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Computer-aided diagnosis has emerged as a rapidly evolving field, garnering

increased attention in recent years. At the forefront of this field is the segmentation

of lesions in medical images, which is a critical preliminary stage in subsequent

treatment procedures. Among the most challenging tasks in medical image

analysis is the accurate and automated segmentation of brain tumors in various

modalities of brain tumor MRI. In this article, we present a novel end-to-end

network architecture called MMGan, which combines the advantages of residual

learning and generative adversarial neural networks inspired by classical generative

adversarial networks. The segmenter in the MMGan network, which has a U-

Net architecture, is constructed using a deep residual network instead of the

conventional convolutional neural network. The dataset used for this study is

the BRATS dataset from the Brain Tumor Segmentation Challenge at the Medical

Image Computing and Computer Assisted Intervention Society. Our proposed

method has been extensively tested, and the results indicate that this MMGan

framework ismore e�cient and stable for segmentation tasks. On BRATS 2019, the

segmentation algorithm improved accuracy and sensitivity in whole tumor, tumor

core, and enhanced tumor segmentation. Particularly noteworthy is the higher

dice score of 0.86 achieved by our proposedmethod in tumor core segmentation,

surpassing those of stateof-the-art models. This study improves the accuracy

and sensitivity of the tumor segmentation task, which we believe is significant for

medical image analysis. And it should be further improved by replacing di�erent

loss functions such as cross-entropy loss function and other methods.

KEYWORDS

image segmentation, brain tumor,multi-modality, pretreatment, depth residual structure,

generative adversarial networks

1 Introduction

Brain tumors are a severe medical condition that can cause significant damage to the

nervous system. Among all types of brain tumors, gliomas are known to have the high

mortality and morbidity rates (Zhang and Liu, 2022). While the grayscale of tumors and

normal brain tissue may be similar, there are significant differences in image intensity,

texture, size, shape, location, and other characteristics within the same tumor, making

it challenging to obtain comprehensive evaluation information about brain tumors from

different modalities of magnetic resonance imaging (MRI) through the eyes of a physician

alone (Liang et al., 2021).

Artificial intelligence healthcare refers to the application of computer vision, speech

recognition, natural language processing, machine learning, and other artificial intelligence

technologies in the medical field. In recent years, with the accelerated maturity of artificial

intelligence technology, its application scenarios in the field of healthcare are constantly

enriched, bringing profound changes to the mode of disease detection, diagnosis and

treatment. Computer-aided diagnosis has gained traction in recent years, making it
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easier for physicians to qualitatively and quantitatively analyze

brain tumors (Mofatteh, 2021). One of the initial steps in this

process is the segmentation of lesions in the image, which assists

physicians in identifying and analyzing structural, motion, and 3D

visualization characteristics of the tumor. This greatly improves

the accuracy and reliability of medical diagnosis while providing a

better understanding of how tumors affect the brain. Furthermore,

computer-aided diagnosis can play an important auxiliary role

in medical teaching, surgical planning, surgical simulation and

various medical research (Menze et al., 2015; Havaei et al., 2016).

Accurate and automatic segmentation of brain tumors in different

modalities of brain MRI is a challenging task in medical image

analysis (Mecheter et al., 2022).

The convolutional neural network (CNN) algorithm, which

integrates three structural ideas: local receptive field, weight

sharing, and spatial subsampling, has shown great promise in

image segmentation. The CNN algorithm’s constant stability of

displacement and deformation makes it easier to recognize and

extract targets in the image despite displacement, rotation, or

scaling (Zhou et al., 2017). The most classical CNN model for

brain tumor lesion image segmentation is the 2D-CNN model

with dual-path parallel paths proposed by Havaei et al. (2016).

This model adopts a cascade structure, which can consider global

and local information simultaneously and has better robustness.

However, its network segmentation performance is limited because

it is only based on a single 2D level and does not consider the

correlation of multiple 2D or 3D levels. Later, Shelhamer et al.

(2017) introduced fully convolutional networks (FCN), which use

a deconvolutional layer instead of the final fully connected layer,

so input images of any size can be segmented, achieving pixel-

level recognition performance. Sarwar et al. (2017) extended the

standard FCN by using a multiscale loss function. Multiscale loss

provides different resolutions, and the FCN variant reduces the

multiscale loss function by combining higher and lower resolutions

to simulate context in the image and label domains. However,

the results of FCN’s upsampling procedure often need to be more

explicit and sensitive to small details of the image, limiting their

performance in medical image analysis. U-Net (Ronneberger et al.,

2015) is a significant FCN mutant that has been successful in

medical image analysis. The U-Net consists of a shrinking path

that captures context and a symmetric expanding path that enables

precise localization. Isensee et al. (2018) proposed an improved

U-Net for brain tumor segmentation, in which they effectively

avoided overfitting by employing a dice loss function and extensive

data augmentation. In Agarwal et al. (2021), the authors use zero

padding to preserve the output dimensionality of all convolutional

layers in the downsampling and upsampling paths.

Generative adversarial networks (GANs) have made

significant breakthroughs in various fields, including image

classification, object detection, and high-resolution image

generation (Pradhyumna and Mohana, 2022). GAN-based image

segmentation methods have been increasingly used in medical

image research because they require fewer training data, generate

good effects, and easily integrate with other neural networks (Zhu

et al., 2022) in recent years. Therefore, this study will also perform

experiments based on GAN and improve the model according to

the data characteristics.

The first study used a level set approach to preprocessing

multimodal brain tumor data partially. Only 2% of MRI areas

were gliomas, which were morphologically diverse and infiltrative,

with indistinct borders, and areas of normal brain tissue account

for most MRI images. This proportional structure has resulted in

severe data imbalance phenomena, which may affect the accuracy

of the segmentation algorithm in MRI. A level set method was

used to preprocess the data to address these issues. Specifically, the

ECA energy functional of the Canny operator combined with the

Local Binary Fitting (LBF) energy functional (Deng et al., 2021)

of the traditional level set was used to strengthen the detection

of the target edge. Additionally, each modal image was cropped

using the convex hull minimum circumscribed matrix algorithm

to more accurately remove the redundant background, effectively

preventing multisegmentation of the target area, and reducing

data imbalance.

