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Introduction: Previous studies found that post-stroke motor impairments 
are associated with damage to the lesioned corticospinal tract (CST) and 
hyperexcitability of the contralesional cortico-reticulospinal tract (CRST). 
This proof-of-concept study aims to develop a non-invasive brain stimulation 
protocol that facilitates the lesioned CST and inhibits the contralesional CRST 
to improve upper extremity rehabilitation in individuals with moderate-to-severe 
motor impairments post-stroke.

Methods: Fourteen individuals (minimum 3  months post ischemic stroke) 
consented. Physician decision of the participants baseline assessment qualified 
eight to continue in a randomized, double-blind cross-over pilot trial (ClinicalTrials.
gov Identifier: NCT05174949) with: (1) anodal high-definition transcranial direct 
stimulation (HD-tDCS) over the ipsilesional primary motor cortex (M1), (2) 
cathodal HD-tDCS over contralesional dorsal premotor cortex (PMd), (3) sham 
stimulation, with a two-week washout period in-between. Subject-specific MR 
images and computer simulation were used to guide HD-tDCS and verified by 
Transcranial Magnetic Stimulation (TMS) induced Motor Evoked Potential (MEP). 
The motor behavior outcome was evaluated by an Fugl-Meyer Upper Extremity 
score (primary outcome measure) and the excitability of the ipslesoinal CST 
and contralesional CRST was determined by the change of MEP latencies and 
amplitude (secondary outcome measures).

Results: The baseline ipsilesional M1 MEP latency and amplitude were correlated 
with FM-UE. FM-UE scores were improved post HD-tDCS, in comparison to 
sham stimulation. Both anodal and cathodal HD-tDCS reduced the latency of 
the ipsilesional M1 MEP. The contralesional PMd MEP disappeared/delayed after 
HD-tDCS.
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Discussion: These results suggest that HD-tDCS could improve the function of 
the lesioned corticospinal tract and reduce the excitability of the contralesional 
cortico-reticulospinal tract, thus, improving motor function of the upper extremity 
in more severely impaired individuals.

KEYWORDS

transcranial direct current stimulation, transcranial magnetic stimulation, stroke, upper 
extremity rehabilitation, motor evoked potential

1. Introduction

Stroke is the leading cause of serious long-term disability in the 
world. Ischemic strokes, accounting for 87% of all strokes, occur when 
a vessel supplying blood to the brain is obstructed (Barthels and Das, 
2020). 80% of ischemic stroke survivors report movement impairment 
on the side of the body contralateral to the lesioned hemisphere 
(Parker et al., 1986). Upper-extremity motor impairments include 
muscle weakness, abnormal muscle synergies, and spasticity (Parker 
et  al., 1986). Despite the development of many interventions for 
movement recovery post-stroke, rehabilitation therapies are minimally 
effective at improving abnormal muscle synergy in more impaired 
individuals, specifically in the subacute and chronic stages. Late 
subacute is defined as 3–6 months post stroke and chronic as greater 
than 6 months (Bernhardt et  al., 2017). Both animal and human 
studies of stroke survivors suggest and support the role of cortico-
reticulospinal tract (CRST) hyperexcitability in the contralesional 
hemisphere in more severe impairments post-stroke (Li, 2017; Li et al., 
2019), in particular, the expression of the prevalent abnormal muscle 
synergies in the paretic upper limb (McPherson et al., 2018a; Tian 
et al., 2021). CRST hyperexcitability in the contralesional hemisphere 
emerges as a consequence resulting from damage to the ipsilesional 
motor cortex or its descending pathway, i.e., the corticospinal tract 
(CST) (Li et al., 2019). The medial CRST primarily originates from the 
dorsal premotor cortex (PMd) and travels through the pontine 
reticular formation (Jang and Lee, 2019). Previous studies applying 
transcranial magnetic stimulation (TMS) to patients after stroke 
demonstrated that the medial CRST is responsive to the excitatory 
ipsilateral input from the PMd in the contralesional hemisphere 
(Bestmann et al., 2010; Schwerin et al., 2011). This finding makes the 
contralesional PMd (cPMd) a potential target for combating 
moderate-to-severe movement impairment.

