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Disruptions in the inter-regional connective correlation within the brain are believed 
to contribute to memory impairment. To detect these corresponding correlation 
networks in Alzheimer’s disease (AD), we conducted three types of inter-regional 
correlation analysis, including structural covariance, functional connectivity and 
group-level independent component analysis (group-ICA). The analyzed data 
were obtained from the Alzheimer’s Disease Neuroimaging Initiative, comprising 
52 cognitively normal (CN) participants without subjective memory concerns, 
52 individuals with late mild cognitive impairment (LMCI) and 52 patients with 
AD. We firstly performed vertex-wise cortical thickness analysis to identify brain 
regions with cortical thinning in AD and LMCI patients using structural MRI data. 
These regions served as seeds to construct both structural covariance networks 
and functional connectivity networks for each subject. Additionally, group-ICA 
was performed on the functional data to identify intrinsic brain networks at the 
cohort level. Through a comparison of the structural covariance and functional 
connectivity networks with ICA networks, we  identified several inter-regional 
correlation networks that consistently exhibited abnormal connectivity patterns 
among AD and LMCI patients. Our findings suggest that reduced inter-regional 
connectivity is predominantly observed within a subnetwork of the default mode 
network, which includes the posterior cingulate and precuneus regions, in both 
AD and LMCI patients. This disruption of connectivity between key nodes within 
the default mode network provides evidence supporting the hypothesis that 
impairments in brain networks may contribute to memory deficits in AD and LMCI.
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1. Introduction

Alzheimer’s disease (AD), a specific form of dementia, is a neurodegenerative disorder 
characterized by the presence of tau and β-amyloid deposition as well as neuronal loss. 
Alterations in inter-regional correlation networks within the brain are believed to contribute to 
atrophy and neurodegeneration in associated brain regions, ultimately leading to cognitive 
decline (Vemuri and Jack, 2010; Yu et al., 2021). Mild cognitive impairment (MCI) refers to a 
mild cognitive decline that does not interfere with daily activities. More than half of MCI cases 
develop dementia within 5 years (Arbabshirani et al., 2017). Investigating abnormalities in 
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inter-regional covariant and connective correlation in AD and MCI is 
pivotal for early detection of AD.

Magnetic resonance imaging (MRI) is a promising imaging 
modality due to its non-invasive detection, accessibility, and 
non-ionizing radiation. Previous studies using T1-weighted structural 
MRI (sMRI) have demonstrated reduced cortical thickness (CT) in 
specific cortical regions across various conditions (Canu et al., 2017; 
Park et al., 2017; Phillips et al., 2019). However, such measures of 
cortical atrophy fail to capture inter-regional connectivity within the 
brain. In contrast, metrics assessing inter-regional correlations have 
been shown to be superior in detecting Aβ pathology and Alzheimer’s 
disease progression (Neitzel et al., 2019) compared to measures of 
brain atrophy. The cortical covariance analysis examines the CT 
covariant relationship across brain regions, and the functional 
connectivity (FC) measures inter-regional synchronous correlation 
using Pearson’s correlation of blood oxygen level dependent (BOLD) 
sequences from resting-state MRI (rsfMRI). Recent studies have 
revealed alterations in inter-regional correlation under different 
conditions, including structural covariance (Tuladhar et  al., 2015; 
Nestor et  al., 2017; Valk et  al., 2017; Phillips et  al., 2019) and FC 
networks (Canu et al., 2017; Yan et al., 2017; Kuang et al., 2019; Berron 
et al., 2020; Smith et al., 2021). These studies used pre-selected region 
of interests (ROIs) based on specific atlases (Nestor et  al., 2017; 
Phillips et al., 2019) or meta-analytical results (Valk et al., 2017) for 
correlation analysis between brain regions. The ROI-based analysis 
relies solely on selected ROIs and may be more sensitive to variable 
atrophied areas (Smitha et  al., 2017). The voxel-wise method 
automatically defines ROIs boundaries based on data, providing more 
precise anatomical location of brain atrophy (Phillips et al., 2019). In 
this study, we conducted the vertex-wise CT analysis at the whole 
brain level to identify the significant different regions in AD and 
LMCI compared to the cognitively normal (CN). These regions were 
used as seed ROIs for inter-regional structural covariant and 
functional connectivity analysis.

