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Understanding the role of
emotion in decision making
process: using machine learning
to analyze physiological
responses to visual, auditory, and
combined stimulation

Edoardo Maria Polo*, Andrea Farabbi, Maximiliano Mollura,

Luca Mainardi and Riccardo Barbieri

SpinLabs, Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy

Emotions significantly shape decision-making, and targeted emotional elicitations

represent an important factor in neuromarketing, where they impact advertising

e�ectiveness by capturing potential customers’ attention intricately associated

with emotional triggers. Analyzing biometric parameters after stimulus exposure

may help in understanding emotional states. This study investigates autonomic

and central nervous system responses to emotional stimuli, including images,

auditory cues, and their combinationwhile recording physiological signals, namely

the electrocardiogram, blood volume pulse, galvanic skin response, pupillometry,

respiration, and the electroencephalogram. The primary goal of the proposed

analysis is to compare emotional stimulation methods and to identify the most

e�ective approach for distinct physiological patterns. A novel feature selection

technique is applied to further optimize the separation of four emotional states.

Basic machine learning approaches are used in order to discern emotions

as elicited by di�erent kinds of stimulation. Electroencephalographic signals,

Galvanic skin response and cardio-respiratory coupling-derived features provided

the most significant features in distinguishing the four emotional states. Further

findings highlight how auditory stimuli play a crucial role in creating distinct

physiological patterns that enhance classification within a four-class problem.

When combining all three types of stimulation, a validation accuracy of 49%

was achieved. The sound-only and the image-only phases resulted in 52% and

44% accuracy respectively, whereas the combined stimulation of images and

sounds led to 51% accuracy. Isolated visual stimuli yield less distinct patterns,

necessitating more signals for relatively inferior performance compared to other

types of stimuli. This surprising significance arises from limited auditory exploration

in emotional recognition literature, particularly contrasted with the pleathora of

studies performed using visual stimulation. In marketing, auditory components

might hold a more relevant potential to significantly influence consumer choices.

KEYWORDS

biomedical signal processing, emotions, International A�ective Digital Sounds (IADS),

International A�ective Pictures System (IAPS), physiological responses, machine learning
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1 Introduction

In decision making processes, a crucial role is played by the

emotions experienced by each individual (Yadava et al., 2017).

Within the field of neuromarketing, this cognitive process is

particularly interesting as it can reveal which advertising stimuli

can capture the attention of potential customers. Vlăsceanu (2014)

confirms how this phenomenon is closely related to several aspects,

including emotions.

To better understand the emotional characteristics of a

subject, researchers study their biometric responses following

specific stimuli. Particularly, a series of responses arise from the

autonomous nervous system (ANS) and the central nervous system

(CNS). The former is expressed through several physiological

signals: electrocardiogram (ECG), blood volume pulse (BVP),

eye tracking, galvanic skin response (GSR), and respiration

(RESP) (Cuesta et al., 2019; Gill and Singh, 2020; Polo et al.,

2022).

On the other hand, the central nervous system CNS is

extensively investigated using different techniques for direct

and indirect measurement of brain activity. The study of

brain mechanisms and engagement following advertising stimuli

are of great interest in literature and marketing studies,

aiming to offer targeted and effective advertisements (Vences

et al., 2020). Among the techniques for measuring CNS

activity, the electroencephalogram (EEG) has gained success

due to its non-invasiveness, ease of acquisition, and excellent

temporal resolution in indirectly measuring cortical ensemble

neuronal activity. This signal has been extensively studied in

literature, and it is reported that cortical neural responses

change over time, frequency, and space following emotional

stimulation (Aftanas et al., 2002; Bamidis et al., 2009; Kheirkhah

et al., 2020). Furthermore, from the EEG signal, attention

and engagement indices can be obtained, which are useful in

discriminating different types of emotions and their impact on the

subject (Farabbi et al., 2022).

Indeed, each individual is capable of experiencing and

expressing different emotions at varying intensities, and this

becomes of great interest when understanding their emotional

processes (e.g., strong emotions may influence a user’s decision

to proceed with a purchase). To classify different emotions and

their intensity levels, multiple models are reported in the literature,

among which Russells’s model has been highly successful due to its

simplicity (Posner et al., 2005). In this model, different emotions

are depicted on a Cartesian graph with axes representing the

level of arousal (emotion intensity) and valence (i.e., low level

associated with unpleasantness and high level with pleasantness).

The intersection of the two axes allows identifying individual

emotions (e.g., happiness, fear, sadness, relaxation).

As mentioned before, the investigation of different emotions

occurs through experiments involving stimulation. The stimulation

phase requires robust protocols to study reliable responses. Most

emotion stimulation protocols use images as stimuli, primarily

sourced from the International Affective Picture System (IAPS)

(Lang et al., 2005). Since the emotions elicited by these images are

obtained from the labeling of thousands of people over the years,

this database provides a robust standard for emotion stimulation

protocols. Conversely, very few studies use auditory stimuli from

the International Affective Digital Sound System (IADS) (Bradley

and Lang, 2007). The IADS is analogous to the IAPS database,

containing standardized sounds with valence and arousal levels.

Although a soundtrack in video clips is part of the stimulus

itself, it is not easy to determine which type of stimulation, such as

audio, visual, or audio-visual, is more effective in eliciting emotions.

To the best of our knowledge, hardly any study uses a combination

of these two types of stimulation.

Furthermore, in most studies, physiological signals or CNS-

related signals are analyzed individually, limiting multimodal

interactions (Anttonen and Surakka, 2005; Koelstra et al., 2012).

In this article, we present a multimodal study of signals coming

from the ANS and CNS following stimulation through images,

sounds, and their combination. The complementarity of the

different types of acquired and analyzed signals can contribute to

a better understanding of the human body’s response mechanisms

to specific emotions and which signals are most useful for

discriminating different emotions. Additionally, the different

types of stimulation will be compared to understand which

generate a more relevant response in terms of both physiological

response and subject engagement. This comparison will also

help to better understand which type of stimulation allows for

better discrimination of different emotions. In the context of

neuromarketing, this could be crucial in developing targeted

advertisements for customers.

2 Materials and methods

2.1 Experimental protocol

The participants consisted of 13 females and 9 males with an

average age of 26.18 ± 1.47 years. The experiments took place

at the SpinLab of Politecnico of Milano, following the subjects’

signed informed consent, which was approved by the Politecnico

di Milano Research Ethical Committee (Opinion no. 29/2021).

Throughout the experiment, pheripheral and central physiological

signals were recorded, including ECG, BVP, GSR, pupillary signal

(PUPIL), RESP and EEG. The ECG, GSR and RESP signals were

recorded using Procomp Infiniti device, with a fixed sampling

frequency of 256 Hz for GSR and RESP, and 2,048 Hz for ECG

and BVP. The PUPIL signal was acquired using the Tobii Pro

X2 Compact eye-tracker, with a sampling frequency of 60 Hz.

The EEG signals were acquired using the DSI 24 headset, which

consisted of 21 dry electrodes placed at specific locations based on

the international 10–20 system: Fp1, Fp2, Fz, F3, F4, F7, F8, Cz, C3,

C4, T7/T3, T8/T4, Pz, P3, P4, P7/T5, P8/T6, O1, O2, A1, A2. The

EEG headset recorded data at a sampling rate of 300 Hz, using a

16-bit analog-to-digital converter.