Recent studies demonstrated that non-invasive neuromodulation 
technologies, such as transcranial direct current stimulation (tDCS) 
could be a safe and quick approach to modulate cortical excitability 
(Orrù et al., 2020). Different from other technologies such as robots, 
functional electrical stimulation, and local vibrations that manipulate 
the periphery, tDCS modulates brain circuitry directly and facilitates 
neuroplasticity (Allman et  al., 2016). However, the effect of 
conventional tDCS is limited as it uses large size “sponge” electrodes, 
making it difficult to target a specific region of interest in the brain for 
testing the hypothesis. To address the limitation of conventional tDCS 
that non-specifically activates many brain areas, this study proposes 
the use of a novel targeted high-definition tDCS (HD-tDCS) using a 
few small electrodes, navigated by subject-specific MR-based 
computer simulation (Mackenbach et al., 2020) and verified by TMS 

localization technique, to specifically modulate the targeted cortical 
regions. The overall objective of this proof-of-concept pilot study is to 
explore the potential of targeted HD-tDCS to modulate the excitability 
of specific cortical motor regions and their underlying motor pathways 
(i.e., CST/CRST) to diminishing post-stroke upper limb impairments, 
specifically in more impaired individuals. The study is significant 
because it targets a group of stroke survivors who have limited options 
for improving upper limb movement ability. In this study, the motor 
behavior outcome was evaluated by an Fugl-Meyer Upper Extremity 
score (primary outcome measure), and the excitability of the CST/
CRST was determined by the change of MEP latencies and amplitude 
(secondary outcome measures) (Gladstone et  al., 2002). Our key 
hypotheses are that: (1) facilitating the ipsilesional primary motor 
cortex (iM1) improves the excitability of the damaged CST, thus, 
reducing the CRST hyperexcitability and motor impairments, (2) 
inhibiting the contralesional dorsal premotor cortex (cPMd) directly 
reduces the CRST hyperexcitability and thus, may also improve 
motor behaviors.

2. Materials and methods

2.1. Participants

The study was approved by the internal review board (IRB) of the 
University of Oklahoma Health Sciences Centre (IRB # 14011). The 
study was conducted at the University of Oklahoma Health Science 
Centre, Oklahoma City, OK from January 2022 to June 2023. Fourteen 
participants with ischemic stroke (at least 3 months post stroke) (four 
females) consented for the study. One participant (S13) was lost to 
follow up. The rest of the participants (n = 13) were screened at their 
baseline using the Fugl-Meyer upper extremity (FM-UE) score 
(Gladstone et al., 2002) and transcranial magnetic stimulation (TMS)-
induced motor evoked potentials (MEP). The demographics of 
participants are provided in Table 1.

2.2. Baseline procedure

The FM-UE was performed by a licensed physical therapist. The 
TMS-induced MEP were assessed to determine the use of the 
ipsilesional corticospinal tract and the contralesional cortico-
reticulospinal tract (Bestmann et al., 2010; Schwerin et al., 2011), with 
the MEP latency/status as the outcome measure (Schwerin et al., 2008, 
2011). The paired-pulse TMS (Magstim® BiStim2, The Magstim 
Company Ltd., Spring Gardens, Whitland, United  Kingdom) was 
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applied at the respective hotspots for the elbow flexor muscle at the 
paretic arm, i.e., Biceps Brachii, over the ipsilesional primary motor 
cortex (from which the corticospinal tract originates) and 
contralesional dorsal premotor cortex (from which the cortico-
reticulospinal tract originates) with reference to the paretic arm, using 
a figure-eight coil (Schwerin et al., 2011). A paired-pulse TMS with a 
conditioning pulse (65% stimulator maximum intensity) followed by 
a testing pulse (85% stimulator maximum intensity) was used to avoid 
the need to pre-activate the muscle (which could cause the bias of 
background EMG) (Oliveri et al., 2000), with paired-pulse intervals of 
25 ms (Schwerin et al., 2011). The center of the coil was positioned 
tangentially to the skull with the handle at 45° from the parasagittal 
plane: posterior–anterior orientation for ipsilesional M1 and anterior–
posterior orientation for contralesional PMd (Figure 1) (Tscherpel 
et al., 2020a,b). The M1 hotspot is defined as the grid-point that results 
in the largest response in the target muscle, and was found for the 
ipsilesional M1 and contralesional M1 hemisphere through 