The second research content is the extraction of brain tumors

using GAN-based methods. A network model was proposed to

extract multimodal brain tumors that combine the advantages

of deep residual learning units and generative adversarial

networks. The general network model may ignore the correlation

between image pixels when processing medical images, despite its

importance in dealing with details. The parameters of GAN are

relatively large, and the structure is only sometimes stable. To solve

these problems, a generative semantic segmentation model based

on the GAN model is designed using the U-Net network structure

and the deep residual in the encoder-decoder structure. The deep

residual network learning unit replaces the original convolutional

neural network layer, making training of deep networks more

convenient. It utilizes identity mapping to facilitate training,

effectively reduce the decay of gradient correlations while reducing

network parameters and acquiring shallow image features. After the

deep residual learning unit in the coding structure, an attention

mechanism called SEblock is added to amplify valuable feature

channels by changing the channel weights. The decoding part

uses skip connections to combine the important low-level detail

information and high-level semantic information after SEblock,

extracting abstract features through the deep residual learning unit,

making the network easy to train while improving the segmentation

accuracy, and finally realizing brain tumor segmentation.

2 Materials and methods

2.1 Datasets

The MRI images used in this context include T1-weighted

MXI (T1), T1-weighted MRJ with gadolinium enhancing contrast

(T1c), T2-weighted MXI (T2), and T2-weighted MXI with

nuid_attenuated in version recovery (FLAIR) as shown in

Figure 1A. Each of these four different MRI modalities can

reveal different brain tissues with varying degrees of clarity. The

Multimodal Brain Tumor Segmentation Challenge (BRATS) was

introduced by the Medical Image Computing and Computer

Assisted Intervention Society in 2012 to develop and test state-

of-the-art brain tumor segmentation algorithms. The challenge

involves using an extensive collection of multimodal brain scans

that are publicly available in the BraTS database. Each case in

the dataset was accurately marked by physicians, reviewed by

experienced radiologists, and reviewed by professional physicians.

This paper utilizes the BraTS 2018 and BraTS 2019 datasets,

with the former containing a total of 285 cases (210 HGG and 75
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FIGURE 1

(A) BraTS Dataset Display. The MRI images used in this context include T1-weighted MXI (T1), T1-weighted MRJ with gadolinium enhancing contrast

(T1c), T2-weighted MXI (T2), and T2-weighted MXI with nuid attenuated in version recovery (FLAIR). Each of these four di�erent MRI modalities can

reveal di�erent brain tissues with varying degrees of clarity. (B) Residual unit. Three di�erent residual units are designed. Residual Block 1 consists of

batch normalization, ReLU activation function, and convolution layer. The arrangement in Residual Block 2 and Residual Block 3 is the convolutional

layer, batch normalization and ReLU activation function. The di�erence is whether an activation function is used before output. (C) Loss and iou of

di�erent residual structures under di�erent iterations. After the first iteration, Residual Block 1 has the minimum loss value, while Residual Block 2 has

the minimum loss value after the tenth iteration. As the number of times increases, the residual unit with the smallest loss is Residual Block 3. This

paper adopts the third structure to construct the deep learning network based on the experimental results.
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LGG), each of which contains four 3D MRI modalities (T1, T2,

Flair, T1ce) and a segmented image (seg). The data type is XX.nii.gz,

and eachmodality’s data have been resampled to a resolution of 1×

1× 1 mm after deskulling. The data size of each modality has been

processed to 240× 240× 155. Different MRI scanner facilities have

collected the data from 19 different institutions.

The BraTS 2019 dataset includes 335 cases (259 HGG and

76 LGG), with 50 additional cases over the BraTS 2018 dataset.

The tumor part in these dataset has been divided into three parts

according to the doctor’s annotation standard: the enhancement

tumor area (ET, label = 4, red), the whole tumor area (WT, label

= 2, green), and the tumor core area (TC, label = 1, blue).

2.2 Related work

2.2.1 Pixel2Pixel
Pixel2Pixel (Isola et al., 2017) is a conditional generative

adversarial network. The overall framework of the generator uses

U-Net, that is, adding skip connections in the middle of encoding

and decoding and copying the underlying information to the high-

level feature map. The discriminator uses the auxiliary L1 loss

and patchGAN discriminators. The discriminator does not need

to see the information of the whole image to make a judgment;

instead, they just need to pay attention to the local structure of the

image. Compared with the situation where the global image needs

to be judged, the number of parameters in training is reduced. The

images generated by L1 loss supervision will be more explicit and

similar to the ground truth.

2.2.2 Residual network
The introduction of residual networks (He et al., 2016a)

marked a significant milestone in the development of deep

learning networks. The concept of identity mapping enabled data

streams to flow seamlessly across layers, theoretically resulting

in better performance. However, deeper networks became more

challenging to train and optimize in practice. This is where shortcut

connections come in handy. By adding them, residual networks

could overcome this problem and simplify the optimization

process. A residual block is a few-layer network that incorporates

a shortcut connection. It can consist of various combinations of

batch normalization (BN), the ReLU activation function, and the

convolutional layer. In He et al. (2016b), the authors discuss the

impact of different combinations and propose Residual Block 1

shown in Figure 1B, with a fully preactivated design. This work

adopts a third residual unit to build the deep residual network,

following a comparison between the fully preactivated residual unit

and the other two residual structures.

As shown in Figure 1B, three different residual units are

designed, with Residual Block 1 being the structure proposed in

the paper (Dey and Ashour, 2018). Its arrangement consists of BN,

ReLU activation function, and convolution layer. The arrangement

in Residual Block 2 and Residual Block 3 is the convolutional layer,

batch normalization and ReLU activation function. The difference

is whether an activation function is used before output. The three

structures are evaluated using the dataset in this paper, and the

results are shown in Figure 1C. After the first iteration, Residual

Block 1 has the minimum loss value, while Residual Block 2 has

the minimum loss value after the tenth iteration. As the number of

times increases, the residual unit with the smallest loss is Residual

Block 3. This paper adopts the third structure to construct the deep

learning network based on the experimental results.