Besides FC analysis (Smitha et al., 2017; Delli Pizzi et al., 2019; 
Neitzel et al., 2019; Zhao et al., 2019; Berron et al., 2020; Smith et al., 
2021), rsfMRI has been widely used in group independent component 
analysis (group-ICA). This data-driven method aggregates all voxels of 
all subjects by temporally concatenating BOLD sequences to investigate 
voxel-to-voxel interaction and isolates distinct spatially independent 
maps known as group-ICA networks (Smitha et al., 2017; Dadi et al., 
2019). Group-ICA is advantageous due to its prior independence and 
noise insensitivity, and has successfully identified default mode network 
(DMN) in patients with AD (Park et al., 2017; Smitha et al., 2017; Son 
et  al., 2022). This motivates us to employ group-ICA to identify 
significant differences in ICA networks between patients and CN.

Numerous studies have reported improved brain networks results 
by jointly using structural and functional MRI, as well as ICA networks 
(Canu et al., 2017; Park et al., 2017; Smitha et al., 2017; Beheshtian 
et  al., 2021; Caspers et  al., 2021; Son et  al., 2022). However, the 
consistency among cortical covariance, functional connectivity and 
ICA networks in AD has not yet been investigated. We hypothesized 
that brain regions belonging to subnetworks of typical brain networks 
would exhibit consistent changes across multiple correlation modalities 
in AD. Specifically, we sought to identify brain regions that consistently 
emerged in the three types of networks (cortical covariance, functional 
connectivity, group-ICA). Regions meeting this consistency criteria 
were defined as AD-specific inter-regional correlation networks.

2. Materials and methods

Our two-branch analytical pipeline is illustrated in Figure 1, 
with one branch dedicated to structural covariance analysis using 
sMRI data and the other for FC analysis using rsfMRI data. After 
independently constructing the structural and functional 
correlation networks, we distill the consistent elements between 
them as distinct inter-regional connectivity for distinguishing AD 
or MCI from CN.

2.1. Data

Data used in this study were from the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) database.1 The ADNI was launched in 
2003 as a public-private partnership functional network led by Principal 
Investigator Michael W. Weiner, MD. The primary goal of ADNI has 
been to test whether serial MRI, positron emission tomography (PET), 
other biological markers, and clinical and neuropsychological 
assessment can be combined to measure the progression of MCI and 
early AD.

2.2. Study participants

The study included records from the ADNI2 and ADNI3 phases, 
which were acquired using 3 T scanners (Siemens, Philips and GE). 
All data underwent quality control based on UCSF QC outcomes 
and MAYO QC levels from LONI. More detailed documents can 
be  found in the ADNI dataset. For rsfMRI, sequences with 
multiband echo planar imaging (EPI) acquisition and data with 
excessive motion artifacts or scrubbling values greater than 25 
during CONN preprocessing were excluded. For sMRI, subjects who 
failed to pass the FreeSurfer pipeline were also excluded. Finally, to 
maintain a balanced sample size, three diagnostic groups (AD/
LMCI/CN: 52/52/52) were enrolled. In our study, the original 
downloaded sample size was 578 participants, and after applying 
selection criteria we ended up with a final sample size of 156 as 
shown in Figure 2.

2.3. Image acquisition

All MRI scans in our study were collected exclusively during 
the Baseline Visit periods, following the participants determination 
of eligibility and completion of the informed consent process. The 
T1w sMRI data were acquired with accelerated sagittal 
magnetization-prepared rapid gradient echo sequence (in-plane 
resolution = 1.0 × 1.0 mm2; slice thickness = 1 mm; repetition 
time = 2,300 ms; echo time = 3.0 ms; flip angle = 9°; field of view: 
224 mm). The axial rsfMRI data were acquired with EPI BOLD 
sequence (pixel spacing x = 3.4 mm; pixel spacing y = 3.4 mm; slice 
thickness = 3.4 mm; matrix: 64 × 64; flip angle = 90°; slices = 197; 
echo time = 30.0 ms; repetition time = 3 s; field of view: 212 mm).

1 http://adni.loni.usc.edu
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2.4. Data preprocessing

The structural and rsfMRI data in DICOM format were 
downloaded from LONI and converted to NifTi files using dcm2niix 
and Dcm2Bids tools (Gorgolewski et al., 2016). Data that failed to pass 
Dcm2Bids procedure were excluded.