stimulation of a 5 × 5 grid of 1 cm spaced sites on the scalp over motor 
areas of each hemisphere (centered at C3/4 of 10–20 EEG system) 
(Schwerin et al., 2008). The “hot-spot” of the contralesional PMd was 
identified using a reference point of 1 cm medial and 2.5 cm anterior 
of the M1 “hot-spot” at the contralesional hemisphere (Stephan et al., 
2016; Tscherpel et al., 2020b). The MEP status was determined using 
criteria previously reported (Stinear et  al., 2017): the patient was 
considered MEP+ if MEPs of any amplitude are observed at a 
consistent latency on at least 5 out 10 trials; otherwise, MEP–. After 
determining the status of MEP, at least eight more pulses (inter-
stimulus interval: 2–3 s) were applied to the identified hotspot to get a 
robust estimate of the latency of the MEP. Together with determination 
trials, the average latency was calculated across all positive trials (more 
than 18 trials of MEP+) to determine the latency and amplitude of MEP.

2.3. HD-tDCS procedure

After the baseline assessment, eight of the participants (S2, S3, S5, 
S9, S10, S11, S12, and S14) who were more severely impaired (FM-UE: 
10–38), had a detectible ipsilateral MEP from the contralesional PMd, 
and met the inclusion/exclusion criteria of a registered pilot clinical 
trial “Targeted High-definition Transcranial Direct Current 
Stimulation (HD-tDCS) for Reducing Post-stroke Movement 
Impairments” (ClinicalTrials.gov Identifier: NCT05174949) were 
included in this pilot trial.

2.3.1. Inclusion criteria
 • Ischemic unilateral, subcortical stroke lesion (confirmed by the 

most recent clinical or radiological reports) at least 3 months 
prior to participation in this project.

 • Paresis confined to one side, with moderate to severe motor 
impairment of the upper limb (Fugl-Meyer upper extremity 
scores between 10 and 40 out of 66 at the first visit of this study).

 • Capacity to provide informed consent.

TABLE 1 Stroke participants demographics.

Subject ID Lesion side Paretic side Age Sex Time post stroke FM-UE (Total:66)

S1 L R 64 M 33 months 8

S2* R L 72 M 17 months 14

S3* L R 81 F 14 months 10

S4 Both L 55 M 6 months 46

S5* L R 44 M 3 months 26

S6 R L 62 M 30 months 48

S7 L R 43 M 87 months 53

S8 R L 59 M 33 months 46

S9* R L 65 M 14 months 16

S10* L R 73 F 92 months 23

S11* R L 57 F 7 months 15

S12* L R 67 M 11 months 16

S13 R L 75 F 5 months -

S14* R L 38 M 4 months 38

*Participants who attended HD-tDCS sessions.

FIGURE 1

Coil orientation for stimulating ipsilesional primary motor cortex 
(iM1) and contralesional dorsal premotor area (cPMd), assuming the 
lesion on the left side.
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2.3.2. Exclusion criteria
 • Muscle tone abnormalities and motor or sensory impairment in 

the unimpaired limb.
 • Severe wasting (Fugl-Meyer upper extremity scores below 10) or 

contracture or significant sensory deficits in the paretic 
upper limb.

 • Severe cognitive or affective dysfunction that prevents normal 
communication and understanding of consent or instruction.

 • Severe concurrent medical problems (e.g., cardiorespiratory  
impairment).

 • Using a pacemaker.
 • Metal implants in the head.
 • Known adverse reaction to TMS and tDCS.
 • Pregnant.

These eight participants continued to participate in this 
randomized, double-blind (Participant, Outcomes Assessor) cross-
over pilot trial with three visits: (1) anodal high-definition transcranial 
direct stimulation (HD-tDCS) over the ipsilesional M1, (2) cathodal 
HD-tDCS over contralesional PMd, (3) sham stimulation, with a 
two-week washout period in-between. The order in which the 
participants received the stimulations (anodal, cathodal, and sham) 
was computer randomized.