Two extensively validated and widely used visual and auditory

databases were selected for analysis. One database consisted of

images (i.e., IAPS), while the other comprised sounds (i.e., IADS).

The protocol under examination extends a previously validated

protocol in the literature (Valenza et al., 2014; Nardelli et al.,

2015), which, however, was used separately with IAPS and IADS

on two distinct samples. Nevertheless, it has shown promising

results in terms of classifying valence and arousal dimensions when

compared to other studies in the literature.
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The experimental protocol consisted of three distinct and

randomized phases with 2 min of rest in between aimed at

investigating the efficacy of different types of emotional stimulation

in eliciting distinguishable physiological patterns.

1) The first phase involved the presentation of visually

stimulating images sourced from the IAPS database. In this phase,

participants were exposed solely to visual stimuli, allowing for the

examination of the physiological responses evoked by visual cues.

2) The second phase involved auditory stimulation, utilizing

sounds extracted from the IADS database. Participants were

exposed exclusively to auditory stimuli during this phase, enabling

the investigation of the specific physiological patterns associated

with auditory stimulation.

3) Lastly, in the third phase, a combination of visual

and auditory stimuli was employed to create a more complex

and integrated stimulus. In this phase images are presented

alongside corresponding sounds carefully selected to have semantic

congruence. This phase involved the simultaneous presentation

of both IAPS images and IADS sounds, aiming to elicit a more

comprehensive and nuanced emotional response by integrating

visual and auditory sensory modalities.

By varying the type of emotional stimulation across these

three phases, the study wants to determine the extent to which

physiological patterns could be distinctively influenced by specific

sensory inputs, thereby highlighting the interplay between visual

and auditory modalities in emotional processing. The above-

mentioned phases comprise four sessions, with each session lasting

90 seconds. Following an initial 5-min resting period where

subjects view a grey screen, these sessions commence, progressively

intensifying the levels of arousal (i.e., A1, A2, A3, and A4).

Within each arousing session, there are six visual and/or acoustic

stimuli, each with a duration of 15 seconds. These stimuli are

partitioned into two halves, featuring low valence in the first

half and high valence in the second half. The experiment’s total

duration spans 47 min. The underlying rationale for this design

is to systematically elevate arousal levels while simultaneously

maintaining a central neutral valence throughout each session.

During the phase involving both visual and auditory stimulation,

in addition to presenting images simultaneously with sound to

create semantic matches, pairs of images and sounds were selected

with comparable valence and arousal values. This choice was made

to maintain the structure observed in the other phases, where

arousal levels progressively increased, and low and high valences

alternated within each arousal session. Arousal and valence levels

are set according to IAPS and IADS scores as reported in Table 1.

Figure 1 shows the experimental protocol. During the experiments,

a designated experimenter remained present in the room at all

times to address any potential issues with data acquisition and

prevent subjects from making excessive movements or displacing

sensors. Prior to the experiments, all participants underwent

pure tone audiometry examinations using a clinical audiometer

(Amplaid 177+, Amplifon with TDH49 headphones) to ensure

that their hearing thresholds fell within the normal range (pure

tone average thresholds at 0.5, 1, 2, and 4 kHz < 20 dB HL).

The auditory stimulation was delivered through earphones (UXD

CT887), and participants with visual impairments were provided

with the option to wear glasses. All participants were asked

if they had any pre-existing medical conditions and/or mental

TABLE 1 Valence and Arousal medians and ranges for all sessions (A1, A2,

A3, and A4) of each phase (IAPS, IADS, and IAPS+IADS, which comprises

Matched IAPS and Matched IADS).

Session Valence Rating Arousal Rating

IAPS

A1 4.96 (3.92–7.24) 4.68 (4.42–4.85)

A2 4.81 (2.52–7.62) 5.38 (5.08–5.48)

A3 5.10 (2.14–7.2) 6.55 (6.09–6.80)

A4 4.75 (1.45–7.57) 7.12 (6.90–7.35)

IADS

A1 5.16 (3.54–7.12) 4.77 (4.47–4.94)

A2 4.93 (2.46–7.78) 5.40 (5.05–5.87)

A3 4.88 (2.44–7.38) 6.35 (6–6.84)

A4 4.86 (1.68–7.67) 7.14 (7.03–7.88)

matched IAPS

A1 5.67 (3.65–7.13) 4.46 (4.13–4.75)

A2 4.44 (2.49–6.83) 5.43 (5.18–5.53)

A3 4.76 (2.16–6.83) 6.21 (6.06–6.79)

A4 4.19 (1.48–7.61) 7.18 (7.13–7.31)

matched IADS

A1 5.86 (4.52–7.05) 4.62 (4.38–4.87)

A2 4.82 (3.02–6.11) 5.50 (5.34–5.74)

A3 4.54 (2.06–6.77) 6.42 (6.07–6.64)

A4 4.54 (1.99–6.94) 7.35 (7.28–8.16)

disorders, and if so, they were excluded from the study.With regard

to the visual aspects, and particularly concerning the pupillary

signal, we followed the recommendations in the literature (Laeng

and Endestad, 2012). To minimize external light interference, we

decided to darken the laboratory windows and utilize artificial

lighting during the recording. The screen brightness, on the other

hand, remained constant for all subjects. As for the auditory

component, the subjects were presented with three sounds before

the commencement of the test, and they were instructed to select a

volume level that they found comfortable.

2.2 Signal processing and feature
extraction

The following section present the processing and extraction

of features from the physiological signals recorded during the

experiment, organized for each signal.

2.2.1 The electroencephalogram
The EEG signals were imported and preprocessed using the

EEGLAB toolbox in MATLAB. Initially, the data underwent

filtering between 1 Hz and 45 Hz using a zero-phase finite

impulse response filter. The Pz electrode recorded a faulty signal
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FIGURE 1

Outline of the experimental protocol, including three stimulation phases. Top: arousal (red). Bottom: valence (green).

and was temporarily removed and later interpolated. Independent

Component Analysis (ICA) with the Extended Infomax algorithm,

as described in Lee et al. (1999) and Delorme et al. (2012), was

applied to separate sub-Gaussian and super-Gaussian distributions

using a natural gradient approach based on negentropy as

a projection search index. The extracted components were

categorized into seven classes (Brain, Eye, Muscle, Heart, Line

Noise, Channel Noise, and Other) using the IClabel plugin (Pion-

Tonachini et al., 2019) to assess their characteristics and origins.

The accuracy of this categorization process was evaluated by

analyzing the probability of component classification relative to

brain or other sources. Artifacts were removed based on default

threshold values, resulting in cleaned datasets for further analysis.

The previously removed Pz electrode was interpolated using the

spherical interpolation method. To minimize common noise, the

Common-Average Referencing (CAR) method was implemented,

subtracting the average potential of multiple electrodes from each

individual electrode. The selection of the EEG signal processing

pipeline was based on comparisons of different pipelines outlined

in Cassani et al. (2022).