2.4.1. T1w structural data
The CT data were estimated through reconstruction of cortical 

surface from the T1w image using the default FreeSurfer pipeline 
(Dale et al., 1999). Our analysis began with brain segmentation of 
white matter (WM), grey matter (GM) and cerebrospinal fluid (CSF), 
followed by surface reconstruction. We generated the WM and pial 

surface, performed surface inflation and spherical flattening 
transformations, and assigned a Destrieux atlas label to each cortical 
voxel using cortical parcellation (Fischl et al., 2004). Statistical results 
of cortical parcellation were then created, where T1w images were 
registered to the surface template and smoothed with a 10 mm full-
width half-maximum (FWHM) Gaussian kernel. Finally, the cortical 
thickness (CT) of each cortex was estimated as the shortest distance 
between the WM boundary and the pial surface (Fischl and 
Dale, 2000).

2.4.2. Resting state functional data
The preprocessing results of rsfMRI data come from analyses 

performed using CONN (Whitfield-Gabrieli and Nieto-Castanon, 

FIGURE 1

Schematic diagram of our study.

FIGURE 2

The workflow of selecting participants.
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2012) release 22.a (Nieto-Castanon and Whitfield-Gabrieli, 2022) and 
SPM (Penny et al., 2011) release 12.6470.

After removing the first 4 volumes, rsfMRI data were preprocessed 
using a default preprocessing pipeline (Nieto-Castanon, 2020). In 
brief, functional data were firstly realigned (Friston et  al., 1995; 
Andersson et al., 2001) and resampled to correct for motion. Potential 
outlier scans were then identified (Whitfield-Gabrieli et al., 2011). 
Functional and anatomical data were normalized into standard MNI 
space, segmented into GM, WM, and CSF tissue, and resampled to 
2 mm isotropic voxels (Ashburner and Friston, 2005; Ashburner, 2007; 
Calhoun et al., 2017). Next, functional data were smoothed with a 
Gaussian kernel of 6 mm FWHM. Last, functional data were denoised 
using a standard denoising pipeline (Whitfield-Gabrieli and Nieto-
Castanon, 2012) including the regression of potential confounding 
effects characterized by WM timeseries, CSF timeseries, motion 
parameters (Friston et al., 1996), outlier scans (Power et al., 2014), and 
linear trends, followed by bandpass filtering (Hallquist et al., 2013) 
between 0.001 and 0.2 Hz.

FC values associated with a specific seed were estimated while 
controlling for all other seeds. The strength of FC was represented by 
Fisher-transform of semi-partial correlation coefficients from a 
weighted general linear model (GLM) (Nieto-Castanon, 2020). This 
approach allowed for modeling the association of BOLD time-series 
between each seed and other voxel in the brain.

2.4.3. Group-level ICA networks
Group-ICA (Calhoun et al., 2001) were performed to estimate 40 

temporally coherent networks from the rsfMRI data across all subjects. 
The BOLD time series from every voxel in the brain across all subjects 
were temporally concatenated. For each subject, a singular value 
decomposition of the z-score normalized BOLD signal with 64 
components was separately used as a subject-specific dimensionality 
reduction step. The dimensionality was further reduced to 40 
components and a fast-ICA fixed-point algorithm (Hyvarinen, 1999) 
was used to identify spatially independent group-level networks. 
Lastly, a back-projection (Erhardt et al., 2011) was used to compute 
ICA networks separately for each subject.

2.5. Statistical analysis

2.5.1. Demographic and volumetric data analysis
We evaluated the normal distribution of continuous 

demographic variables (age and years of education), average CT 
and the total GM volume (GMV) using a single-sample 
Kolmogorov–Smirnov test. Group-wise differences were assessed 
using a two-sample Kolmogorov–Smirnov test. The analysis of sex 
and type of scanner were conducted using the Mann–Whitney rank 
sum test. All statistical analyses were performed on the 
Matlab platform.

