 
typically last seconds or minutes and are usually accompanied by 
different clinical manifestations (Scharfman, 2007). According to the 
International League Against Epilepsy (ILAE), a diagnosis of epilepsy 
requires at least one unprovoked seizure or a risk of repeated seizures 
or the diagnosis of an epilepsy syndrome. In addition to the recurrence 
of seizures, epilepsy also causes many other adverse effects, including 
neurologic, cognitive, psychological, and social consequences that 
lower the quality of life of patients (Beghi, 2020). Epilepsy affects 
individuals of both sexes and all ages, and its prevalence is often 
slightly higher in men compared to women. It is estimated that 
approximately 65 million people have epilepsy worldwide. Thus, it is 
very important to investigate the pathophysiological properties and 
treatment methods of epilepsy.

Approximately 30% of patients with epilepsy have seizures 
persisting after attempting two or more adequately chosen 
medications, which is known as drug-resistant epilepsy (Kwan et al., 
2009; Chen et  al., 2018; Sudbrack-Oliveira et  al., 2021). Surgical 
resection of seizure foci in the brain is the most commonly used 
treatment option for drug-resistant epilepsy. However, resection 
brings a high risk of irreversible damage to patients and is not suitable 
for some patients whose seizure focus cannot be  safely removed 
(Singhal et al., 2018). Neurostimulation is an increasingly utilized 
therapy for drug-resistant epilepsy. By directly modulating a specific 
neural region, neurostimulation can regulate symptoms in a way that 
is reversible and adjustable, which avoids many adverse effects (Boon 
et  al., 2009). However, despite several successful applications, the 
mechanisms by which brain stimulation attenuates epilepsy remain 
poorly understood (Thompson et al., 2020). Research has shown that 
the synchronization of brain activity during epileptic activity can 
be disrupted by high-frequency stimulation and the spread of epileptic 
activity to unaffected brain networks can be prevented (Piper et al., 
2022). Consequently, the desynchronization of epileptic neural 
networks has been suggested as the potential mechanism for neural 
stimulation. While increasing bodies of evidence have proven that 
epilepsy is a disorder of brain networks, mapping the causal effects of 
invasive direct electrical stimulation on whole-brain measurement of 
the effects produced is a challenging problem. Recently, Thompson 
et al. (2020) established the first es-fMRI resource and presented data 
from human patients who underwent electrical stimulation during 
functional magnetic resonance imaging (es-fMRI), which offered 
feasible causal access to understand network-level effects of 
electrical stimulation.

FMRI is a common way to study brain activity by measuring 
changes to blood flow in the brain. A previous study has suggested 
that there are close relationships between epilepsy and brain functional 
networks disorders and between epilepsy and structural network 
disorders (Van Diessen et al., 2014). In most studies, brain functional 
networks are characterized by static functional connectivity (sFC) 
based on the Pearson correlation (Abraham et al., 2017). In an sFC 
matrix, a single measurement of connectivity is obtained across the 
entire time series of functional data. As a result, time-variant features 

will be lost in the brain functional network. To capture those dropped 
temporal features, the concept of dynamic functional connectivity 
(dFC) was proposed, which is used to characterize the inherent time-
varying properties of brain networks. Research studies have shown 
that time-varying features of dFC are closely related to several 
neurological diseases such as epilepsy and Parkinson’s disease (Sahib 
et al., 2018; Abreu et al., 2019; Fiorenzato et al., 2019). The research of 
Sahib et al. verified the feasibility of the dFC method for epilepsy 
analysis (Sahib et al., 2018). Compared to traditional FC analysis, dFC 
analysis has the advantage of being able to identify additional activated 
brain regions in the epileptic discharge process during the inter-
seizure period (Kowalczyk et  al., 2020). Moreover, patients with 
temporal lobe epilepsy exhibit significant abnormal connectivity 
patterns and topological characteristics in their dFC. Using dFC 
methods, changes in the hippocampal network’s intrinsic temporal 
and functional modular patterns can be identified continuously (Li 
et al., 2022; Pang et al., 2022). DFC provides new insights into the 
pathological mechanisms of epilepsy (Klugah-Brown et al., 2019). 
However, the influences of electrical stimulation on dFC in epilepsy 
are still not clear and are seldom explored (Sawada et al., 2022; Bacon 
et al., 2023), which hinders the improvement of treatment effects.