2.2.3 Segmentation methods
Segmentation of tumors from MRI data is a crucial step in

diagnosing and treating cancer. Multiple segmentation techniques

are available, including but not limited to watersheds, clusters and

level sets (Kumar, 2023). Among these, the watershed algorithm is

commonly used for the transformation of grayscale images (Khan

et al., 2019). The algorithm’s primary operational steps include

converting the grayscale color images, finding the gradient map,

and finally performing the watershed algorithm on the gradient

map to obtain the edge line of the segmented image. The K-

means clustering algorithm can segment regions of interest from

the image background (Khan et al., 2021). The algorithm works

by dividing the sample collection into k subsets to form k classes

and dividing a given image sample into k classes based on the

smallest distance from the point in each class to the center of

the class. The level set algorithm is an algorithm used to solve

curve evolution problems. The principle algorithm treats a low-

dimensional curve as a zero-level set of high-dimensional surfaces

and divides the curve through the evolution iteration of the curve.

Kaur et al. (2019) utilized various machine learning methods,

such as random forest, support vector machine, decision tree and

other machine learning methods, to evaluate the performance of

tumor segmentation. Similarly, Bansal et al. (2021) used different

classification methods to extract target features, including decision

trees, KNN, and random forests.

2.3 Learning rate

From Figure 2A, it can be seen that the accuracy growth

rate is the largest when the number of iterations is 50 and 100,

respectively, indicating that the model has not yet reached a

converged state. When the number of iterations is set to 150, the

highest accuracy can be achieved. As the number of iterations

increases, the accuracy remains almost constant. This indicates that

model retraining is no longer valid and therefore the number of

iterations was set to 150.

To effectively train the proposedmodel for medical brain image

segmentation, it is essential to find an appropriate learning rate.

The learning rate directly affects the convergence of the model,

and choosing an optimal learning rate can significantly accelerate

the training process. It can be seen from Figure 2B that both too-

high and too-low learning rates have different effects on the loss

of the model. Only a learning rate suitable for our model can

make the model converge the fastest and have the least loss in the

shortest time.

To determine the optimal learning rate for our model, we first

set the number of iterations to 150 and then performed experiments

at different learning rates, including 0.005, 0.0001, 0.0002, and
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FIGURE 2

(A) Selection of parameter Epoch. The accuracy growth rate is the

largest when the number of iterations is 50 and 100, respectively,

indicating that the model has not yet reached a converged state.

When the number of iterations is set to 150, the highest accuracy

can be achieved. As the number of iterations increases, the accuracy

remains almost constant. (B) The impact of di�erent learning rates

on the model. (C) Selection of parameter LR. both too-high and

too-low learning rates have di�erent e�ects on the loss of the

model. Only a learning rate suitable for our model can make the

model converge the fastest and have the least loss in the

shortest time.

0.0003. As shown in Figure 2C, the solid green line indicates the

highest accuracy when the number of iterations is 150, so the

learning rate of this model is set to 0.0002.

2.4 Evaluation metrics

The Dice similarity coefficient is a widely used evaluation index

for medical image segmentation. The Dice similarity coefficient

measures the degree of overlap between the real and predicted

regions of an image and is calculated by comparing the overlapping

area of the two regions with the total area of the two regions. A

Dice score of 1.0 indicates perfect segmentation. TheDice score was

calculated using the following formula:

Dice =
2TP

FP + 2TP + FN
(1)

To illustrate the calculation of the Dice score, let us consider

the brain picture shown in Figure 3. The blue part of the image

represents the real brain tumor region (ground truth), while the

red part represents the predicted brain tumor region. Outside

blue areas represent normal brain regions, while outside red areas

represent predicted normal brain regions. When evaluating the

performance of a medical image segmentation model, it is common

to assume that positive samples represent brain tumors while

negative samples represent normal brain tissue. The following

metrics are used to evaluate the performance of the model:

True Positive (TP): This refers to the samples that are correctly

identified as positive. In other words, the intersection of the

blue and red area in the image represents true positive samples.

True Negative (TN): This refers to the samples that are correctly

identified as negative. In the image, the area other than the red

and blue areas represents true negative samples. False Positive (FP):

This refers to the samples that are incorrectly identified as positive

but are actually negative. In the image, the red area except the blue

area represents false positive samples. False Negative (FN): This

refers to the samples that are incorrectly identified as negative but

are actually positive. In the image, the part of the blue area except

the red area represents false negative samples.

3 Results

3.1 Algorithm principle

3.1.1 Network model
To improve the accuracy of segmentation of smaller regions

of brain tumors (tumor core and enhanced tumor), this

paper proposes a network model called MMGan based on a

generative adversarial model. The proposed model comprises

generative and adversarial model that work together to deliver

superior segmentation results. The generative model consists

of the encoding and decoding structure of the deep residual

learning unit, with an attention mechanism added to the coding

structure to extract shallow features from the deep residual

structure. These features are then filtered by the attention

mechanism and fused with the deep features of the decoding

structure to enhance the segmentation accuracy. The adversarial

network uses a convolutional neural network to discriminate

between the segmentation results generated by the generative

model and the expert segmentation results. By calculating the

loss of the adversarial model, the generative model can be
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FIGURE 3

Brain tumor map. The blue part of the image represents the real

brain tumor region (ground truth), while the red part represents the

predicted brain tumor region. Outside blue areas represent normal

brain regions, while outside red areas represent predicted normal

brain regions.

continuously optimized to achieve the optimal state of brain

tumor segmentation.

When the generative adversarial network performs the

segmentation task, the generative model serves as the segmentation

network, while the adversarial network judges the difference

between the segmentation result of the segmentation network and

the expert segmentation result. The loss is then calculated and

used to optimize the gradient for the segmentation network to

re-segment. Through the mutual iteration of the generative and

adversarial model, the segmentation accuracy of the segmentation

network is continuously improved. Figure 4 presents a schematic

diagram of the model. First, the image to be segmented is input

into the segmenter S, and the segmented result is output. The

output segmentation result and the expert segmentation result are

multiplied by the original image and input to discriminator D. The

discriminator predicts the difference between the input results and

transfers the loss to the generative model. After several iterations

of confrontation, the discriminant loss tends to be zero. At this

point, the generative model has reached the state of the optimal

segmentation effect.