As the EEG signal is highly information-rich with numerous

potential features, we concentrated on straightforward features that

could be easily interpreted in order to evaluate any distinctions

among the three types of stimulation. In this regard, the Power

Spectral Density (PSD) was computed for the frontal and parietal

regions across different frequency bands: δ (1–3 Hz), θ (4–7 Hz),

α (8–12 Hz), and β (16–38 Hz). The PSD of each band has

been normalized by the total power spectral density (i.e., 1-45

Hz). Numerous studies have unveiled the significance of these

frequency bands within the EEG signal concerning emotions and

the dimensions of valence and arousal (Sarno et al., 2016; Zhuang

et al., 2017; Rahman et al., 2021). Analyzing the energy distribution

within these frequency ranges thus provided a comprehensive

understanding of patterns and trends related to different emotional

states.

To assess the subjects’ attention levels during the experiment,

the ratio between the PSD in the β frequency band and the PSD

in the θ frequency band was calculated for the frontal and parietal

regions. These ratios, known as β/θ F and β/θ P, are recognized

indicators of attention. It is believed that the ratios increase during

attentive states, providing a more precise measure of attention

throughout the trials (Cómez et al., 1998; Farabbi and Mainardi,

2022).

An engagement index (i.e., β/α) was also measured to assess

whether the change in the type of stimulation affected not only

attention but also the degree of involvement. The adoption of the

β/α ratio as an engagement index is substantiated by its established

effectiveness in a diverse array of empirical studies. This metric

consistently proves its proficiency in gauging engagement across

various contexts, including gaming tasks (McMahan et al., 2015),

sustained attention tasks (Coelli et al., 2018), alarm-detection tasks

(Dehais et al., 2018), and consumer behavior analysis (Kislov et al.,

2022). Increased β power is associated with heightened brain

activity during mental tasks, while increased α activity is related to

lower levels of mental vigilance and alertness. The Power Spectral

Densities were computed using the Welch method, a reliable and

widely-used signal processing approach, to ensure accurate and

reliable results in analyzing the EEG signals. In total, 6 features

are computed, which include spectral power in different frequency

bands as listed, an attention index, and an engagement index. These

6 features are calculated separately for both the frontal and parietal

regions obtaining a total of 12 features for the EEG signals.

2.2.2 The electrocardiogram
The ECG signal (sampled at a frequency of 2048 Hz) underwent

initial processing, which included applying a fourth-order zero-

phase low-pass Butterworth filter. Subsequently, a down-sampling

operation was performed, reducing the signal to a rate of 250

Hz. The detection of R peaks on the ECG signal was achieved

using the Pan-Tompkins algorithm (Sedghamiz, 2014). In order

to obtain accurate measurements of heart rate variability (HRV),

the Point process framework was employed. Since the temporal

windows related to different emotional stimuli last 45 seconds

within low- and high-valence arousal sessions, which is shorter than

the conventional 5-minute windows typically used for extracting

HRV measures (Sassi et al., 2015), the decision was made to

utilize the Point process framework. This framework has proven

to be robust in calculating HRV measures even in shorter

temporal windows. Within the realm of statistics, point processes

provide a probabilistic representation of the distribution of points

within a specific space (Daley et al., 2003). These processes are
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commonly observed in diverse systems, including the temporal

and spatial arrangement of neural spikes (Truccolo et al., 2005).

The primary objective in the analysis of the ECG signal is to

conceptualize heartbeats as a stochastic point process, facilitating

the continuous estimation of the average inter-beat interval and

related spectral indices. The behavior of heart cells, particularly

during the initiation of an action potential, can be effectively

m odeled as a Gaussian random walk with drift (Stanley et al.,

2000). Consequently, the time interval between two successive

heartbeats conforms to the Probability Density Function (PDF)

of the Inverse Gaussian (IG), enabling real-time assessment of

autonomic nervous system (ANS) activity (Barbieri et al., 2005;

Chen et al., 2009, 2011). Through the point process framework a

total of nine HRV features were computed: as the modelled RR

series (µRR) and the variability of the IG distribution (σ2), the RR

power spectral density of the modelled RR series in very low (RR

VLF) [<0.04 Hz], low (RR LF) [0.04–0.15 Hz] and high (RR HF)

[0.15–0.5 Hz] frequency ranges, the sympatho-vagal balance index

(RR LF/HF), the normalized power spectral density of the modelled

RR series in low (RR LFn) and high (RR HFn) frequency ranges

and the total power spectral density of the modelled RR series (RR

TOT).

2.2.3 Blood volume pulse
The BVP waveform illustrates blood volume fluctuations in

a specific district (the finger) with each heartbeat. To analyze

the BVP signal (sampled at 2,048 Hz), we applied a 4th-order

low-pass Butterworth anti-aliasing filter with a cutoff frequency

of 25 Hz. The signal was then downsampled to 250 Hz. Using

the identified R-peaks in the ECG signal as a reference point,

we extracted beat-to-beat systolic, diastolic, and onset fiducial

points from the BVP signal. Systolic and diastolic values were

determined by finding themaximum andminimum values between

consecutive R-peaks, respectively. Onset values were pinpointed

as inflection points between systolic and diastolic locations. We

ensured precision through manual review and in-house software

rectification. Analyzing the BVP and ECG signals, we derived two

features: the Mean Volume Amplitude Index (VP), representing

the mean amplitude difference between each systolic and its

corresponding diastolic value, and the Mean Pulse Arrival Time

(PAT), representing the mean temporal difference between each

onset value on the BVP signal and its corresponding R-peak on the

ECG signal. To compute PAT, we used onsets in relation to diastoles

or systoles, as these points are more reliable and less susceptible to

uncertainty in the signal’s most tumultuous segments.

2.2.4 Galvanic skin response
The GSR, also known as Electrodermal Activity, is a measure of

skin electrical conductivity, reflecting two components: the Tonic

Component representing the baseline skin conductance influenced

by sympathetic nervous system activation, and the Phasic

Component representing rapid fluctuations in electrodermal

activity.

The GSR signal, sampled at a rate of 256 Hz, underwent a 4th-

order low-pass Butterworth filter with a cutoff frequency of 2 Hz.

Subsequently, it was downsampled to 5 Hz. To extract the Phasic

Component, a median filter was applied, where each sample was

replaced with the median value of the neighboring samples within

a 4-second window centered around the current sample (Bakker

et al., 2011). Subtracting this median signal from the filtered signal

resulted in the Phasic Component.We chose to employ thismethod

for computing the phasic component due to its straightforward

yet effective capability in isolating rapid variations in the signal

(Benedek and Kaernbach, 2010; Greco et al., 2016). Additionally,

the signal was collected under conditions in which the subjects were

seated and stationary, necessitating less extensive processing. The

selection of this method was based on its simplicity and intuitive

nature.

GSR peaks, corresponding to eccrine gland spikes, were

identified by detecting local maxima in the filtered signal occurring

between the onset (amplitude >0.01 µS) and offset (amplitude <0.0

µS) of the Phasic Component (Benedek and Kaernbach, 2010;

Braithwaite et al., 2013). The analysis of the GSR signal resulted in

the computation of seventeen features, encompassing averages and

derivatives of the processed signal (Picard et al., 2001; Lisetti and

Nasoz, 2004; Fleureau et al., 2012), as well as characteristics related

to the number of GSR peaks and their relative timing (Kim and

André, 2008; Frantzidis et al., 2010).