In this study, we propose to investigate the effects of intracranial 
electrical stimulation therapy on the epileptic brain functional 
networks by examining dFC properties before and after electrical 
stimulation. The sliding window and k-means clustering methods 
were employed to capture the time-varying properties of dFC. First, 
the parameters of the sliding window and k-means clustering methods 
were evaluated and adopted carefully. Second, the state-based metrics 
were used to describe time-varying properties of dFC before and after 
electrical stimulation. Third, graph theory methods were carried out 
to quantify the topological changes of sFC and dFC. Discussions and 
conclusions are given at the end of this study. The analysis process is 
illustrated in Figure 1.

2 Materials and methods

2.1 Dataset

In this study, we analyzed the es-fMRI dataset that was originally 
published by Thompson et al. (2020). The dataset resource is available 
in the OpenNeuro database with accession number ds002799. It is the 
first electrical stimulation fMRI resource for patients who were 
undergoing epilepsy monitoring (Thompson et al., 2020). Data were 
collected from 26 human patients with medically refractory epilepsy 
who had chosen to undergo neurosurgical treatment. Electrodes were 
implanted into their brains to localize the epileptic zone. Data were 
collected with the patient’s consent to participate and without 
interfering with the clinical protocol. The dataset comprises whole-
brain anatomical and functional MRI scans from the eyes-open 
resting state before and after implantation at 3 T. Our study focused 
solely on analyzing fMRI data. Datasets comprising up to five sessions, 
with each session lasting approximately 4.8 min, before implantation 
(called “pre-op” session) and up to ten sessions, with each session 
lasting approximately 10 min, after implantation (called “post-op” 
session) were obtained in a subset of participants. Stimulation was 
performed through an isolated stimulus generator using a biphasic, 
charge-balanced stimulation delivered across two adjacent contacts of 
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a depth electrode. No behavioral or experiential effects were evoked 
during stimulation (Thompson et al., 2020). More details about each 
participant and the acquisition of fMRI data can be  found in 
Supplementary Tables S1, S2 respectively.

The data were preprocessed through a custom pipeline of 
fMRIPrep (RRID:SCR_016216) when it was published (Esteban et al., 
2019; Thompson et al., 2020). The preprocessing steps in the custom 
pipeline include generating reference volume and corresponding 
skull-stripped version, obtaining deformation field to correct for 
susceptibility distortions, co-registering, regularization, head-motion 
estimation, slice-timing correction, resampling BOLD time series into 
their native space by correcting head-motion and susceptibility 
distortions, resampling BOLD time series into 
MNI152NLin2009cAsym standard space, and estimating confound 
time series (Esteban et al., 2019; Thompson et al., 2020). To extract 
time series, the AAL template for SPM12 was used to identify 116 
regions of interest (ROIs) in the whole brain after preprocessing 
(Tzourio-Mazoyer et  al., 2002). Time series were extracted using 
NiLearn (RRID:SCR_001362). Data were cleaned after extracting time 
series. Some data were removed due to being too short or lacking 
pre-op sessions. Only 20 participants were left after data cleaning.

2.2 Dynamic functional connectivity

dFC is a sequence of time-variant functional connectivity that 
characterizes non-stationary functional activity in brain regions. 
There are several methods to characterize dFC, such as the sliding 
window method, time-frequency analysis, and single-volume 
co-activation patterns (Soares et  al., 2016). The sliding window 
method is currently the most popular method (Savva et al., 2019). In 
this study, we chose to use the sliding window method as well.

2.2.1 Sliding window method
The sliding window method was applied to divide the time series 

into subsequence windows with a specific window length and step 

size. The functional connectivity matrix was extracted using the 
Pearson correlation coefficient from time series within each window. 
The sequences of these functional connectivity matrices are known as 
dFC (Hutchison et al., 2013).

The sliding window length and the step size are two parameters 
that may affect clustering performance (Hindriks et  al., 2016). 
We evaluated the effects of these parameters on clustering performance 
to obtain the optimal parameters. Window length was varied from 30s 
to 180 s (step size was 1 TR, the number of clusters was 2). Step size 
was changed from 1 TR to 10 TR (window length was 60s, the number 
of clusters was 2). Python module scikit-learn (RRID: SCR_002577) 
was used to accomplish the parameter evaluation (Pedregosa 
et al., 2011).