2.5.2. Voxel-wise cortical thickness analysis
The vertex-wise GLM was conducted using the SurfStat Toolbox2 

for CT analysis. The CT value at each vertex was modeled as the 

2 https://www.math.mcgill.ca/keith/surfstat/

dependent variable, with group (CN, AD, LMCI) as the independent 
variable. Age, sex, education, scanner type, and total GMV were 
included as covariates. Cluster-level statistics were thresholded at 
p < 0.001 for AD vs. CN and p < 0.025 for LMCI vs. CN to correct for 
multiple comparisons using random field theory (RFT). A cluster 
extent threshold of p < 0.05 family-wise error (FWE) rate was then 
applied to control the probability of reporting false positive clusters. 
The cortical regions demonstrating significant group differences 
were mapped onto the Destrieux atlas to generate ROIs called seeds. 
These regions were also mapped onto the Anatomical Automatic 
Labeling (AAL) atlas in MNI space to create AAL-based seeds for 
FC analysis.

2.5.3. Cortical covariant networks
An interactive GLM approach was used to examine whether a 

specified seed region exhibited distinct cortical covariance patterns 
across the entire surface in patients compared to controls. 
Mathematically, the interactive GLM can be formulated as follows:
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where * denotes an interaction, the weight coefficients of each 
covariates are denoted by β i, CTi represents the CT data of the ith 
voxel, and CTseed is the average CT of a specific seed, GMV refers to 
total GMV, Diagnosis is the group identifier. The contrast for 
comparing AD and CN can be: contrast = CTseed.*Diagnosis.
CN-CTseed.*Diagnosis.AD. The results were corrected using RFT at a 
cluster threshold of p = 0.025, controlling probability for FWE at 
cluster-wise threshold PFWE < 0.05. All surviving regions after 
correction were matched onto AAL atlas.

2.5.4. Group-level analysis of functional 
connective networks

Group-level analyses of functional networks were performed 
using a GLM (Nieto-Castanon, 2020). A separate GLM was estimated 
with first-level connectivity measures (FC connective maps/ICA 
maps) at this voxel as dependent variables, and group identifiers as 
independent variables, and covariates included age, sex, years of 
education and scanner type. Voxel-level hypotheses were evaluated 
using multivariate parametric statistics with random-effects across 
subjects. Inferences were performed at the level of individual cluster 
based on parametric statistics from Gaussian RFT (Worsley et al., 
1996; Nieto-Castanon, 2020). Results were thresholded using a 
combination of a cluster-forming p < 0.0025 voxel-level threshold and 
a familywise corrected p-FDR < 0.05 cluster-size threshold (Chumbley 
et al., 2010).

2.5.5. The consistent inter-regional correlative 
networks

The inter-regional correlation networks, estimated using the 
three approaches mentioned above, included brain regions that 
are structural covaried or functionally connected with each other 
or in the IC network. The regions which consistently emerged in 
all or any two of the three networks were identified as inter-
regional connective networks.
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3. Results

3.1. Study demographics

The demographic data, mean CT and the total GMV are presented 
in Table 1. Except for the total GMV and education years showing no 
significant difference (p < 0.05) between LMCI and CN, other variables 
showed significant differences (p > 0.05) for AD and LMCI compared 
with CN. Therefore, these demographic variables are used as covariates 
in cortex-based GLM analysis to regress out their effects.

3.2. Cortical thickness and cortical 
covariant correlation

3.2.1. Cortical thickness
Multiple regions exhibited CT thinning in AD and LMCI patients 

compared to controls, but no cortical thickening was found in either. 
Table 2 presents the regions that display cortical thinning in AD and 
LMCI compared to controls after being mapped to the Destrieux atlas. 

Patients with AD exhibited cortical thinning in bilateral entorhinal 
and parahippocampal, left middle temporal cortex, temporal pole, as 
well as inferior temporal cortex, consistent with prior previous studies 
(Vemuri and Jack, 2010; Phillips et al., 2019). As shown, LMCI patients 
exhibited less pronounced (p < 0.0025) cortical atrophy in the left 
parahippocampal and entorhinal cortex, and the right middle and 
posterior cingulate gyrus. The diagram corresponding to the results 
in Table 2 is shown in Supplementary Figure S1.

Note that the cortical thinning regions being mapped to the AAL 
atlas are also shown in Table 2. In this study, ROIs from Destrieux and 
AAL atlases were used for cortical covariance and functional 
connectivity analysis, respectively.

3.2.2. Cortical covariant networks
The cortical covariant networks for all seeds were derived using 

the method described in Section 2.5.3. Table 3 summarizes the altered 
cortical covariant networks in AD and LMCI compared to CN.