2.2.5 Respiration
The respiration signal underwent a zero-phase digital low-

pass filtering using the Parks-McClellan algorithm (Rabiner and

Gold, 1975), with a cutoff frequency of 1 Hz, to isolate the

desired frequency components. Following filtering, a thresholding

technique identified maximum and minimum values in the signal.

Two key features were extracted from the respiration signal:

Respiratory Frequency (fRESP) and Mean Breath Amplitude

(ampRESP). Mean Breath Amplitude was calculated as the

difference between maximum and minimum values within each

breath cycle. Additionally, a bivariate autoregressive point process

model, akin to the univariate approach, was employed to estimate

autonomic regulation of the heartbeat due to respiration-induced

changes (Chen et al., 2009). This model separated the self-

regulatory process from the effects of Respiratory Sinus Arrhythmia

(RSA) on the ANS’s feedback branch. The modeling allowed for

time-frequency representations of the RR and RESP series, along

with the corresponding cross-spectrum. It further facilitated the

calculation of directional gains from respiration to heartbeat (RSA)

and vice versa (Feedforward gains), providing high-resolution

time-varying estimations of the average RR-interval. Furthermore,

coherence in time and frequency was computed between RR and

RESP. In total, eight features were computed from the RESP signal

and its interaction with the ECG signal.

2.2.6 Pupillometry
Despite the filtering options available in Tobii Pro Lab software,

the raw data (sampled at 60 Hz) with blink compensation were

chosen for further processing to preserve valuable information and

apply a custom cleaning technique. Data points with diameters

less than 2 mm or greater than 8 mm were designated as “NaN”

to indicate blinks, as diameters outside this range are considered

non-physiological. Artefacts due to acquisition errors were also
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removed: sudden increases or decreases of more than 0.375 mm

within a 20 ms interval were identified and eliminated (Pong and

Fuchs, 2000; Partala and Surakka, 2003). For blink compensation,

sample replacement or interpolation was conducted for detected

blink instances. If a blink was detected in one eye, the sample value

for the other eye was substituted. If both eyes showed blinks, a

cubic spline interpolation was used to estimate the missing data.

This approach retained crucial information from the raw data.

Next, a 4th-order zero-phase low-pass Butterworth anti-aliasing

filter with a cutoff frequency of 5 Hz was applied to eliminate

high-frequency noise. The filter was set to retain relevant signal

information. Subsequently, the signal was downsampled to 10 Hz,

an appropriate rate for pupillometric data analysis.

Finally, spectral analysis was performed using Welch’s

periodogram on the detrended signal. A 1.875-second Hamming

window with a 50% overlap was used for the analysis. A total of

nine features were computed, including the average pupil diameter

and frequency features linked to the content of ANS.

2.3 Feature selection

To achieve simple and interpretable models for emotion

classification, we adopted the Square Method (SM), which has a

preliminary version described in Polo et al. (2021). The primary

objective of this method is to identify the most significant features

in the dataset that contribute to the optimal separation of the

different classes within the 2D plane of features.

The process begins with the initial dataset comprising features’

values and their corresponding labels. For each pair of feature

values, 2D boxes are created, where the center of each box

represents the average values of the features for different classes

(i.e., emotions) under consideration. The sides of these boxes

are determined by the 95% confidence intervals for the average

estimation. The degree of overlap between boxes is computed

by calculating the percentage of intersection area relative to the

total area of each box. This process is performed for every pair

of boxes, and then the average percentage is used as a metric to

assess the importance of the feature pair. The lower the average

intersection considering all intersections between boxes related to

the two features, the higher the importance of this feature pair.

Below, we provide a detailed description of the algorithm for

selecting themost important features in the classification process.

• For each class considered, 2D boxplots are created for all

possible pairs of features.

• The algorithm computes the area of intersection between each

pair of boxes and calculates the ratio between the area of

intersection and the area of each rectangle. The average of all

the ratios is then calculated and saved as A.

• For each feature pair, the algorithm checks if A exceeds a

predefined threshold (e.g., 10%, 20%, and 30%). If A exceeds

the threshold, the corresponding feature pair is discarded.

• Each feature is given a weight (W) based on the number of

times it appears in the feature pairs not been discarded.

• The algorithm calculates the correlation between each feature

pair, and if the correlation is greater than 80%, the feature with

the lowerW is discarded. If two features have the sameW, one

of them is randomly discarded.

• The remaining features are then sorted based on their W,

indicating their importance. The higher the W, the more

important the feature.

• The algorithm calculates the average of these W and considers

only the features with a W greater than the average.

Through the examination of these boxplots, we can identify the

features that frequently appear in pairs with minimal or no overlap

between the boxes associated with different classes. Such features

are deemed critical for emotion classification and are selected to

serve as the foundation for the subsequent models.

By employing the SM and analyzing the graphical

representations, we can create streamlined and interpretable

models that effectively capture the distinctive patterns in the

feature space, enabling accurate emotion classification with a clear

understanding of the underlying data structure. Figure 2 shows

a possible example relative to a pair of features. As can be seen

from the image, only two intersections are highlighted in red: one

between class 1 and class 2, and the other between class 2 and class

3. In this specific case, only one class is completely separated from

the others (i.e., class 4). In general, in this case, twelve intersections

are calculated (i.e., the intersection of each box with all the others, 4

boxes * 3 possible intersections = 12 intersections). In the example,

considering only the boxes related to class 2 and class 3, there

are two intersection percentages, even though there is only one

intersection. This is because each intersection is weighted by the

total area of each box. Therefore, in this case, class 3 will have a

higher percentage than class 2, as the area of class 3 is smaller.

2.4 Classification

A key goal of this investigation was to evaluate the

generalization capabilities of machine learning models in the

context of different types of stimulation and within each specific

stimulation. Instead of prioritizing high-performance models, we

opted for the utilization of simple machine learning approaches

in conjunction with the transparent and easy-to-interpret feature

selection method, denoted as SM. Our primary focus lay in

gauging the effectiveness of these models in discerning emotions

based on the type of stimulation applied. Furthermore, we sought

to discern which types of stimulation led to a more distinct

separation of emotions from physiological signals, and which types

were less effective, giving rise to more ambiguous physiological

experiences. To streamline the classification task, we excluded the

two middle phases of increasing arousal (A2 and A3) for each

type of stimulation. By concentrating on the extreme arousal states

represented by phases A1 (very low arousal) and A4 (very high

arousal), we aimed to facilitate the differentiation of emotions.

In total, the dataset encompassed 264 observations, with

12 samples per subject, representing all four quadrants

of the Russell’s cirumplex model of affect [i.e., first

quadrant: A4-HV (Happiness/Amusement), second quadrant:

A1-HV (Relaxation/Pleasure), third quadrant: A1-LV

(Sadness/Depression), and fourth quadrant: A4-LV (Fear/Anger)],
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FIGURE 2

This example illustrates 2D boxes corresponding to a pair of features. Each box represents the values of the two features for a specific class. The

overlapping regions between the boxes are highlighted in red, showing the intersections. *Represents the center of each box, calculated as the

average of the distributions of the two features within each class.

taking into account all three phases of stimulation (i.e., 22 subjects

* 3 stimulation phases * 4 emotional quadrants).