The effects of the sliding window parameters on the quality of 
clustering were estimated using four different criteria. The first one is 
the elbow criterion. For each window length or step size, the inertia 
values of K-means clustering were plotted. Inertia value is the measure 
of the internal coherence properties of each cluster here (Pedregosa 
et al., 2011; Bijsterbosch, 2017). Then, the parameters corresponding 
to the elbow point of the inertia values were chosen as the optimal 
parameters. Because this method is an empirical conclusion, other 
evaluation indicators are used in conjunction with it to make 
comprehensive decisions. The second method is the silhouette 
coefficient. The silhouette coefficients of each sample were calculated 
using clustering results, and their mean value was computed as the 
overall silhouette coefficient. The formula for the silhouette coefficient 
of a single sample is written as follows (Rousseeuw, 1987):
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where s i( ) denotes the silhouette coefficient of sample i, a i( ) denotes 
the average Euclidean distance of sample i to all the other objects of 
the cluster to which it has been assigned, and b i( )  denotes the 
minimum average dissimilarity of sample i to all the other clusters 

FIGURE 1

Analysis process for this study. After extracting the time series from preprocessed fMRI, the sliding window method was applied to obtain dynamic 
functional connectivity. By clustering the states, the brain state transitions can be computed. Dynamic complex networks were constructed using 
dynamic functional connectivity, and graph theory was applied to analyze the features of dynamic networks. As a comparison, static network features 
were extracted through static functional connectivity.
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(Rousseeuw, 1987). The dissimilarity was defined as the Euclidian 
distance in our study. Clustering performs better when s i( ) 
approaches 1. The third method is the Calinski–Harabasz index. The 
score of the Calinski–Harabasz index is defined as the ratio of the sum 
of between-cluster dispersion and the sum of within-cluster dispersion 
for all clusters (Calinski and Harabasz, 1974). The Calinski–Harabasz 
index for n  samples and K  clusters is as follows (Maulik and 
Bandyopadhyay, 2002):
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where nk  is the number of samples in cluster k , zk  is the centroid of 
cluster k , and z is the centroid of all data (Maulik and Bandyopadhyay, 
2002). A higher Calinski–Harabasz score results in better clustering 
(Calinski and Harabasz, 1974). The fourth method is the Davies–
Bouldin index. It represents the average similarity between clusters 
and is defined as the ratio of the sum of within-cluster scatter to 
between-cluster separation (Davies and Bouldin, 1979; Maulik and 
Bandyopadhyay, 2002). The Davies–Bouldin index is computed as 
follows (Davies and Bouldin, 1979):
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where k  denotes the number of clusters, si denotes the cluster diameter 
of cluster i, which is the average distance between each sample and 
cluster centroid, and dij denotes the distance between centroids of 
cluster i and cluster j . A better partition should have a lower Davies–
Bouldin index value (Davies and Bouldin, 1979).

2.3 Clustering and states analysis

After selecting a set of sliding window parameters and extracting 
dFC from the ROI time series, the impact of the target number of 
states on clustering quality was evaluated. Different states were created 
by clustering functional connectivity matrices in dFC using the 
K-means algorithm. Considering that the randomness in the initial 
cluster centroid selection may affect the quality of clustering, K-means 
was iterated 10 times with randomly generated initial cluster centroids 
to reduce the bias caused by initial random selection of cluster 
centroids. Then, we evaluated the effects of the number of FC states 
on the quality of clustering by varying k-score from 2 to 10 (window 
length 60s, 1TR) using the four criteria mentioned above to determine 
the optimal number of FC states.

The dFC windows of all participants were clustered using 
K-means. Inspired by the studies of Damaraju et  al. (2014) and 
Fiorenzato et  al. (2019), the centroids of each state of dFCs were 
plotted for pre-op and post-op sessions. Then, three indexes were 

calculated for state-based analysis of dFC, namely, dFC strength, dwell 
time, and occupancy rate. Here, dFC strength is defined as the average 
of the functional connectivity values between ROIs; dwell time is 
defined as the average duration time of each participant in each state; 
and the occupancy rate is defined as the percentage of time that each 
participant is present in each state (Iraji et al., 2021).