In Table 3, two attenuated covariant networks are identified in 
AD: (1) the correlation between left entorhinal and its covaried 
regions including bilateral posterior cingulate cortex and right 

TABLE 1 Demographic data, the mean CT and the GMV data.

AD LMCI CN AD vs. CN (value of p) LMCI vs. CN (value of p)

Mean Age ± SD 74.82 ± 7.27 71.45 ± 7.76 69.09 ± 5.96 2.4242E-07 0.0056

Sex (male/female) 30/22 28/24 22/30 / /

Mean Education years ± SD 15.87 ± 2.51 16.06 ± 2.65 16.92 ± 1.93 0.0373 0.3831

Scanner (SI/PHI/GE) 15/23/14 23/20/9 1934/6/12 / /

Mean CT ± SD 2.3253 ± 0.0733 2.4158 ± 0.0794 2.4485 ± 0.0820 2.30E-08 0.0207

The total GMV ± SD (mm3) 814,230 ± 93,641 865,340 ± 80,644 905,130 ± 82,043 0.0013 0.1711

SI, Siemens; PHI: Philips; SD, standard deviation; AD, Alzheimer’s disease; LMCI, Late mild cognitive impairment; CN, Cognitively normal; GMV, the total grey matter volume; CT, cortical 
thickness. 
The data in bold showed the total GMV and education years with no significant difference between groups, the others are between-group different.

TABLE 2 The cortical thickness thinning regions in AD and LMCI.

Destrieux atlas-based CT thinning regions AAL atlas-based CT thinning regions

Atlas-based 
regions

Voxel 
number

The thinning 
ratio

Atlas-based 
regions

Voxel 
number

The thinning 
ratio

AD

L_entorhinal 656 59.53 ParaHippocampal_L 1982 25.12

L_fusiform 70 1.48 Fusiform_L 1,147 6.26

L_inferiortemporal 657 14.88 Temporal_Inf_L 2,682 10.46

L_middletemporal 638 14.33 Temporal_Mid_L 1871 4.75

L_parahippocampal 552 30.03 Temporal_Pole_Mid_L 2,477 41.39

L_superiortemporal 69 0.95 Temporal_Pole_Sup_L 1,412 13.81

L_temporalpole 738 87.96 Temporal_Pole_Mid_R 386 4.08

R_entorhinal 499 55.32 ParaHippocampal_R 1761 19.51

R_parahippocampal 523 30.02 Fusiform_R 438 2.17

LMCI

L_entorhinal 403 36.569873 ParaHippocampal_L 1,111 14.0793309

L_parahippocampal 124 6.74646355 Fusiform_L 294 1.60366552

R_isthmuscingulate 596 24.958124 Cingulum_Mid_R 481 2.75771127

R_posteriorcingulate 73 2.43820975 Cingulum_Post_R 447 16.8425019

Precuneus_R 250 0.9584787

The atrophied proportion is the ratio of the voxel number with CT different in the atlas-based region to the total number of that region.
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precuneus. (2) The correlation between right entorhinal and left 
posterior cingulate cortex. These regions covered subnetwork of 
DMN, indicating a significant decrease in the covariant relationship 
between entorhinal and DMN subnetwork. In LMCI, two decreased 
covariant correlations were observed: (1) the connection between the 
DMN subnetwork (right middle and posterior cingulate cortex, and 
precuneus) and two seeds including left parahippocampal and right 
isthmus cingulate cortex. (2) The connection between right postcentral 
cortex and left parahippocaampal cortex.

On the other hand, the enhanced covariant networks in Table 3 
reveal synchronous cortical changes between seeds and their 
associated regions. With all seeds showing significant CT thinning, it 
is expected that the corresponding covariant regions also exhibit a 
trend of cortical thinning. For instance, the left insula shows a trend 
of CT thinning in AD due to its covariation with five seeds. Also, two 
regions with significant trend of CT thinning in LMCI include 
bilateral middle cingulate and left anterior cingulate.

3.3. The functional networks

Using the rsfMRI data, functional connective networks and group 
ICA networks were estimated by CONN.