For classification purposes, we abstained from applying

dimension reduction methods to safeguard the integrity of the

extracted signal features, ensuring that pertinent information was

retained for the models. This approach allowed us to gain valuable

insights into the discriminative power of simple machine learning

models and feature selection techniques in discerning emotions

under varying types of stimulation. As a result, our study aimed

to provide a clearer understanding of the physiological responses

to different emotional stimuli.

The dataset was divided into a training set (70%) and a test

set (30%), with 7 randomly selected subjects excluded from the

latter to avoid any data leakage. Subsequently, the customized

SM feature selection method was applied to the training data to

identify the most important features while minimizing correlation

among them. The selection was performed using specific overlap

thresholds for the 2D boxes, ranging from 100% (i.e., all

uncorrelated features considered) to the minimum percentage

required for at least one feature to be retained by the feature

selection algorithm. This process aimed to achieve optimal feature

subsets for distinguishing the four emotional states. Next, a 10-

fold cross-validation, stratified by subjects, was conducted on the

training set, employing different machine learning models, such as

k-nearest neighbors (KNN), decision trees (DT), logistic regression

(LR), support vector machine (SVM), linear discriminant analysis

(LDA), random forest (RF), and Adaboost (ADB). A grid search

was utilized to find the best combination of hyperparameters for

each model. Subsequently, the top-performing models, based on

the best percentage of overlap from the feature selection and highest

average accuracy during validation, were retrained on the entire

training set and then evaluated on the test set. Due to the dataset’s

balanced nature, the average accuracy during validation and the

test accuracy were computed as performance metrics to assess the

models’ effectiveness in emotion classification.

Moreover, to assess the effectiveness of different types of

stimulation in the classification process, the feature selection

method was applied to three distinct datasets: images only, sounds

only, and combined stimuli, each containing 88 observations. As

before, specific overlap percentages were used during the feature

selection process. Due to the limited number of observations in

each dataset, only a 10-fold cross-validation, stratified by subjects,

was performed for each dataset. Themodels were optimized using a

grid search to identify the best hyperparameters. Subsequently, the

average accuracy during validation was computed to evaluate the

performance of the models for each type of stimulation.

Additionally, regarding the performance evaluation of the

different models considered in the study, we focused on the best

overlap percentage determined by the SM, which corresponded

to the one yielding the highest performance for each stimulation.

Subsequently, the performance of all models was assessed across all

stimulations using this specific optimal overlap percentage.

3 Results

3.1 Machine learning performance

Starting with the classification results for all types of stimulation

together and separately, Figure 3 presents a summary of the best

outcomes obtained across the different classifications performed.

Specifically, the Figure displays the performance of the best model
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using the SM at each investigated overlap percentage, with the

accuracy relative to the 4-class problem (i.e., random chance at

25%) depicted together with the model and the number of features

used. As evident, as the overlap percentage decreases, the number

of considered features also decreases.

From the Figure, we can deduce that the best performance

for both test and validation data, when combining all types of

stimulation, is achieved with the ADB model, with accuracies of

51% and 49% (first subplot - first barplot) at the lowest overlap

percentage (LO), respectively.

From subplots 2 to 4, we observe the average validation

accuracy for the three separated phases (i.e., images, sounds

and image+sound). It is evident that, overall, higher accuracies

are achieved during the sound and image+sound phases when

compared to the image-only phase. The best average validation

accuracy for the sound phase is 52% at the LO, while for the

image+sound phase, it is 51% at the LO, both of which are higher

than the 44% best accuracy obtained for images alone at 90% of

overlap. Furthermore, apart from the image-only phase, the trend

suggested by the average validation accuracy shows a decrease with

an increase in the overlap percentage. This implies that as the

overlap increases, more features are being incorporated into the

classification process, leading to lower validation accuracy.

An important observation from the Figure is that the LO at

which the SM obtains at least one feature, is similar for images (i.e.,

24%) and images+sound (i.e., 28%), but notably lower for sound-

only (i.e., 12%) and by joining all the stimulation together (i.e., 11%)

as described in the caption of Figure 3.

3.2 Feature characterization

To maximize the potential of the SM for visualizing the

separation within the training observations across the four classes,

3D boxes were constructed using the three most important features

identified by the SM. Additionally, projections between pairs of

features were included. The process of creating the 3D boxes

follows the same procedure as for the 2D boxes, with the addition

of an extra feature. In Figure 4 four panels are presented: one

integrating all stimuli together (1) and one for each stimulation

method (2)-(4), each showcasing the 3D boxes.

From the Figure, it is evident that depending on the type of

stimulation used, the intersections between different classes vary

accordingly. Regarding Figure 4, the average overlap percentages

were calculated for each class based on the three projections shown

in the Figure. Table 2 presents the mean overlap percentage of the

three projections of Figure 4 for each class, along with the overall

mean considering all classes together. As observed, combining

all stimuli results in lower overlap percentages. In general, we

can observe that the sound phase exhibits the lowest overlap

percentages compared to the three stimulations. Interestingly, it

can be observed that for the sound and sound+image phases, the

percentages are lower at higher arousal levels (i.e., A4), whereas the

opposite trend is visible for the image-only phase.

In terms of feature importance, it is evident from Figure 4

that the parietal β/θ attention index consistently plays a crucial

role in distinguishing the four classes, as it appears in all four

panels and ranks among the top three best-performing features.

This highlights the significant impact of the parietal β/θ attention

index on the classification task, underscoring its importance

as a strong predictor for separating the classes under study.

Furthermore, referring to Figure 3, the β/θ feature is the only

one that is not discarded by the SM even at low percentages.

In fact, the LO in the Figure always corresponds to a single

feature, which is the parietal β/θ . Figure 4 clearly shows that

the emotion A1-LV (sadness/depression) is consistently associated

with higher attention levels across all types of stimulation.

There is a notable decreasing trend from A1-LV, A1-HV, A4-

LV, to A4-HV, indicating a decrease in attention as arousal levels

increase. This trend is particularly evident during the auditory-only

stimulation, where the vertical overlap between the boxes is smaller,

highlighting the significant importance of this attention index. In

the combined stimulation, instead, A4-LV (fear/anger) surpasses

A1-HV (relaxation/pleasure), indicating a shift in attention towards

the valence dimension.

In addition to the attention index, another feature that has

proven to be of significant importance for the separation of the four

classes and subsequent classification is GSR PEAKS RISE TIME.

This feature is computed over the found peaks as the average

distance in seconds between the peak and the onset. Interestingly,

this feature can be found among the three best-performing features

in all types of stimulation, as well as when combining different types

of stimulation, except for the image+sound phase. This particular

feature appears to effectively distinguish the valence dimension at

low arousal levels, as higher values consistently correspond to the

emotion A1-LV, while lower values are associated with A1-HV.

Regarding the other features shown in Figure 4, which only

appear in specific cases and are not recurrent, they are as follows:

RESP-ECG COH: This feature represents the coherence

between the two time series of RESP and ECG. This feature appears

to be more relevant when combining all types of stimulations

(Figure 4A), and it specifically holds significant importance in

distinguishing emotions along the valence dimension. Higher

values are observed for emotions A1-HV and A4-HV compared to

A1-LV and A4-LV.