3.1.2 Segmentation model
The segmentation model in this paper has been designed

following the principle of semantic segmentation, as shown

in Figure 4 (Segmentor). The residual network and the skip-

connected encoder-decoder structure have been combined to

achieve this. The generator is constructed using a 9-layer structure

consisting of encoding, bridging and decoding parts. In the first

section, the input image is encoded into a compact representation,

while the last part restores the representation to pixel classification,

i.e., semantic segmentation. The middle part serves as a bridge,

connecting the encoding and decoding paths. All three parts

comprise residual units consisting of two 3 × 3 convolutional

blocks and a unit map. Each convolutional block comprises

convolutional layers, BN layers and ReLU activation layers, with

input and output linked by the identity map.

The encoding path consists of four residual units, with a

pooling operation used in each unit to downsample the feature

map size, reducing the feature map by half. Correspondingly, the

decoding path also comprises four residual units, with feature maps

upsampled from lower levels and concatenated with feature maps

from the corresponding encoding paths before each unit. A 1 ×

1 convolution is used to project the multichannel feature map

into the desired segmentation after the last stage of the decoding

path. Overall, there are 19 convolutional layers in total, and the

parameters and output sizes of each step are shown in Table 1.

3.1.3 Discriminant model
The discriminant model as shown in Figure 4 (critic), uses

an ordinary neural network to process the pre-segmentation and

expert segmentation result, which are multiplied with the original

image to form the model’s input. The model then employs the

multiscale L1 loss function to determine the difference between

the two inputs, providing critical feedback for optimizing the

segmentation model.

3.2 Loss function

This paper adopts the method of calculating the loss proposed

in Jesson and Arbel (2018). Assuming that the dataset has N

original training images xn and real images yn, the multiscale target

loss function is defined as follows:

min

θS

max

θC
L (θS, θC) =

1

N

N
∑

n=1

lmae

(

fC
(

xn
◦S (xn)

)

, fC
(

xn
◦yn

))

=
1

NL

N
∑

N=1

L
∑

i=1

∣

∣

∣

∣f iC(x)− f iC
(

x́
)

||1 (2)

where θS and θC are the parameters of the segmenter and

discriminator, respectively, L is the total number of layers in the

discriminator network, and f ic (x) represents the feature mapping of

image x extracted at the ith layer of the discriminator.

By using a multiscale feature loss, the proposed method forces

the segmenter and discriminator networks to learn hierarchical

features of long and short spatial relationships between pixels.

3.3 Data preprocessing

This experiment utilized the public BraTS 2018 and BraTS

2019 datasets to evaluate the proposed segmentation model’s

performance. The BraTS 2018 dataset was divided into 8:2 ratio for

model training and validation, while an additional 50 cases from
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FIGURE 4

Network model diagram. First, the image to be segmented is input into the segmenter S, and the segmented result is output. The output

segmentation result and the expert segmentation result are multiplied by the original image and input to discriminator D. The discriminator predicts

the di�erence between the input results and transfers the loss to the generative model. After several iterations of confrontation, the discriminant loss

tends to be zero. At this point, the generative model has reached the state of the optimal segmentation e�ect.

the BraTS 2019 data were used for model testing. Figure 5A shows

that the data preprocessing process was divided into four essential

steps: normalization, slicing, cropping and concatenation.

(1) Normalize each mode

To ensure consistency and remove the effects of anisotropy, the

Z score was normalized for each of the four brain modalities used

in this study (T1, FLAIR, T1c, and T2). This normalization process

resulted in the mean and unit variance of the output images are

zero. This is done by subtracting the mean and dividing by the

standard deviation to count only brain regions.

Figure 5B shows the results before and after normalization of

the dataset, where the first and second rows are some examples

of the four patterns of the Brats18_2013_2_1 sample in HGG and

their corresponding normalized results. Similarly, examples of the

four patterns of the Brats18_2013_0_1 sample in LGG and their

corresponding normalized results are in the bottom two rows. As

show in Figure 5B, the image contrast of the four modes remains

the same after data normalization.

The tumor area in medical brain images occupies only a

small proportion, leading to a severe data imbalance problem.

To address this issue, the level set method was employed to

crop the image and improve the performance of the model

segmentation. This method combines the ECA energy functional

of the Canny operator and the LBF energy function of the

traditional level set to strengthen the detection of target edges

while processing uneven grayscale images. This method accurately

removes redundant background areas, effectively preventing

multisegmentation of the target area and reducing the data

imbalance issue.

(2) Slicing

Since most medical images are 3D data, they must first be

converted into 2D data in order to be adaptable to 2D networks.

Based on the 2D network, the 3D volume is processed into a

sequence of 2D slices, the input network is segmented layer by layer,

and then the segmentation results of each slice are combined into

a volume output. Because axial plane slices are clearer and better

rendered, axial plane slices are selected in this article. However,

we found a steady increase or decrease in tumor size and shape

in serial sections. The tumor first appears at a small size in any

possible location of the image slice. The tumor will then remain

in the same position in the image in subsequent slices, but it will be

larger. The tumor will then begin to decrease in size after reaching

the maximum size until it disappears completely. As shown in

Figures 6A, B. In addition slices that do not contain lesions can
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TABLE 1 Model parameters of the segmenter.

Unit level Conv layer Filter Stride Output size

Input 160*160*4

Encoding Level1 Conv1 3*3/4,64 1

Conv2 3*3/64,64 1 80*80*64

Level2 Conv3 3*3/64,128 1

Conv4 3*3/128,128 1 40*40*128

Level3 Conv5 3*3/128,256 1

Conv6 3*3/256,256 1 20*20*256

Level4 Conv7 3*3/256,512 1

Conv8 3*3/512,512 1 10*10*512

Bridge Level5 Conv9 3*3/512,1024 1

Conv10 3*3/1024,1024 1 10*10*1024

Decoding Level6 Conv11 3*3/1536,512 1

Conv12 3*3/512,512 1 20*20*512

Level7 Conv13 3*3/768,256 1

Conv14 3*3/256,256 1 40*40*256

Level8 Conv15 3*3/384,128 1

Conv16 3*3/128,128 1 80*80*128

Level9 Conv17 3*3/192,64 1

Conv18 3*3/64,64 1 160*160*64

Output Conv19 1*1/64,3 1 160*160*3

be discarded during the slicing process, which can alleviate the

problem of class imbalance.