After index calculation, statistical analysis methods were applied 
to dwell time and occupancy rate to evaluate the statistically significant 
change after electrical stimulation. Generally, the student t-test is 
commonly used in statistical analysis. However, sometimes, 
experimental data do not meet the preconditions of t-test such as 
normal distribution and homogeneity of variance. To determine 
whether the preconditions were met, the Shapiro–Wilk test can 
be used for normality testing, and the Levene test for equal variances 
can be used for the homogeneity of variance testing. We computed the 
Shapiro–Wilk test and Levene test and found that the abovementioned 
preconditions in the es-fMRI data were not suited for the t-test. As a 
result, the Mann–Whitney U-test was adopted for this study. It is a 
non-parametric testing method that does not require any prerequisite 
assumptions. In the study, we assumed that there was no significant 
change after stimulation. This hypothesis will be rejected if the p-value 
of the test is less than 0.05. A rank comparison would be tested if there 
were significant differences between pre-op and post-op sessions. 
Python modules SciPy (RRID: SCR_008058) and statsmodels (RRID: 
SCR_016074) were used for statistical analysis (Seabold and Perktold, 
2010; Virtanen et al., 2020).

2.4 Graph theory and statistical analysis

A complex network is commonly used to describe the connections 
between brain regions. Graph theory is a mathematical method that 
is commonly used to study complex networks (Shen et al., 2010). 
Graph theory provides a framework for simulating pairwise 
communication between network elements. A binary functional 
connectivity matrix was used to construct brain complex networks in 
this study. The functional connectivity matrix was binarized into a 0–1 
matrix by setting an appropriate threshold. The binary functional 
connectivity matrix could be considered as an adjacency matrix of the 
brain network. After building complex brain networks, several graph 
indicators (clustering coefficient, k-core, modularity, global efficiency, 
local efficiency, and network assortativity) were calculated (Rubinov 
and Sporns, 2010). Non-parametric statistical analysis (based on the 
Mann–Whitney U-test) was applied to these measures to test for 
significant differences after electrical stimulation. All of these graph 
indicators were drawn as violin plots. In this study, the clustering 
coefficient represents the average of all the nodes’ clustering 
coefficients, while k-core represents the maximum core count of the 
k-core subgraph.

Inspired by the idea of dFC, we propose a dynamic graph theory 
method to explain the time-varying features of brain networks. First, 
a series of graph indicators for complex brain networks were calculated 
based on dFC. Second, a multi-layer network was constructed based 
on binary dFC. Each layer of the network corresponds to the binary 
functional connectivity matrix of a window in dFC. Third, a series of 
graph indicators were calculated and plotted on a line chart. Lastly, 
non-parametric statistical tests were utilized to examine which graph 
metric experienced a significant change after each participant 
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underwent electrical stimulation. The stationarity of dynamic graph 
indicators was further tested using the Augmented Dickey–Fuller 
(ADF) unit root test and the Kwiatkowski–Phillips–Schmidt–Shin 
(KPSS) test. Periodic analysis of dynamic graph indicators was also 
performed using Fast Fourier Transform (FFT) as well. Calculations 
were done using NetworkX (RRID: SCR_016864) (Hagberg et al., 
2008). Dynamic measures were plotted using MatPlotLib (RRID: 
SCR_008624) (Caswell et al., 2022).

3 Results

3.1 Sliding window parameters

Window length and step size of the sliding window method were 
estimated using the elbow criterion, silhouette coefficient, Calinski–
Harabasz index, and Davies–Bouldin index. Window length was tested 
and reported to be varying from 30s to 180 s (step size was 1 TR, and the 
number of clusters was 2). The evaluation results of the impact of window 
length on clustering are shown in Figure 2. All the participants’ dFC were 
used for clustering. The results of the Calinski–Harabasz and Davies–
Bouldin indexes show that the best option is between 40s and 80s.

Step size was tested varying and reported to be  from 1 TR 
(repetition time) to 10 TR (window length was 60s, and the number 
of clusters was 2). As shown in Figure 3, step size has very little impact 
on clustering. There is a slight advantage to choosing a shorter step 
size, since a shorter step size makes the dFC series contain more 

time-variant information. The step size of 1 TR will be selected in the 
future study.

3.2 Analysis of the states

The first step was to determine the impact of the target number of 
states on clustering. Figure  4 displays the evaluation results of 
clustering with states that range from 2 to 10. Based on the results of 
the silhouette coefficient, Calinski–Harabasz index, and Davies–
Bouldin index, the optimal number of target states is 2.