PSD HF PUPIL: This feature is the Power Spectral Density of

the Pupil Diameter in the high-frequency range (0.15–0.45 Hz).

This feature appears to be relevant during the visual-only phase

(Figure 4B), particularly in distinguishing the emotion A4-LV from

the others. In general, this feature seems to be more closely related

to the arousal dimension, with higher values associated with higher

arousal levels.

GSR DERIVATIVE: This feature represents the average of the

first derivative of the bandpass-filtered GSR in the frequency range

of 0.5 to 1 Hz. This feature is relevant during the auditory-only

phase (Figure 4C), especially for the emotion A4-LV, which is

clearly distinct from the others. It is interesting to observe that this

feature discriminates well between the two high arousal emotions,

while there is a considerable overlap concerning the low arousal

emotions, which lie in between A4-HV and A4-LV.

GSR MAX SIGNED AMPLITUDE: This feature represents the

maximum signed amplitude between two consecutive extremes of

the bandpass-filtered GSR in the frequency range of 0.5 to 1 Hz.

It indicates the maximum range with a sign between consecutive

maxima and minima. This feature has been found to be significant

during the combined audio-visual phase (Figure 4D). Similar to
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FIGURE 3

The optimal performance, as measured by accuracy, varies depending on the overlap percentage from the SM. The provided barplots displays the

accuracy results achieved by the top-performing models at di�erent overlap percentages for all classification tasks. These results are accompanied

by the corresponding standard deviations, indicated by a line above each bar. Within each bar, you can find details about the percentage of validation

accuracy, the specific model used, and the number of features selected from the SM for each overlap percentage. Additionally, in the first subplot,

the percentage of test accuracy is also provided. The term “LO” denotes the lowest overlap percentage at which the SM still retains at least one

selected feature. The corresponding lowest overlap percentages are as follows: 11% for all stimulation (test), 11% for all stimulation (validation), 24%

for images (validation), 12% for sounds (validation), and 28% for images and sounds combined (validation).

GSR DERIVATIVE, GSR MAX SIGNED AMPLITUDE exhibits

the same trend, effectively distinguishing the emotion A4-LV from

the others and generally providing a clear division between high

arousal and less pronounced division among low arousal emotions.

3.3 Feature importance and emotion
classification

As discussed at the end of Section 2.4, to gain a comprehensive

overview of the features and the signals used in the study, an

analysis was conducted for each type of stimulation and considering

all stimulations collectively. During this analysis, the frequency

of features associated with each specific signal was calculated

within the subsets of features retained by the SM for classification.

This allowed us to determine the importance of each signal in

the process of distinguishing the four emotions from each other.

The frequencies were calculated on a scale from 0 to 6, where

6 represents the number of treated overlap percentages. The

frequency measurement captured the presence of features linked

to a specific signal that were not discarded by the SM and were

consequently utilized in the classification process. As the frequency

increased, it indicated that the features associated with a particular

signal were not eliminated by the SM and were considered

significant for classification purposes. This analysis allowed for the

evaluation of the signal’s importance in distinguishing the four

emotions from each other. Essentially, a higher frequency suggested

that the signal-related features were retained, reinforcing their

role in effectively differentiating the emotional classes during the

classification process. Figure 5 presents bar plots displaying the

specific importance of each signal in the separation of emotions for

each treated stimulation type. It was decided to include the “RESP-

ECG” signal, as its related features pertain to cardio-respiratory

coupling rather than just one of the two signals.

From Figure 5, it is evident that the EEG signal consistently

maintains the highest frequency of appearance across all conducted

stimulations, signifying its paramount importance compared to

all other signals. Combining all stimulations together, the GSR

signal and cardio-respiratory coupling seem crucial for separating

the four emotions. Analyzing individual stimulations separately,

we observe that the auditory and auditory+visual stimulations

are quite similar, except for the BVP signal, which is considered

one less time in the auditory-only stimulation. In the visual-only

phase, besides the EEG signal, the pupillary signal also proves to

be significant. Generally, the cardiovascular aspect appears to be

the least performing among all. It is worth noting that there is an

imbalance in the number of features calculated for each signal. For

instance, the BVP signal, which appears to be the least significant

from our analysis, also has the fewest features computed. However,

it is important to clarify that we are not dealing with percentages.

A signal is counted in our tally if at least one of its features remains

within the feature set retained by the SM algorithm. Therefore, the

importance of a signal is not influenced by the number of features
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FIGURE 4

The 3D boxes were constructed using the three most important features obtained from the SM. (A) Corresponds to the combination of all three types

of stimuli. (B) Represents the visual stimulation only. (C) Displays the auditory stimulation alone, and (D) Illustrates the combined visual and auditory

stimulation.

considered; it is determined solely by whether at least one feature of

that signal remains within the feature set retained by the algorithm.

3.4 Model performance and optimal
feature selection

As a final analysis, we evaluated the performance of the models

by selecting the subset of features (derived from different overlap

percentages) that resulted in the highest average validation accuracy

across all considered stimulations. Referring to Figure 3, the best

performance was achieved with an 11% overlap (i.e., 49% accuracy

and one feature–first subplot) when combining all stimulations.

For the image-only phase, the 90% overlap (i.e., 44% accuracy

and 29 features–second subplot) performed the best. In the case

of auditory stimulation, the 12% overlap (i.e., 52% accuracy and

one feature–third subplot) yielded the highest accuracy, and for

the combined audio-visual stimulation, the 28% overlap (i.e., 51%

accuracy and one feature–last subplot) was the most effective.

Figure 6 displays the average validation accuracy for all models and

stimulations, utilizing the features resulting from the best overlap

percentages.

TABLE 2 The average percentage of intersection overlap is computed for

each emotional state in comparison to all other emotional states.

Arousal/Valence All IAPS IADS IAPS+IADS

levels stimulation

A1-LV 8% 13% 18% 32%

A1-HV 9% 27% 26% 40%

A4-LV 11% 26% 15% 19%

A4-HV 6% 30% 14% 20%

Average 8.5% 24% 18.25% 27.75%

This calculation involves utilizing the three most effective features for each type of stimulation

with the SM.

In the Figure 6, it can be observed that LR and LDA are the

worst-performing models across all types of stimulation, while

KNN, SVM, RF, and ADB achieve better performances, with the

tree-based models falling in between. KNN appears to be very

stable, maintaining consistent performance across all types of

stimulation except for images, where it notably drops. Overall,

the performance for the images-only phase is the lowest among

all the considered models. On the other hand, the performance
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FIGURE 5

The bar plot illustrates the signal importance, quantified as the frequency of appearance of features related to each signal within the SM, categorized

by stimulation type.

FIGURE 6

The average validation accuracy computed for all models and stimulations, using the features obtained from the best overlap percentages from SM.

The dashed blue line represents the performance of the models using only the attention index derived from the EEG signal as a subset of features for

the images-only phase.
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in the sounds-only phase is the highest, although it shows

quite comparable results to the sounds + images phase and the

combination of all stimulations. However, there is a drastic drop

in performance for the LR and LDA models during the images

+ sounds phase. Interestingly, the trend of different models for

the sounds-only phase closely resembles that when considering

all types of stimulation together. For completeness, as all types

of stimulation, except for the images-only phase, achieved better

performance using only one feature (i.e., the attention index

derived from the EEG signal), the dashed blue line represents the

performance derived from using only the attention index for the

images-only phase. It can be observed that the images-only phase

is the only one characterized by the lowest performance, even

when using the same set of features for classification (resulting

in a performance lower than the random chance, which is 25%

for tree-based models). Interestingly, this phase shows an opposite

trend compared to the best-performing model. In fact, LR and LDA

models perform better in this specific case.