A data sample can be cut into 155 slices. Figure 6A shows the

process of tumor growth from small to large and from large to

small in the slices of sample Brats18_2013_2_1. The slice number

starts from 69, and every few slices are removed, for a total of

24 slices. Figure 6B shows the process of an image from large to

small and from small to large in the FLAIR mode image slice of the

sample Brats18_2013_2_1. Slice numbering starts at 15 and takes

approximately every five slices for a total of 24 slices. As shown in

Figures 6A, B, the size and distribution of images in each slice are

different. Therefore, when cropping a slice, it is necessary to crop

each image according to the size of the images in the slice.

(3) Level Set Algorithm Clipping Based on Canny Functional

In medical brain images, the gray area represents the brain

region, while the black area represents the background. The

background information accounts for a significant proportion of

the entire image, making it challenging for image segmentation.

Additionally, since the tumor region occupies only a small part

of the whole image, so there is a severe data imbalance problem,

with the black background area occupying a significant portion

of the image. The data must be cropped to improve the model’s

segmentation performance. When a person looks at the image,

the background information is automatically filtered out and

all attention is focused on the brain area. Therefore, removing

background information around brain regions is necessary

for identification.

However, the sizes of the tumor and the brain in each slice

image can vary significantly, making it challenging to use ordinary

cropping methods. We employed the level set method to address

this issue, which integrates the Canny operator into the traditional

level set algorithm. The traditional level set algorithm has certain

advantages in dealing with uneven grayscale images, and the

integration of the Canny operator strengthens the detection of

the target edge. This method accurately removes the redundant

background areas, effectively preventing multisegmentation of the

target area and reducing the data imbalance issue. The model

diagram of this algorithm is shown in the Figure 6C, with the

main modules being edge detection and determination of the

cropping frame.

The level set algorithm is an algorithm for solving curve

evolution problems. The principle is to treat the low-dimensional

curve as the zero-level set of the high-dimensional surface and then

segment the curve through the evolution iteration of the curve. The

iteration time is shorter, and the result is more accurate when the

initial contour contains more target regions.

The level set function is introduced into the energy function,

and the LBF energy function is defined as follows:

ELBF(C, f1(x), f2(x)) = λ1

∫

�

(

∫

outside(C)

K(x− y)|I(y) (3)
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FIGURE 5

(A) Data preprocessing flowchart. The data preprocessing process was divided into four essential steps: normalization, slicing, cropping, and

concatenation. (B) Data normalization results. The first and second rows are some examples of the four patterns of the Brats18 2013 2 1 sample in

HGG and their corresponding normalized results. Similarly, examples of the four patterns of the Brats18 2013 0 1 sample in LGG and their

corresponding normalized results are in the bottom two rows.
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FIGURE 6

(A) Schematic diagram of size change of tumor in slices, sample from Brats18_2013_2_1_seg. It is the process of tumor growth from small to large

and from large to small in the slices of sample Brats18_2013_2_1. (B) Schematic diagram of FLAIR image slice. It is the process of an image from

large to small and from small to large in the FLAIR mode image slice of the sample Brats18_2013_2_1. (C) Model diagram of level set algorithm

based on Canny functional.
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− f1(x)|
2Hε(φ)dy)dx

+ λ2

∫

�

(

∫

inside(C)

K(x− y)|I(y)

− f2(x)|
2(1−Hε(φ))dy)dx

(4)

where C is the closed initial contour curve, � is the image

collection domain, and let λ1 = λ2 = 1. K(x) = K(|x|) is a non-

negative monotone kernel function that depends on the gradient

value of the image and has local properties. f1 and f2 are the

grayscale fit values of the inner and outer regions of the image near

point x. Hε(x) is the Heaviside function, and δε(x) is the derivative

form of the Dirac function.

In medical image segmentation, it is essential to set appropriate

threshold parameters to avoid inaccurate segmentation caused by

too thick curves. Two threshold parameters, namely high and low,

are required to accurately detect the edges of the target region. If the

gradient of the point is greater than the high threshold, it is marked

as a strong edge point. If the gradient is less than the low threshold,

it is marked as a weak edge point. If the gradient falls between the

high and low thresholds, the pixels in the eight fields surrounding

the point must be analyzed. If there is a strong edge point in the

vicinity, the point is marked as a strong edge point, and vice versa.

Therefore, I(x, y) can be defined as a certain point in the image, and

the Canny energy functional can be expressed as follows:

ECA =

∫∫

�

C(x, y)H(φ)dxdy

=

∫∫

�

[
G2(x, y)

x2
+

G2(x, y)

∂y2
] ∗ I(x, y)H(φ)dxdy

where * is the convolution operation, H(φ) is the

Heidegger function, and G(x, y) is the Gaussian kernel function,

which solves the second-order partial derivatives for x and

y, respectively.

Then, the total energy functional is:

ECE = ELBF + ECA (5)

Figure 7A shows the edge detection results of the sample

Brats18_2013_2_1FLAIR mode based on the Canny functional

level set. The first row and the fourth row are the sample slice

numbers, the second row is the different pictures after the sample

is sliced, and the third row is the edge detection result of the slice

image corresponding to the second row. The fifth and sixth rows are

the same. Figure 7A shows that the Canny operator can accurately

detect the edges of brain tissue.

Compute the outer matrix of the minimum area of a 2D convex

hull. The smallest circumscribed rectangle of a polygon must be

collinear with one of its sides using geometry theorems. As shown

in Figure 7B, the circumscribed rectangle is determined by four red

tangent lines, one of which coincides with one side of the polygon.

Suppose the n vertices of the convex polygon P are entered in

clockwise order. Calculate all 4 polygons, called Pxmin, Pxmax,

Pymin, and Pymax, and construct 4 tangents through 4 points.

They identified two “stuck” sets; if one or two lines coincided with

one side, the area of the rectangle determined by the four lines

was calculated and saved to the current minimum. Otherwise, the

current minimum is defined as infinity. Rotate the lines clockwise

until one of the lines coincides with one side of the polygon.