The proposed HD-tDCS method uses five small (1 centimeter in 
diameter) electrodes with the main stimulation electrode in the center, 
and four surrounding co-centric electrodes with opposite polarity. The 
HD-tDCS electrodes (4×1 HD-tDCS unit, Soterix Medical Inc., 
Woodbridge, New Jersey, United  States) were mounted onto a 
standard 10–20 EEG cap. The stimulation dosage was set as 2 mA, for 
20 min, the optimal safe dosage to influence neuroplasticity according 
to the safety guidelines of HD-tDCS (Gbadeyan et al., 2016; Godinho 
et al., 2017). For sham stimulation, the HD-tDCS unit was set to the 
automatic sham feature, which produces a sham waveform based on 
the indicated “real” waveform by only ramping the current to 2 mA at 
the start and end of the stimulation to provide the same feeling as 
active stimulation to the participants. The stimulation location was 
identified using subject-specific 1.5 T MR images (the T1 weighted 
images were obtained by using a T1 SAG FLAIR sequence with 
FOV = 22 cm, Slice Thickness: 5 mm and the T2 weighted images were 
obtained by suing T2 AX sequence with the same FOV and Slide 
Thickness values as the T1) and verified by the TMS-induced MEP as 
explained, with the center electrode on the TMS “hot-spot” and 
40–45 mm (depending on the size of the head) distance between the 

center and surrounding electrodes (Schwerin et al., 2008, 2011). This 
is the optimal distance based on our previous simulation study 
(Mackenbach et al., 2020). Electrical fields in the brain were estimated 
using the Realistic Volumetric Approach to Simulate Transcranial 
Electric Stimulation (ROAST) toolbox to confirm that the targeted 
brain area was stimulated (as illustrated in Figure 2) (Huang et al., 
2019). To run these simulations, the participants T1 and T2 weighted 
MR images were inputted into the pipeline and the default electrical 
conductivities were used: white matter (0.126 S/m); gray matter 
(0.276 S/m); CSF (1.65 S/m); bone (0.01 S/m); skin (0.465 S/m); air 
(2.5e-14 S/m); gel (0.3 S/m); electrode (5.9e7 S/m) (Huang et al., 2019). 
In the simulation, a central electrode was placed over the target area 
with four surrounding electrodes placed in a circle at equal distance 
with opposite polarity (Mackenbach et al., 2020).

2.4. Statistical analysis

The effect of HD-tDCS is determined by the change in FM-UE 
score (primary outcome measure), and the change of MEP latencies 
and amplitude (secondary outcome measures). All statistical analysis 
was completed using commercial software Statistical Analysis Systems 
(9.4, SAS, Carey, NC, United States). After checking for and finding 
no evidence of a non-normal outcome measure distribution, the data 
was analyzed using generalized estimating equation (GEE) using 
PROC GENMOD. This method was selected due to its ability to 
improve the power in small-sample studies in which the temporal 
spacing of outcomes is the same for each subject. Specifically, we use 
a modified empirical sandwich covariance matrix estimator within 
correlation structure selection criteria and test statistics. Use of this 
estimator can improve the accuracy of selection criteria and increase 
the degrees of freedom to be  used for inference (Westgate and 
Burchett, 2016). The fixed factors are group (anodal, cathodal, sham), 
time (pre and post intervention), with their interaction, and the 
random factor is subject ID. This technique uses correlated linear 
models for each outcome variable.

3. Results

The ipsilesional M1-induced MEP of the impaired arm was 
detected at the baseline for all 13 participants. The latency of the 
ipsilesional M1-induced MEP was negatively correlated with FM-UE 
score (correlation coefficient r = − 0.938, p < 0.001). Moreover, the 
latency of the ipsilesional M1 MEP was predictive of FM-UE scores 
(determination of correlation: R2 = 0.880) (Figure 3). The amplitude of 
the ipsilesional M1-induced MEP was positively correlated with 
FM-UE score (correlation coefficient r = 0.832, p < 0.001). The 
amplitude of ipsilesional M1 MEP was also predictive of FM-UE 
scores (determination of correlation: R2 = 0.692) (Figure 4).

For the eight moderate-to-severe subjects (S2, S3, S5, S9, S10, S11, 
S12, and S14) who qualified for the study and attended the HD-tDCS 
sessions, GEE analysis of the ipsilesional M1 MEP latency revealed that 
the anode mean difference (−24.21 ms) was significantly different from 
the mean difference of the sham (1.16 ms) p = 0.0020. Additionally, 
when compared to the sham, the anode group (group*time) changed 
significantly differently after intervention with a beta estimate of-25.37, 
z = −9.03, and p < 0.0001. Similarly, the cathode mean difference 

FIGURE 2

Electrical field estimation for ipsilesional M1 (left) and contralesional 
PMd (right) HD-tDCS.
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(−22.2) was also significantly different from the sham p = 0.0088. In 
addition, the cathode group (group*time) also changed significantly 
differently over time compared to the sham with beta estimate of 
−23.36, z = −8.034, and p < 0.0001 (see Figure  5). There was no 
significant statistical difference or interaction between either anodal or 
cathodal stimulation compared to sham on MEP amplitude.