4 Discussions

The main goal of this study is to understand which type

of stimulation is most effective in distinguishing between four

different emotional states: viewing images only, listening to sounds

only, or the combined action of both.

We harnessed the extensively validated IAPS and IADS

datasets, both individually and concurrently, while overseeing a

diverse array of physiological signals. Our study’s distinctiveness

stems from the novel application of these well-recognized datasets

in investigating a variety of emotional stimulation methods.

In contrast to the prevailing trend of focusing on visual

stimuli in research, the incorporation of auditory elements

remains an infrequent occurrence. Furthermore, the comparative

underutilization of the IADS dataset when compared to the

IAPS dataset serves as a unique characteristic of our study.

Using both modalities with the same group of subjects is also

uncommon. Furthermore, our research meticulously tracked six

distinct physiological signals, adding depth to our analysis.

The introduction of seven machine learning models introduces

a new layer of complexity to our study, enabling us to

evaluate their performance and effectiveness in emotion separation

comprehensively. Our results originally portray a comparative

demonstration of the significance of sound presence in creating

more distinct and recognizable physiological patterns, leading to

better and more separated features in the classification process.

4.1 Machine learning performance

From Figure 3, it is evident that the performance of the sound-

only phase is the highest among all, though comparable to the

combined audio-visual phase. The image-only phase, on the other

hand, obtains significantly lower performance, with a maximum

average validation accuracy of 44% compared to 52% for the

sound phase. Furthermore, the Figure shows how, for the image-

only phase, performance decreases as the number of features used

for classification decreases, indicating that a greater number of

features and, consequently, signals and information are required

to achieve better performance. From a physiological perspective,

this indicates that, following the protocol of this study, the vision

of images alone creates less evident and distinct physiological

patterns, necessitating the integration of many more signals and

information to achieve better performance, which is still inferior

to other types of stimulation.

Interestingly, for models relative to all types of stimulation

combined, the best performance is achieved using only the

attention index from the EEG signal, which has proven essential

for classification, with a single feature. A comparable albeit

diminished test performance is attained through the utilization

of the maximum number of features (Figure 3–first subplot). In

the first case, it is evident that sound and sound+image phases are

more relevant in the classification, as they are well described by

the attention index. However, increasing the number of features

significantly raises the test performance due to the image phase,

which requires more information.

Overall, it appears that the ADB model with only one feature

(i.e., β/α P) performs the best when considering all stimuli together.

This is evident in the test accuracy being very close to the validation

accuracy (i.e., 51% and 49%, respectively). It implies that the

test performance is minimally dependent on the specific test set

used. On the other hand, under the condition of 100% overlap, a

noticeable disparity between test accuracy (i.e., 48%) and validation

accuracy (i.e., 32.5%) becomes apparent. This implies that the

elevated test accuracy is predominantly influenced by the particular

test set chosen. Nonetheless, when we assess all the scrutinized

overlap scenarios, the ADB model consistently emerges as the

frontrunner in 4 out of 6 instances. This finding underscores

the increasing importance of this model, signifying its robust

descriptive capability within the given context.

4.2 Feature characterization

Using SM as the algorithm for feature selection and importance,

it was possible to find the features that best separate the four

emotional classes. As mentioned earlier, the attention index in

the parietal area was undoubtedly the most performing feature.

It was the most important feature for all types of stimulation

and proved crucial in separating emotions effectively for all types

of stimulation. Physiologically (Figure 4, it was observed that the

emotion A1-LV, related to sadness and/or depression, is associated

with higher attention. This is in line with literature where negative

stimuli tend to attract attention, presumably facilitating rapid threat

detection (Iijima et al., 2018).

Of note, there is a decreasing trend for the attention index from

low arousal (A1) to high arousal (A4), especially during the sound-

only phase, where the separation concerning the attention index is

distinct, except for the emotion A1-HV (relaxation/pleasure), as the

others are almost completely separated. This observation suggests

that emotions with lower arousal tend to elicit greater attention

compared to more arousing emotions, except during the combined

audio-visual phase. It is interesting to note that during the sound

+ image phase, the emotion of anger/fear (A4-LV) shows relevant

higher attention compared to A1-HV, which was not the case for

the sound-only and images-only phases. This evidence implies an

increased focus on negative emotions compared to less arousing
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emotions during the audio-visual stimulation, indicating that the

combination of sound and images tends to create more negative

emotions concerning low-valence stimuli, raising the attention

threshold.

Other features related to other physiological signals proved

relevant for the separation of emotional states. Particularly, the

GSR signal, with greater feature amplitudes usually associated

with higher arousal (Scanlon and Sanders, 2018), showed clear

differences, especially for A4-LV (Figures 4C, D), with considerably

higher values compared to all other emotions. On the other

hand, this behavior was not evident for the emotion A4-HV

(happiness/amusement), which remained more intersected with

low arousal states, obtaining even lower values. The AVG RISE

TIME feature appeared to be more associated with valence,

obtaining higher values for A1-LV and lower values for A1-HV

(Figures 4A–C), suggesting that the rise time of eccrine gland spikes

is generally longer for lower valence emotions.

Regarding cardio-respiratory coupling, coherence between the

two series RR and RESP was also quite relevant, especially when

all types of stimulation were combined. It is clear that coherence

between the two series is higher for high valence and lower for low

valence (Figure 4A). Thus, linear coupling between the two series is

stronger during high valence emotional states, where emotions are

positive and more relaxed.

The pupillary signal appeared relevant mainly during the

image-only phase (Figure 4B), where spectral power density at

higher frequencies seemed more linked to arousal, with higher

values for A4-LV and A4-HV.

In general, from Figure 4 and Table 2, it is evident that the

intersections between the different rectangles resulting from SM,

using the three most relevant features for each stimulation, are

smaller in the sound-only phase, which also shows the highest

classification performance compared to the three phases of images,

sounds, and combined audio-visual stimuli. The intersection is

even smaller when considering all stimulations, primarily due to

the fact that the number of observations used for calculating the

boxes is three times higher than for individual stimulation.

In the realm of auditory engagement, emotional sounds

undergo faster and more direct processing when compared

to images, which necessitate intricate visual processing. This

accelerated auditory system engagement could result in a more

efficient stimulus for enhancing attentiveness (Jayaswal, 2016).

Moreover, participants may perceive sounds as more remarkable

and unexpected events since they exert limited control over the

perception of auditory stimuli (Ivonin et al., 2013). Taking into

account the insights gathered from multiple test participants, it

was noted that when exposed exclusively to sounds devoid of

any accompanying visual context, individuals had to focus their

attention and rely on their past memories and experiences to

comprehend the meaning of the sounds. Consequently, this led to

the elicitation of deeper emotional responses.

4.3 Signals importance for emotions
classification

As for signal importance, as shown in Figure 5, the EEG signal

was the most important for each type of classification performed.