Calculate the area of the new rectangle and compare it to the

current minimum value. If it is less than the current minimum, it

is updated, and the rectangle information is saved to determine the

minimum value. Repeat the above steps until the line rotates at an

angle greater than 90 degrees. Outputs the minimum area of the

outer rectangle.

The cropping frame is determined by the above principles.

Figure 7C shows the results of determining the minimum

circumscribed matrix for data sample Brats18_2013_2_1FLAIR.

The first row and the fourth row are the sample slice numbers,

the second row is the sample edge detection result graph, and the

third row is the result of determining the minimum external matrix

corresponding to the second row. The fifth and sixth lines are the

same. As shown in Figure 7C, regardless of how much the image

occupies in the picture, their minimum circumscribed matrix can

be accurately determined according to the detailed explanation of

the Sklansky algorithm and rotation jamming algorithm.

By applying the cropping frame, the black background is

removed to the maximum extent, thereby reducing the data

imbalance and making the subsequent brain tumor segmentation

training more accurate. Figure 8 shows the comparison results

of the data sample Brats18_2013_2_1FLAIR before and after

cropping. The first row and the fourth row are the sample slice

numbers, the second row is the different slice images of the sample,

and the third row is the cropped result image corresponding to

the second row. The fifth and sixth rows are the same. As shown

in Figure 8, each slice has a black background cropped to the

maximum extent without excessive cropping.

(4) Multimodal slice channel connection

Since slices are multimodal, the slices of each modality should

be combined into multichannels and finally saved as NumPy, while

the corresponding GT slices are saved directly as NumPy. The

specific implementation is that each mode of each data sample has

155 slices, and one slice is taken from each mode according to the

slice number and placed in a four-dimensional vector that is filled

with 0. Specifically, the 0-dimension stores the FLAIRmodel modal

slices, 1-dimensional storage of T1 modal slices, the 2-dimensional

storage of T1c modal slices, and the 3-dimensional storage of T2

modal slices.

Figure 9 shows the visualization results after saving the data in

.npy format. Two data samples are shown, Brats18_2013_5_1 and

Brats18_2013_4_1. The connection results of channels 76, 77, and

78 in the four modal slices of Brats18_2013_5_1 are listed in the

second row, while the connection results of the four modal slice

labels of Brats18_2013_4_1 are in the fourth row.

3.4 Influence of the network model on the
experimental results

To verify the performance of the proposed model for

medical brain image segmentation, it is compared with three

other models, including the original model, the model with

residual structure added, and the model with attention mechanism

added. The ablation experiment results are shown in Figure 10,
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FIGURE 7

(A) Level set edge detection results based on Canny functional. The first row and the fourth row are the sample slice numbers, the second row is the

di�erent pictures after the sample is sliced, and the third row is the edge detection result of the slice image corresponding to the second row. The

fifth and sixth rows are the same. (B) The circumscribed matrix of a convex polygon. The circumscribed rectangle is determined by four red tangent

lines, one of which coincides with one side of the polygon. (C) Determine crop box results. The first row and the fourth row are the sample slice

numbers, the second row is the sample edge detection result graph, and the third row is the result of determining the minimum external matrix

corresponding to the second row. The fifth and sixth lines are the same.
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FIGURE 8

Display of results after data clipping. The first row and the fourth row are the sample slice numbers, the second row is the di�erent slice images of

the sample, and the third row is the cropped result image corresponding to the second row. The fifth and sixth rows are the same.

FIGURE 9

Display of data preprocessing results. The connection results of channels 76, 77, and 78 in the four modal slices of Brats18_2013_5_1 are listed in

the second row, while the connection results of the four modal slice labels of Brats18_2013_4_1 are in the fourth row.

with four samples per row. The first column shows the brain

tumor segmentation results by experienced experts. The second

column shows the results of the original generative adversarial

network segmentation. The third column shows the results of the

segmentation using the deep residual learning unit-based encoding

structure. The fourth column shows the segmentation results of the

proposed model, which incorporates a deep residual learning unit

and an attention mechanism.

As shown in Figure 10, GAN enhances some detailed features

of brain tumors, but it is prone to over-segmentation and generates
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more isolated points. The segmentation results of the DRes_GAN

model have a clear boundary, but the segmentation of the brain

tumor boundary is not delicate enough. The proposed model

in this paper overcomes the limitations of other algorithms and

achieves similar results to expert segmentation, with high accuracy

in extracting the boundary of brain tumors and effectively solving

the problems of over-segmentation and under-segmentation.

Table 2 shows the quantitative evaluation results of adding

different modules to the GAN network structure. To ensure the

reliability of the experimental results, the ablation experiments

train different networks under the same experimental parameters.

Among them, GAN is the original generative adversarial network

method, DRes_GAN is a method that substitutes a deep

residual structure for the original GAN’s generative model, and

DRes_SEblock_GAN is a method that substitutes a deep residual

structure combined with an attention mechanism which is the

improvement method proposed in this paper.

It can be seen from the Table 2 that with the addition

of modules, the complexity of the network structure increases,

which verifies the role of the deep residual learning unit and

the attention mechanism. By adding a deep residual block, the

segmentation accuracy for enhanced tumor regions and tumor core

regions is improved by 11%, and the segmentation performance

for whole tumor regions is also improved. The addition of the

attention mechanism further improves the segmentation accuracy

of different tumor regions.

3.5 Comparing the experimental results of
di�erent algorithms

To validate the performance of the proposed brain tumor

segmentation model, it is compared with other state-of-the-

art models, including the U-Net model proposed in Zheng

et al. (2021), the ResNet model proposed in Chen et al.

(2022), and the SegAN model proposed in Xue et al. (2018).

Figure 11 presents the segmentation results of each model,

with the first column showing the expert segmentation

results, the second column showing the U-Net model

segmentation results, the third column showing the SegAN

model segmentation results, the fourth column showing the

ResNet model segmentation results, and the fifth column

showing the segmentation results of the proposed generative

adversarial network.