As a comparison, the contralesional M1-induced MEP of the 
non-impaired arm was also measured for reference (14.77 ± 1.52 ms) 
which is in line with previously reported range of M1-induced MEP 
for non-impaired arm in the literature (Müller et al., 1997; Jacques 
et al., 2023). The contralesional M1 MEP did not change after the 
HD-tDCS (14.49 ± 1.43 p > 0.05). Only moderate-to-severe 
participants had a detectible ipsilateral MEP response on the impaired 
arm when stimulating the contralesional PMd. The contralesional 
PMd MEP either disappeared or was delayed after active (anodal/
cathodal) HD-tDCS but not after the sham stimulation (Table 2).

The mean difference of the FM-UE (scored 0–66) after anodal 
stimulation (7.88) was significantly difference from the sham mean 
difference (2.00) p = 0.0344. Additionally, the change in FM-UE over 
time post anodal HD-tDCS (group*time) changed significantly 
differently with a beta estimate of 5.875 with z = 2.72 and p = 0.0066, 
when compared to the sham group. The cathode had a mean difference 
of 8.13 for the FM-UE, which was significantly different than sham 
p < 0.0001. Additionally, the cathode group (group*time) also changed 
significantly differently over time compared to the sham with beta 
estimate of 5.125, z = 4.04, and p < 0.0001 (Figure 6). The minimally 
clinically significant difference for the FM-UE is 5 points.

4. Discussion

In this study of HD-tDCS, we utilized a cross-over study design 
in which each person was able to serve as his or her own control. This 
increased the power of this study three-fold and allowed us to achieve 
significant results with the eight patients who completed the trial. 
These patients were in various stages of motor recovery which further 
strengthens the results of this study, as it demonstrates the technique 
is useful within all stages of time post stroke.

This study provides preliminary support of the use of both 
targeted anodal and cathodal HD-tDCS as a method for stroke 
rehabilitation in those with severe motor impairments. The 
relationship between the FM-UE motor score and the latency and 
amplitude of contralateral ipsilesional M1 TMS-induced MEP is 
consistent with prior studies on MEPs and clinical assessments post-
stroke (Escudero et al., 1998; Karatzetzou et al., 2022; Li et al., 2022). 
This finding confirmed that change in MEPs have potential to be good 
predictors of functional change of motor descending pathways post 
HD-tDCS stimulation and the selection of them outcome measures of 
this study.

We observed that facilitating ipsilesional M1 using anodal 
HD-tDCS decreased the latency of ipsilesional M1 TMS-induced 
MEP, as the change in latency was significantly different between 
anodal and sham stimulation. The anodal stimulation also 
improved FM-UE score by an average of 7.88 points, as compared 
to the sham 2 points on average. The minimally clinically important 
difference for the FM-UE ranges from 4.25–7.25 points (Hiragami 

FIGURE 4

Correlation between the amplitude of ipsilesional (contralateral) M1 
MEP and FM-UE.

FIGURE 5

Latency of M1 MEP on ipsilesional M1 pre and post HD-tDCS 
stimulation (Sham, Anodal and Cathodal).

FIGURE 3

Correlation between the latency of ipsilesional (contralateral) M1 
MEP and FM-UE.
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et al., 2019). The increase in FM-UE scores reflects an improvement 
in overall motor impairment of the upper extremity post anodal 
stimulation. This improvement is consistent with prior studies on 
anodal HD-tDCS at ipsilesional M1 post stroke (Bao et al., 2019; 
Kim et al., 2022). However, this study further demonstrates that 
anodal stimulation may specifically improve the excitability of the 
damaged CST and improve motor impairments. More importantly, 
the facilitation of the CST may also reduce hyperexcitability in the 
CRST, as post anodal stimulation the latency of contralesional PMd 
TMS-induced MEP was either delayed, or not detected. This is 
likely because the increased cortical excitability of ipsilesional M1 
may enhance the super bulbar inhibition to the reticulospinal tract 
via the cortico-reticular pathways (Jang and Lee, 2019). While the 
amplitude was correlated to the baseline of impairment with the 
FM-UE score, there was not a significant change in amplitude pre 
and post HD-tDCS stimulation. The results of the change in MEP 
amplitude post tDCS stimulation are highly variable in the 
literature (Priori et al., 1998; Samani et al., 2019; Karatzetzou et al., 
2022). In fact, recent reviews and studies have shown that MEP 
amplitude is not a sufficiently robust measure of tDCS at low 
intensities (Horvath et al., 2015; Pillen et al., 2022). The results of 
this pilot study provide some preliminary evidence that MEP 
latency may be a predictor of the neurophysiology effect of tDCS 
than MEP amplitude.