3.3.1. Functional connective networks
According to the method in Section 2.5.4, after comparing the FC 

map of each seed between AD/LMCI and CN, the regions exhibiting 
significant group differences were identified as the inter-regional 
connective network. Table 4 summarize all inter-regional FC networks 
capable of distinguishing AD and LMCI from CN.

Three inter-regional FC networks, located in the DMN 
(Precuneous Cortex, posterior cingulate cortex), sensorimotor 
network (bilateral precentral gyrus and left postcentral gyrus) and 
salience network (SN) (anterior cingulate, right paracingulate cortex 
and insular cortex), were found as indicated in Table  4 in bold. 
Compared with CN, the connectivity between these three networks 
and seeds was less significantly weakened (p < 0.05) in AD. For LMCI 
compared with controls, no significant reduction in FC correlative 
network was observed. Of note, enhanced FC networks were also 
found in AD and LMCI, which were not considered in this study.

3.3.2. Group-ICA networks
Group ICA networks were generated for 40 ICs as described in 

Section 2.5.4. The slices of all 40 ICs in AD vs. CN and LMCI vs. CN 
are shown in Supplementary Figures S2, S3, respectively.

Nine out of the 40 ICs showed significantly decreased weights in 
AD compared to CN, as displayed in Supplementary Table S3. 
Figures 3A,B below illustrate two examples, IC16 and IC32, which 
correspond to DMN’s subnetwork (precuneous cortex, posterior 
cingulate gyrus) and SN (anterior cingulate gyrus, paracingulate 
gyrus, and insular cortex), respectively. In addition, IC3 as shown in 
Supplementary Table S3 corresponding to sensorimotor network, 
including precentral and postcentral gyrus, was also significantly 
different between AD and CN.

ICA networks in LMCI compared to CN are presented in 
Supplementary Table S4 and Figures 3C,D illustrate two examples, IC8 
and IC22, which correspond to DMN’s subnetwork (precuneous 
cortex, posterior cingulate gyrus, left angular gyrus) and sensorimotor 

network (bilateral postcentral gyrus, left precentral gyrus, bilateral 
insular cortex), respectively.

3.3.3. The consistent inter-regional networks
We examined the consistence between structural covariance, 

functional connectivity, and ICA networks to identify consistent inter-
regional connectivity patterns.

According to Tables 3, 4 and Supplementary Table S3, for AD 
comparing with CN, the subnetwork of DMN, which includes 
posterior cingulate gyrus and precuneous cortex, is the consistent 
inter-regional connective network of the above three networks, while 
a subnetwork of SN (anterior cingulate gyrus, bilateral paracingulate 
gyrus and frontal) and a subnetwork of sensorimotor network 
(bilateral precentral gyrus and right postcentral gyrus) are contained 
in both FC network and ICA network, but not in covariance network.

For LMCI comparing with CN, as indicated in Tables 3, 4 and 
Supplementary Table S4, no significant reduced functional connective 
network was found, while a subnetwork of DMN (posterior cingulate 
gyrus and precuneous) and the motor areas (right postcentral and 
precentral cortex), consistently presented in both structural covariance 
network and group-ICA network.

4. Discussion and conclusion

In this study, we  integrated three approaches – structural 
covariance, functional connectivity, and group ICA – to identify inter-
regional networks that distinguish AD/LMCI patients from controls. 
First, we  separately derived patient-specific networks using each 
method: seed-based structural covariance, seed-based functional 
connectivity, and group-ICA approach. Then, we extracted regions 
with consistent connectivity differences across these three network 
types in patients compared to controls. This allowed us to generate 
robust inter-regional networks specifically disrupted in AD and LMCI.

Brain atrophy in AD examined on sMRI by manual or automatic 
technique has been extensively used for early prediction of AD, but it 
still exhibits low sensitivity and specificity (Vemuri and Jack, 2010; 
Pini et al., 2016; Lombardi et al., 2020). Compared to GMV, cortical 
thickness provides an index to neuro number and density in a specific 
area and is widely utilized for measuring cortical atrophy (Fischl and 
Dale, 2000; Cheng et al., 2015), detecting disease progression (Phillips 
et al., 2019), and early prediction (Canu et al., 2017) in AD. In this 
study, the CT analysis was employed using voxel-wise GLM and the 
cortical atrophied regions with CT reduction were identified in AD 
and LMCI. Our results of cortical thinning in AD are consistent with 
previous studies (Phillips et al., 2019; Putcha et al., 2019). However, 
LMCI exhibited less pronounced cortical atrophy only in left 
entorhinal and parahippocampal cortex. Compared to a previous 
study (Canu et al., 2017), these biased results may have been caused 
by the different clinical populations, MRI scanners and 
statistical methods.