As seen from Figure 11, the other three models have obvious

differences in the segmentation of smaller areas of brain tumors,

such as the enhanced tumor and tumor core, when compared

to the expert segmentation results in the first column. The

area segmented by other models is smaller than that segmented

by the expert, and there are small spots of different colors

in the tumor core area, indicating that the smaller area of

the brain tumor is under-segmented. The proposed algorithm

in this paper achieves segmentation results similar to those of

experts with high accuracy compared to other methods. Higher

segmentation accuracy can be obtained for smaller tumor areas,

which solves the problem of under-segmentation of small areas by

other algorithms.

4 Discussion

GANs have made significant breakthroughs in various

fields, inculding image classification, object detection, and high-

resolution image generation. In medical image segmentation,

GANs have made the segmentation results more continuous,

effectively addressing the issue of image segmentation results being

quite different from the gold standard. Adversarial networks were

first applied to image segmentation tasks by Dey and Ashour

(2018). Since then, many studies have applied GAN-based methods

to efficient brain tumor segmentation (Dey and Ashour, 2018;

Jain et al., 2021; Rao and Karunakara, 2021). In these research

works, Luc et al. (2016) proposed the application of GANs to

image semantic segmentation, where the discriminator needs to

judge the difference between the real segmentation and the actual

segmentation mask. Experimental results have demonstrated that

this method reduces the possibility of overfitting. However, a

significant disadvantage of the original GAN is that the loss

function of the discriminator produces a single integer. The

discriminator either reports whether the input segmentation masks

are raw or generated or informs whether the input samples are

from the same domain as the source database. The discriminator

loss function’s gradient flow is insufficient for feature learning

in the segmenter network for a single scalar or Boolean output.

Xue et al. (2018) proposed an adversarial network with a

multiscale L1 loss function called SegAN. The discriminator in

SegAN extracts hierarchical features from the input image, the

discriminative network aims to maximize the mean absolute

error (MAE) or L1 distance between two hierarchical features,

and the segmenter generates a segmentation mask with the

slightest error. While SegAN can extract features at different levels,

segmentation of relatively small regions such as core and enhancing

tumors may require more attention to pixel-level features.

Mondal et al. (2018) applied GANs for the first time to semi-

supervised segmentation of 3D multimodal brain images and the

segmentation performance was significantly improved compared

to fully supervised methods. Zhao et al. (2018) achieved accurate

segmentation of craniomaxillofacial (CMF) bone structures in MRI

and CT images. Deng et al. (2022) used a residual structure and

attention mechanism to segment the hippocampus in a generative

adversarial network. Oh et al. (2020) used the CGAN and pix2pix

framework to segment white matter in 18F-FDGPET/CT images,

achieving high-precision brain tissue segmentation. Gu et al. (2019)

and Li et al. (2019) used GAN to segment neonatal brain images

to aid in neonatal disease diagnosis. MarcoConte et al. (2021) used

GAN to synthesize missing MRI sequences and demonstrated that

GAN-generated images can effectively assist other deep learning

models for segmentation. To further improve the accuracy of

brain tumor segmentation and the quality of manually segmented

labels, Cheng et al. (2021) used GAN to perform label correction

on samples.

The transformer based on the encoder-decoder structure has

demonstrated remarkable efficiency in computer vision tasks such

as image classification, recognition, and segmentation (Liu et al.,

2023). Chen et al. (2021) used transformers as strong encoders

combined with U-Net to recover local spatial information to

enhance finer details of medical image segmentation tasks. In
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FIGURE 10

Self-contrasting experiment results. The first column shows the brain tumor segmentation results by experienced experts. The second column

shows the results of the original generative adversarial network segmentation. The third column shows the results of the segmentation using the

deep residual learning unit-based encoding structure. The fourth column shows the segmentation results of the proposed model, which

incorporates a deep residual learning unit and an attention mechanism.

multiorgan Segmentation and cardiac segmentation, TransUNet

has surpassed other competing methods. Liu et al. (2022b)

addressed the resolution gap between training instability in large-

field view model training and application, pretraining and fine-

tuning, and hunger for labeled data. The residual postnormmethod

combined with cosine attention was used to improve the training

stability. A continuous position biasing method with logarithmic

intervals is used to effectively migrate models pretrained with

low-resolution images to downstream tasks with high-resolution

inputs. SimMIM, a self-supervised pretraining method, reduces

the need for massive labeled images. Shen et al. (2023) designed

boundary-guided transformers to accurately separate rectums from

tumors, outperforming 6-year-experienced surgeons (p < 0.001).

Wang et al. (2021) used the Transformer in 3D CNN for the

first time for MRI brain tumor segmentation, inheriting the

advantages of 3D CNN modeling local context information and

using Transformer to learn global semantic correlation. Cao et al.

(2023a) proposed Swin-Unet, a class U-Net pure Transformer for

medical image segmentation, using a Transformer-based U-type

encoder-decoder architecture with hopping connections for local

global semantic feature learning. Liu et al. (2022a) introduced

multimodal image fusion techniques for brain tumor segmentation,

including pixel and feature-level fusion. Cao et al. (2023b) proposed

a 3D convolutional neural network MBANet with 3Dmulti-branch

attention, significantly improving performance compared to other

state-of-the-artmethods. Cheng et al. (2020) proposed an improved

multitask learning method that uses a lightweight network with

TABLE 2 Ablation Experiment.

Method WT TC ET Average

GAN 0.81 0.70 0.66 0.72

DRes_GAN 0.83 0.81 0.77 0.80

DRes_SEblock_GAN 0.87 0.86 0.78 0.84

GAN is the original generative adversarial network method, DRes_GAN is a method

that substitutes a deep residual structure for the original GAN’s generative model, and

DRes_SEblock_GAN is a method that substitutes a deep residual structure combined with

an attention mechanism which is the improvement method proposed in this paper. Bold

indicates optimal results and underlined parts indicate sub-optimal results.

only two scales to segment different types of tumor regions,

achieving high Dice coefficients in the WT region segmentation.

Experiments show that adding a deep residual learning unit

to the generative adversarial network, deepening the number

of network layers, and reducing the network parameters greatly

improve the segmentation performance of the network. At the

same time, adding attention modules and distributing weights

to convolutional layers of different sizes effectively promotes the

utilization of features at different levels. Experiments show that the

network model proposed in this paper can promote the accuracy

of segmentation and effectively and accurately complete the task of

segmenting brain tumors.