Furthermore, inhibiting the contralesional PMd decreased the 
latency of ipsilesional M1 TMS-induced MEP as the change in latency 
was significantly different between cathodal and sham stimulation. 
The cathodal stimulation also improved the FM-UE score with an 
8.13-point increase on average. Noteworthy, the targeted HD-tDCS 
used in this study precisely modulated the excitability of contralesional 
PMd without significantly changing contralesional M1 excitability (no 
significant changes to contralesional M1 MEP). This indicates that 
inhibiting the contralesional PMd leads to a reduced recruitment of 
CRST, which is known as the key drive of post-stroke spasticity (Li 
et al., 2019). Based on previous research, this result may be related to 
decreased input to descending monoaminergic pathways at the ponto-
medullary reticular formation that reduce the hyperactivity of alpha 
motoneuron pool at spinal cord (McPherson et al., 2018b).

This finding may play a role in developing an alternative 
intervention for severely impaired stroke survivors exhibiting 
increased levels of spasticity. Despite the development of a variety of 
interventions for movement recovery, rehabilitation treatments are 
minimally effective for more impaired individuals, making this 
finding especially clinically relevant. Currently, botulinum toxin has 
been increasingly used to treat upper limb spasticity post-stroke. 
Botulinum toxin is injected locally into the muscle and causes 
temporary paresis by blocking cholinergic transmission (Dolly and 
Aoki, 2006). While this can reduce muscle tone, there is currently not 
a significant difference in improved arm function (Shaw et al., 2011; 
Teasell et al., 2012; Santamato et al., 2013).

Overall, this study improves our understanding of neural circuitry 
and plasticity post stroke by confirming neural targets (ipsilesional M1 
and contralesional PMd) for motor descending pathways. It also 
shows the benefit of subject specific precise neuro-navigation to guide 
the stimulation. The promising result for more impaired individuals 
is highly significant as it may provide an alternative intervention 
option to those with limited options for improving their upper limb 
function. However, due to the sample size, a future large-scale study 
is required to translate this research to clinical practice.

4.1. Limitations and future work

This pilot trial involved a few stroke subjects who are at least 
3 months post stroke. The aim was to exclusively examine the 
feasibility of HD-tDCS on modulating the function of motor 
descending pathways. In the first 3 months, stroke survivors typically 
experience some degree of spontaneous motor and sensory recovery 
(Cramer, 2008) and may attend a physical therapy rehabilitation 
program (Dromerick et al., 2021). These co-variants would make it 
difficult to determine the sole impact of HD-tDCS. After the first 
3 months in stroke recovery, most spontaneous motor and sensory 
improvement reaches a plateau (Grefkes and Fink, 2020). Therefore, 
this study used participants at least 3 months post stroke with a cross-
over study design to reduce type I error. However, this protocol could 
be a useful addition to the acute phase. Additionally, having stroke 
subjects in various stages of subacute and chronic could have been a 
reason for the variation in results. Hence, future work would be a 
larger clinical trial involving acute, subacute, and chronic stroke 
participants in a parallel group trial. Furthermore, future study could 
include the addition of physical exercise to further explore its potential 
to improve current intervention practice of stroke rehabilitation.

TABLE 2 Latency of contralesional PMd MEP.

Subject ID Initial Sham Anodal Cathodal

S2 58.47 ms 63.65 ms (−) (−)

S3 89.96 ms 90.88 ms 107.05 ms 106.73 ms

S5 91.03 ms 88.60 ms (−) 103.53 ms

S9 86.34 ms 92.70 ms 105.48 ms (−)

S10 82.31 ms 76.60 ms 110.76 ms (−)

S11 88.76 ms 79.61 ms (−) 142.06 ms

S12 61.64 ms 54.61 ms (−) (−)

S14 63.67 ms 66.97 ms (−) 96.85 ms

FIGURE 6

FM-UE score pre and post HD-tDCS stimulation (Sham, Anodal, and 
Cathodal).
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