It is now widely accepted that AD damage results from disrupted 
connectivity between brain regions (Nestor et al., 2017; Park et al., 
2017; Grajski and Bressler, 2019; Neitzel et al., 2019; Putcha et al., 
2019; Berron et  al., 2020; Tetreault et  al., 2020) rather than 
individual atrophied region. Numerous studies on structural 
covariance (Abela et  al., 2015; Valk et  al., 2017) and functional 
connectivity (Kuang et al., 2019; Berron et al., 2020; Smith et al., 
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TABLE 3 The altered cortical covariant networks in AD and LMCI.

Contrast Destrieux atlas-based seeds Regions of changed cortical covariation Number of voxel

AD<CN

L_entorhinal Cingulum_Post_L 216

Cingulum_Mid_R 101

Cingulum_Post_R 500

Precuneus_R 779

R_entorhinal Cingulum_Post_L 141

AD>CN

L_entorhinal Temporal_Pole_Sup_L 2,146

Temporal_Pole_Mid_L 1,687

L_fusiform ParaHippocampal_L 772

Temporal_Pole_Sup_L 533

L_inferiortemporal Fusiform_L 820

Temporal_Sup_L 288

Temporal_Pole_Sup_L 3,924

Temporal_Mid_L 1,422

Temporal_Pole_Mid_L 1819

Temporal_Inf_L 3,430

L_middletemporal Temporal_Pole_Sup_L 2,966

Temporal_Pole_Mid_L 1,686

Temporal_Inf_L 1,199

L_parahippocampal Fusiform_L 1,082

Temporal_Pole_Sup_L 3,273

Temporal_Pole_Mid_L 2,332

Temporal_Inf_L 2,950

R_entorhinal Frontal_Inf_Tri_L 750

Insula_L 2,504

Cingulum_Ant_L 622

ParaHippocampal_L 913

Temporal_Pole_Sup_L 3,257

Temporal_Pole_Mid_L 2,546

Temporal_Inf_L 1,239

R_parahippocampal ParaHippocampal_L 896

Fusiform_L 1,556

Temporal_Sup_L 907

Temporal_Pole_Sup_L 4,568

Temporal_Pole_Mid_L 2,317

Temporal_Inf_L 2,345

LMCI<CN

L_parahippocampal Cingulum_Mid_R 274.00

Cingulum_Post_R 357.00

Cuneus_R 441.00

Occipital_Sup_R 157.00

Postcentral_R 475.00

Parietal_Sup_R 1890.00

Precuneus_R 2303.00

R_isthmuscingulate Cingulum_Mid_R 509.00

Cingulum_Post_R 264.00

ParaHippocampal_R 212.00

Precuneus_R 824.00

LMCI>CN

R_isthmuscingulate Cingulum_Mid_R 922.00

Cingulum_Post_R 115.00

R_posteriorcingulate Cingulum_Ant_L 652.00

Cingulum_Mid_L 328.00

Cingulum_Mid_R 305.00

The proportion is the ratio of the voxel number with changed covariance in the atlas-based region to the total number of that region.
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2021) have been conducted by pre-defining ROI seeds based on 
prior knowledge. Although the ROI-based approach is more reliable 
(Smitha et  al., 2017), these predefined seeds ignore abnormal 
changes outside the defined ROIs and fail to reflect alterations in 
particular dataset. Contrastingly, we  defined cortical atrophy 
regions with the CT thinning as the automatic and data-driven 
seeds for inter-regional correlation analysis, including cortical 
covariance and functional connectivity. This facilitate clear 
interpretation of brain atrophy as disruption of between-region 

connectivity. Additionally, group-ICA has been utilized for 
identifying distinct functional networks in a variety of disease 
(Caspers et al., 2021; Geng et al., 2022). In the study, group-level 
ICA networks were identified in AD or LMCI compared to 
CN groups.