Two states were formed using the K-means algorithm for 
clustering all participants’ dFCs. The subplot A in Figure 5 shows the 
cluster centroids. The 116 ROIs were divided into six brain lobes based 
on their anatomical positions: the frontal, occipital, parietal, 
subcortical, temporal, and cerebellum lobes. Subplot B in Figure 5 
displays the average functional connectivity (the average value of the 
Pearson correlation coefficient) between all six lobes. Subplot C in 
Figure 5 shows the brain network connectome that corresponds to 
each state. Subplot D in Figure  5 shows that all lobe-to-lobe 
connections in state 1 have greater strength than in state 2. The dFC 
strength of state 1 was 0.214 and state 2 was 0.079.

Figure 6 shows the lobe-to-lobe centroid functional connectivity 
matrix grouped by state for pre-op and post-op sessions as well as 
their changes. Electrical stimulation resulted in a significant decrease 
in connectivity within the temporal lobe, connectivity between the 
frontal lobe and parietal lobe, and connectivity between the frontal 

FIGURE 2

Impact of window length on clustering (window length ranges from 30 to 180, 1TR a step, 2 states). The goal of subplot (A) is to locate the elbow point 
of the inertias. The goal of subplot (B) is to obtain the maximum value of the silhouette coefficient. The goal of subplot (C) is to find the highest value 
of the Calinski–Harabasz index. The goal of subplot (D) is to find the minimum value of the Davies–Bouldin index.
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FIGURE 3

Impact of step size on clustering (step size range: 2–10, window length: 60  s, 2 states). The goal of subplot (A) is to locate the elbow point of the 
inertias. The goal of subplot (B) is to obtain the maximum value of the silhouette coefficient. The goal of subplot (C) is to find the highest value of the 
Calinski–Harabasz index. The goal of subplot (D) is to find the minimum value of the Davies–Bouldin index.

FIGURE 4

Impact of state number on clustering (number of states range: 2–10, window length: 60  s, 1TR). The goal of subplot (A) is to locate the elbow point of 
the inertias. The goal of subplot (B) is to obtain the maximum value of the silhouette coefficient. The goal of subplot (C) is to find the highest value of 
the Calinski–Harabasz index. The goal of subplot (D) is to find the minimum value of the Davies–Bouldin index.
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lobe and temporal lobe in state 1. Electrical stimulation resulted in an 
increase in the connectivity between the occipital and cerebellum 
lobes. In state 2, the connectivity between the occipital lobe and the 
subcortical lobe decreased the most, and the connectivity between the 
occipital lobe and the cerebellum lobe increased the most after 
electrical stimulation.

Figure 7 illustrates the dFC strength, occupancy rate, dell time, 
and transitions of the two states before and after electrical stimulation. 
Figure  7 clearly indicates that the dFC strength for both states 
decreased in the post-op session. The occupancy rate of state 1 
decreased from 0.58 to 0.16. Relatively, the occupancy rate of state 2 
increased from 0.42 to 0.84. The Mann–Whitney U-tests and rank 
comparison results showed that the occupancy rate of state 1 had 
decreased (mean values of the pre-op session and post-op session are 
0.57 and 0.16, statistic = 3.25, p = 0.004 < 0.05) and state 2 increased 
(mean values of the pre-op session and post-op session are 0.43 and 
0.84, statistic = −3.25, p = 0.004 < 0.05). As can be seen in Figure 7, 
there is very little difference between the dwell time of the two states 
in the pre-op session. The dwell time of state 2 has grown significantly 

longer than that of state 1 in the post-op session. The statistical tests 
and rank comparison results showed that the dwell time of state 1 
decreased (mean values of the pre-op session and post-op session are 
77.17 s and 28.48 s, statistic = 2.27, p = 0.03 < 0.05) and dwell time of 
state 2 increased (mean values of the pre-op session and post-op 
session were 69.63 s and 353.10s, statistic = −4.02, p < 0.001). The 
violin plot of transition in Figure 7 shows that the transitions per 
minute did not significantly change after electrical stimulation. Only 
the medians of transition changed from 2 to 4.