Table 3 summarizes the comparison of Dice scores between

the proposed method and several state-of-the-art segmentation

methods, including the U-Net model proposed in Zheng et al.

(2021), the ResNet model proposed in Chen et al. (2022), and
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FIGURE 11

Segmentation results of di�erent models. The first column shows the expert segmentation results, the second column shows the U-Net model

segmentation results, the third column shows the SegAN model segmentation results, the fourth column shows the ResNet model segmentation

results, and the fifth column shows the segmentation results of the proposed generative adversarial network.

the SegAN model proposed in Xue et al. (2018), the TransBTS

model proposed in Wang et al. (2021), the Swin-Unet model

proposed in Cao et al. (2023a), the PFFFNet model proposed in

Liu et al. (2022a), the MBANet model proposed in Cao et al.

(2023b), and the PGMLNet model proposed in Cheng et al.

(2020). These dice scores range from 0.80 to 0.90 for whole tumor

segmentation using these improved segmentation methods. The

proposed method achieves the highest dice scores for tumor core

and enhanced tumor region segmentation, with scores of 0.86 and

0.78, respectively, while ensuring a high dice score for total tumor

segmentation. Furthermore, ourmodel achieves the highest average

value when the averages for the whole tumor, tumor core, and

enhanced tumor dice scores are considered. These results clearly

demonstrate that the improved method in this paper outperforms

other algorithms.

We further investigated the statistical significance of the

performance improvement for the proposed MMGAN using the

paired t-test. The p-values are listed in Table 4, respectively. As

shown in Table 4, compared with the other supervised learning-

based methods, the proposed MMGAN achieved significant

improvement in terms of the main evaluation metrics (Dice), with

p-values less than 0.05. Table 4 further proved the effectiveness

of the proposed MMGAN. Compared with those of the other

methods, the segmentation accuracies of both MMGAN have been

significantly improved.

TABLE 3 Dice comparison of di�erent segmentation methods.

Method WT TC ET Average

U-Net (Zheng et al., 2021) 0.80 0.63 0.60 0.68

SegAN (Xue et al., 2018) 0.85 0.70 0.66 0.74

Resnet (Chen et al., 2022) 0.87 0.74 0.77 0.79

TransBTS (Wang et al., 2021) 0.88 0.81 0.78 0.82

Swin-Unet (Cao et al., 2023a) 0.89 0.78 0.78 0.82

PFFFNet (Liu et al., 2022a) 0.89 0.81 0.77 0.82

MBANet (Cao et al., 2023b) 0.89 0.83 0.78 0.83

PGMLNet (Cheng et al., 2020) 0.90 0.82 0.76 0.83

MMGan (ours) 0.87 0.86 0.78 0.84

The WT, TC, and ET regions as well as the average of the three regions are calculated and

displayed, where the optimal results are indicated in bold font and the suboptimal results are

underlined.

In this study, for the brain tumor data preprocessing and

segmentation method, the accuracy of brain tumor segmentation

is improved by improving the network model, and some results

are proved by experiments. However, There are some limitations of

this work. Firstly, we only improve the segmentation model with

the structure of the segmentation model by combining the deep
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TABLE 4 The statistical significance of the performance improvement for

the proposed MMGAN using the paired t-test.

P-value

MMGan - U-Net (Zheng et al., 2021) <0.001

MMGan - SegAN (Xue et al., 2018) 0.008

MMGan - Resnet (Chen et al., 2022) 0.003

MMGan - TransBTS (Wang et al., 2021) 0.009

MMGan - Swin-Unet (Cao et al., 2023a) 0.032

MMGan - PFFFNet (Liu et al., 2022a) 0.015

MMGan - MBANet (Cao et al., 2023b) 0.020

MMGan - PGMLNet (Cheng et al., 2020) 0.038

residual structure and the attention mechanism. Subsequently, the

hyperparameters of the model can be adjusted by correcting the

discriminative network to achieve better training results. Secondly,

we only use the multi-scale L1Loss function to compute the

loss to optimize the network, in recent years, there are many

methods that have been proposed to compute the loss, such as

the common cross-entropy Loss function (Yeung et al., 2022),

the absolute value Loss function, the square Loss function and

so on for comparison. Therefore, in the subsequent research,

different loss functions can be applied to compute the loss to

optimize the network and compare the differences between them

and their impact on the network performance. Finally, designing

and training deep neural networks from scratch for a specific

task can be a daunting and time-consuming process. Different

structures and initialization procedures can significantly impact

the final performance of the neural network. However, transfer

learning can be viewed as a solution for transferring information

gathered in the source domain and then fine-tuning it in the

target domain to obtain satisfactory performance, assuming that

the distance between the target and source domains is close enough.

Using pre-trained models from state-of-the-art algorithms is a

common transfer learning scheme, providing an efficient way for

brain tumor segmentation using information from brain tissue

segmentation or abnormal segmentation of other organs.

5 Conclusion

Segmenting lesions or deformities in medical images requires

greater precision than in natural images. Small segmentation

errors in medical images can mislead inexperienced users or

significantly affect computer-aided care. Therefore, in medical

image segmentation, it is necessary to develop a model that

can accurately restore the details of the target object. In this

paper, several research experiments were conducted to achieve

accurate segmentation of multimodal brain tumor data. These

experiments included using the ECA energy function of the

Canny operator combined with the LBF energy function of the

traditional horizontal set to strengthen the detection of the target

edge, cropping each modal image to more accurately remove

the redundant background area, adopting the U-shaped codec

structure in the generative model, and using the deep residual

unit as the basic structure of the network to improve the problem

of training difficulties faced by deep learning networks. These

improvements significantly improved both the gradient vanishing

of the training process and the strength of its correlation. To further

improve the accuracy of the segmentation of different regions of

brain tumors, attention mechanisms were added during the coding

stage to add a signal that is more sensitive to smaller details.

Finally, qualitative and quantitative experiment analysis proved

the improved model’s correctness. Subsequently, the discriminant

network can be modified to adjust the model’s hyperparameters

to achieve better training results. Different loss functions can also

be applied to calculate losses to optimize the network, such as the

common cross-entropy loss function, absolute value loss function,

square loss function, etc., and compare these different loss functions

and their impact on network performance.
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