The results in Tables 3, 4 and Supplementary Tables S3, S4 indicate 
that for AD, a subnetwork including posterior cingulate and 
precuneous cortex exhibits reduced connective correlation in both 
structural covariance and functional connectivity as well as reduced 

TABLE 4 The altered inter-regional functional connectivity in AD and LMCI.

Contrast AAL-atlas-based seeds
Regions of changed 
functional connectivity

Number of verxel

AD<CN

Fusiform_L Postcentral_L 178

Juxtapositional Lobule Cortex 99

Precentral_R 93

Precentral_L 64

Parietal_Sup_Lobule_L 43

Cingulum_post 39

Hippocampus l 32

Precuneous Cortex 23

Temporal_Pole_Sup_L Precuneous Cortex 191

Parietal_Sup_Lobule_R 137

Occipital_Sup_R 67

Temporal_Pole_Mid_L Frontal Pole R 68

Lingual Gyrus R 63

Cingulate_Ant 59

Paracingulate Gyrus R 53

Lingual Gyrus L 23

Fusiform_R Frontal Pole R 79

Insular Cortex R 25

AD>CN

ParaHippocampal_L Frontal Pole Right 104

Frontal_Sup_R 77

Frontal_Sup_L 34

Temporal_Pole_Sup_L Lateral Occipital Cortex_R 269

Precuneous Cortex 56

Frontal Pole L 42

Cingulum_Ant 33

Paracingulate Gyrus Left 27

Temporal_Pole_Mid_L Cingulum_Ant 41

Parietal_Operculum_R 12

Temporal_Inf_L Occipital_Sup_R 74

Angular Gyrus R 69

Superior Parietal Lobule R 22

LMCI>CN

Cingulum_Mid_R Precuneous 221

Paracingulate Gyrus R 117

Superior Frontal Gyrus R 113

Lateral Occipital Cortex L 35

Only the negative contrast identified FC networks which was not considered in our study.
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IC weights. The similar reductions in connectivity are observed in 
structural covariance and group ICA network for LMCI. Interestingly, 
group ICA consistently identifies the DMN subnetwork in AD, and 
sensorimotor network in both AD and LMCI, which were not 
necessarily fully identified by structural covariance and functional 
connectivity. This suggests that group ICA holds promise in replacing 
functional connectivity and structural covariance correlation to 
investigate brain network to some degree. Moreover, some increased 
connectivity correlations, that were identified by our method, have 
previously been detected in amyloid-β + MCI patients (Berron et al., 
2020) and aging (Yao et al., 2013) which were more random. These 
enhanced connective correlation may stem from compensation 
mechanism to maintain memory, but the interpretation of the 
mechanism remains challenging and therefore was not considered in 
our current study.

This study has several limitations that could be addressed in 
future work: (1) The ICA performance depends on parameter 
selection. The number of ICs was fixed at 40 based on default 
settings, but robustness could be improved by testing a range of 
30–100 ICs. (2) Only clinical diagnoses were used to construct the 
GLM model. Incorporating PET biomarkers, such as levels of tau 
accumulation, could enhance prediction accuracy of morphological 
damage concerning AD pathology. (3) Subcortical regions and 
DTI-based structural connectivity were not yet considered. Adding 
mesoscale subcortical networks and white matter connectivity 
could provide a more comprehensive connectomic characterization 
of AD. (4) We only recruited the late MCI subjects in this study. 
Adding early MCI could help enable earlier prediction of AD 
progression. (5) The diagnostic performance needs validation. 
Studies have shown that the classification performance by 
combining statistically significant morphological and functional 
information was significantly improved (Park et al., 2017; Li et al., 
2020; Zhang et al., 2022). Therefore, using classification algorithms 
and related evaluation metrics to evaluate the diagnostic 
performance of our inter-regional connectivity network will be the 
focus of our next work.

In summary, we  used structural covariance, functional 
connectivity, and group ICA networks to identify disrupted inter-
regional connectivity in AD and LMCI. Our results suggest that 
patients with AD and LMCI exhibit reduced inter-regional 
connectivity within subnetworks of typical brain networks, such as 
DMN. These differences in inter-regional connectivity distinguish 
AD/LMCI patients from controls and provide insights into 
network-level disruptions underlying the disease. Overall, our 
multi-modal connectivity analysis may elucidate mechanisms of 
cognitive decline and identify imaging markers for diagnosis of 
AD/LMCI.
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