3.3 Graph indicators

Figure 7 displays the violin plots of the sFC graph indicators for 
all participants. The statistical test results for these measures are listed 
in Table 1. It can be seen from Figure 7 that the k-core, clustering, 
global efficiency, and local efficiency in the post-op session have all 
decreased compared to that of the pre-op session, while modularity 
has increased. There was no significant change in the network 

FIGURE 5

ROI-to-ROI FC matrices of cluster centers for each state subplot (A), lobe-to-lobe FC matrices of cluster centers for each state subplot (B), and brain 
network connectome corresponding to each FC matrix subplot (C). Only connections with the top 5% strength were plotted in connectomes. The 
difference between the two states subplot (D) shows that all lobe-to-lobe connections in state 1 have greater strength than in state 2.
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assortativity. This conclusion is consistent with the statistical 
test results.

Each participant’s dynamic graph indicators were tested individually 
using statistical tests. Table 2 summarizes the number of participants 
with statistical changes in the graph indicators. In total, 16 out of the 20 
participants showed a decrease in clustering coefficient, k-core, global 
efficiency, and local efficiency, while the other four participants showed 
an increase in those metrics. In total, 12 out of the 20 participants 

experienced a slight decrease in their network assortativity, while four 
participants experienced an increase and four participants experienced 
no change. In total, 13 out of the 20 participants decreased in modularity, 
while the other seven participants increased their modularity.

After conducting stationarity analysis on dynamic graph 
indicators, we found that the graph indicators of some participants 
altered steadily over time, while others were unstable. The graph 
indicators of most participants were consistent across multiple 

FIGURE 6

The lobe-to-lobe centroid FC matrix group by state for the pre-op and post-op session subplot (A), along with their changes (obtained by subtracting 
pre-op FC matrices from post-op FC matrices) subplot (B). Only connections with the top 5% strength change were plotted in connectomes (blue 
edges denote the decrease of connectivity and red edges denote the increase of connectivity).

FIGURE 7

Four states analysis metrics for state centroids of pre-op and post-op sessions.
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acquisition runs. Most participants had consistent stationarity before 
and after stimulation, with only a few participants exhibiting 
differences. Moreover, there were no significant periodic trends 
observed after conducting a periodic analysis.

4 Discussion

In this study, we  evaluated the change in dynamic functional 
connectivity before and after electrical stimulation as well as the choice 
of parameters for gaining dFC. The best clustering quality is achieved by 
selecting a window length of approximately 60s, which is consistent with 
prior findings that a window length of 30s–60s can successfully capture 
dFC variations (Preti et al., 2017). According to our study, two distinct 
states were discriminated based on k-means clustering and the 
performance evaluation of state numbers on clustering. These results are 
similar to Li et al.’s study on generalized tonic clone sizes that dFC was 
also clustered into two states: state 1 with strong positive international 
interactions and state 2 with weak functional connectivity (Y. Li et al., 
2023). In the pre-op session, state 1 has a stronger functional connectivity 
and a higher occupancy rate than that of state 2, but there is not much 
difference in dwell time between the two states. In the post-op session, 
electrical stimulation brings about a decline in the dwell time and 
occupancy rate of state 1 but an increase in that of state 2. Specifically, 
state 1’s occupancy rate decreased by 42%, and the decline in the dwell 
time of state 1 as well as the increase in the dwell time of state 2 make the 
dwell time of state 2 last longer than that of state 1. The number of 
transitions per minute for each state did not differ significantly before 
and after electrical stimulation, indicating that electrical stimulation has 
a minor effect on the frequency of state changes. Other research studies 
have found that, following initial intracranial brain stimulation, there is 
a decrease in brain network switching and synchronization, but this 
gradually stabilizes over time (Pedersen and Zalesky, 2021).

Our study indicates that functional connections in both centroids 
of state 1 and state 2 in the pre-op session are stronger than those in 
the post-op session. Previous research suggests that the seizure onset 
zone of most participants may be in the frontal lobe and temporal lobe 
(Thompson et al., 2020), and several studies have reported a significant 
increase in functional connectivity within the medial temporal lobe, 
within the frontal lobe, and between the parietal and frontal lobes in 
temporal lobe epilepsy patients when compared to healthy controls 
(Liao et al., 2010; Haneef et al., 2014). To investigate the functional 
connectivity changes, we divided the 116 ROIs into six lobes according 
to their anatomical location (Ganella et al., 2017). We found that there 
were decreases in functional connectivity within the temporal lobe 
(approximately 0.09, estimated by Pearson’s correlation coefficient), 
between the frontal lobe and parietal lobe (approximately 0.08), and 
between the frontal lobe and temporal lobe (approximately 0.08) of 
state 1. It is inferred that the effects of the electrical stimulation on 
suppressing epileptic activities in the brain of patients may manifest 
in decreasing the functional connectivity of the seizure onset zone.