Its importance was mainly attributed to the attention index, which

was never discarded by SM and was always the top-ranked feature

in importance, and using only this feature resulted in the best

performance in the sound-only, sound + image, and all stimulation

together. It is widely known that EEG signals have been a common

focus of such developments compared to other physiological

signals. Indeed, it was expected that it would reveal more

pronounced differences in emotion recognition. This expectation

arises from the fact that EEG directly informs us about brain

function and has a shorter latency compared to other physiological

signals, which naturally take longer to show noticeable changes.

EEG facilitates real-time monitoring of brain activity and provides

rich information with high temporal precision (Rahman et al.,

2021). Moreover, the ability to target specific cortical regions using

electrodes allows for extracting abundant data related to different

cortical areas with distinct functions based on their location. This

capability aids in exploring brain hemisphere-related asymmetries,

contributing to a more comprehensive understanding of emotional

processing (Niemic, 2004).

Despite this, other signals have proven important in separating

the four emotional states, such as GSR and features derived

from cardio-respiratory coupling while only during the image-

only phase, the pupillary signal was relevant. Regarding the

GSR signal, it is well-established that it is closely related to

sympathetic responses and, consequently, arousal (Scanlon and

Sanders, 2018; Wang et al., 2018). As observed in Figure 4, its

power lies indeed in its ability to effectively distinguish between

low and high arousal emotions. A similar observation can be made

for features related to cardio-respiratory coupling, even though the

literature supporting it is less extensive. The relevance of these

features might be attributed to the widely accepted association

of RSA with parasympathetic activity. An increase in RSA is

generally considered an indicator of heightened parasympathetic

activation, a relationship established in previous research studies

(Grossman and Svebak, 1987; Frazier et al., 2004). This increased

parasympathetic influence could have contributed to the effective

differentiation of emotional states. As for the pupillary signal, it

has exhibited greater significance during the phase involving solely

images, where the visual sense was most stimulated.

Cardiovascular signals ECG and BVP were the least relevant for

emotional state separation and subsequent classification. Despite

using the point process framework, which allowed calculating real-

time HRV indices even in short time windows (i.e., 45 seconds) and

thus more robust features compared to traditional methods that

require at least 5 min of recording, they failed to capture different

activation patterns according to the different emotional states.

4.4 Model performance with best feature
selection

Regarding the performance of machine learning models, it

was observed that the image-only phase performed significantly

worse. From Figure 6, it is clear that the blue line representing

the image phase, for all models, is consistently lower than the

other types of stimulation. In particular, the sound phase (red

line) shows a very similar behavior to when all stimulations are

together, indicating that the sound phase plays a more prominent
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role in classification. In general, sounds are characterized by less

variability in performance among different models compared to

the other two phases, indicating a more robust performance even

with varying model families. Concerning the image-only phase,

it can be concluded that it obtained the worst performance, even

with an equal number of considered features. The dashed blue line,

which represents the performance of the image phase using only the

attention index, achieved very low performance, and the maximum

performance obtained with LR is the minimum performance

for the sound-only phase. This suggests that sounds played a

crucial role in separating emotions and subsequent classification,

demonstrating that they create more distinct physiological patterns

concerning emotional states. This finding is particularly intriguing,

given the relatively limited exploration of the auditory dimension

in emotional recognition literature as compared to its visual

counterpart (Gerdes et al., 2014).

Moreover, our results showed that within the domain of

marketing, sounds may possess the potential to wield a more

pronounced influence over consumer decisions, emphasizing their

importance as an avenue for further investigation and application.

In relation to the models employed in this study, our selection

was guided by the prevalent machine learning models extensively

documented in the literature (Bota et al., 2019). Specifically, KNN

and RF have shown remarkable performance in the realm of

emotion classification via physiological signal analysis in numerous

prior investigations (Kolodyazhniy et al., 2011; Rubin et al., 2016;

Myroniv et al., 2017; Pinto et al., 2020). In our case as well, KNN

and RF emerge as compelling options, as evidenced in Figure 3,

where a majority of the models yield superior results, particularly

when considering varying levels of overlap.

Furthermore, in Figure 6, we observe that when utilizing the

feature set associated with the best overlap percentage, both

KNN and RF consistently exhibit strong performance. Notably,

KNN demonstrates minimal variability across different stimulation

conditions, be it sound-only, image+sound, or all stimuli together.

Conversely, RF displays more variability, with a more significant

decline in performance during the sound-only phase but excelling

in the image+sound classification, as indicated in the last subplot of

Figure 3 where RF is always chosen as the best model varying the

overlap percentage.

Nevertheless, it is crucial to highlight that ADB consistently

outperforms its counterparts. ADB has recently gained substantial

recognition within the academic literature for its role as an

integrated algorithm that effectively constructs robust classifiers

through the iterative aggregation of weak classifiers. Recent

empirical investigations have underscored the remarkable efficacy

of ADB in the context of multiclass emotion recognition

tasks (Zhang et al., 2018; Chen et al., 2021). In our own

comprehensive study, ADB consistently achieved the highest

average performance, as depicted in Figure 3. Exceptionally, during

the image+sound phase, RF showcases outstanding performance.

Nevertheless, ADB outperforms in the image-only, sound-only,

and combined stimulus phases. As delineated in Figure 6, ADB’s

performance remains comparable to RF also in the image+sound

phase (i.e., 48% of validation accuracy with respect to 51%,

respectively), further underscoring its reliability and effectiveness.

Furthermore, even when confronted with varying degrees of

overlap, ADBmaintains its prominent presence among the selected

models. Hence, based on the empirical evidence at hand, ADB

unequivocally emerges as the optimal choice for the task of

emotion classification.

5 Conclusions

In conclusion, this study provides novel, valuable insights

into the role that different stimulation modalities have in

eliciting emotional states at a physiological level. An original,

comprehensive comparative protocol allows to analyze the

interrelationships among three different stimulation modalities

and four different emotional states through the performance of a

wide range of machine learning models in discriminating between

emotional states. The final outcome underscores the pivotal role of

sound in creating distinct physiological patterns and its impact on

classification accuracy. Notably, the EEG signal emerges as themost

critical feature for classification, while other physiological signals

such as GSR and cardio-respiratory coupling also prove relevant in

delineating emotional states.

Regarding the machine learning models employed, the ADB

model emerges as the preferred choice, consistently achieving

the highest accuracy across various stimulation types. It attains

peak performance in the image-only phase (i.e., 44%), sound-

only phase (i.e., 52%), and the combined stimuli phase (i.e.,

51% in the test set and 49% in the validation set). Even in

the image+sound phase, where RF records the highest accuracy

(i.e., 51%), ADB exhibits comparable performance (i.e., 48%),

solidifying its position as the model of choice among the

options considered.

Looking forward into the near future, more elaborate protocols

could explore the incorporation of additional physiological signals,

refine analytical techniques to enhance their effectiveness in the

realm of emotional state recognition, and increase the sample size

to bolster the robustness of results. Furthermore, investigating

how responses vary across different stimuli at the neutral level,

considering both valence and arousal, offers a promising avenue for

exploration.

These findings hold potential implications in diverse domains,

including emotional recognition and marketing strategies.
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