The changes in graph indicators for sFC and dFC also indicate that 
electrical stimulation may result in a statistical decrease in brain 
functional connectivity. Other studies have shown that epilepsy 
patients have an increase in local network measures (local efficiency 
and cluster coefficient) and a decrease in global network measures 
(global efficiency) compared to healthy controls (Pedersen et  al., 
2015). Our study found that stimulation causes a decrease in these 
measures. This may serve as evidence for the hypothesis that electrical 
stimulation can treat epilepsy by disrupting the epileptic network 
(Chari et al., 2020; Piper et al., 2022). Although stimulation reduces 
abnormally high local connectivity, it cannot recover abnormally low 
global connectivity. With the proposed dynamic graph theory, it is 
feasible to conduct statistical tests on individual participants and apply 
time series analysis to graph indicators. However, there are four 
participants whose statistical analysis results were different from the 
others. This might be caused by individual differences or the poor 
effectiveness of the electrical stimulation scheme. We are currently 
unable to make a conclusion on this. Thus, further analysis of the 
research on the electrical stimulation scheme and its curative effects 
is required.

Our study found that no common characteristic was identified 
even after conducting several time series analyses on dynamic graph 
indicators for each participant. Periodic or seasonal patterns were not 
observed for most participants. Furthermore, no statistical principles 
governing stationarity and trend changes have been discovered. There 
may be no rule for short-term periodic alteration in the resting state 
brain functional network of epilepsy. However, considering that 
epilepsy seizures occur periodically, it is uncertain whether there is a 
periodic pattern in the brain network over the long term.

5 Conclusion

In this study, we investigated the distributed network effects of 
cerebral electrical stimulation on patients with medically resistant 
epilepsy using time-varying connectivity patterns of dynamic 
functional connectivity (dFC) and graph indicators. Two states of 
connectivity were identified. State 1 has a stronger connectivity 
pattern, while state 2 has a weaker connectivity pattern. After electrical 
stimulation, state 1 had a decline in dwell time and occupancy rate, 
but state 2 had an increase. There was no significant difference in the 

TABLE 1 The Mann–Whitney U-test for graph indicators of sFC.

Mean value Statistics p 
value

Pre-op Post-op

K-core 18.27 10.78 3.578 0.001

Clustering coefficient 0.50 0.43 3.354 0.001

Modularity 0.40 0.54 −4.357 < 0.001

Network assortativity 0.36 0.37 −0.441 0.570

Global efficiency 0.36 0.24 5.038 < 0.001

Local efficiency 0.61 0.52 3.866 < 0.001

TABLE 2 Number of participants with statistical changes in graph 
indicators.

No 
statistical 
changes

Increased Decreased

K-core 0 4 16

Clustering coefficient 0 4 16

Modularity 0 13 7

Network assortativity 4 4 12

Global efficiency 0 4 16

Local efficiency 0 4 16
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frequency of transition for both states between the pre-op session and 
post-op session. Intracranial electrical stimulation tends to put the 
brain network in a state with lower strength and weakens the 
functional connectivity strength of both states. On the whole, 
intracranial electrical stimulation can significantly reduce the 
functional connectivity of the brain network in both the whole brain 
and local areas, especially the functional connectivity within and 
between the frontal and temporary lobes.

Our study assessed the topological patterns of the brain network 
using graph theory indicators and statistical tests. The results show 
that the clustering coefficient, k-core, global efficiency, and local 
efficiency decreased significantly. Dynamic graph indicators make it 
possible to apply statistical tests and time series analysis to each 
participant individually. There are several patients whose individual 
statistical analysis is different from group analysis. This indicates that 
electrical stimulation therapy may not have the same effect on 
everyone, and there may be individual differences. This supports the 
idea that personalized electrical stimulation incorporating dynamic 
functional information derived from participant data is necessary for 
clinical treatment.
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