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A typical absence seizure is a generalized epileptic event characterized by a

sudden, brief alteration of consciousness that serves as a hallmark for various

generalized epilepsy syndromes. Distinguishing between similar interictal and ictal

electroencephalographic (EEG) epileptiform patterns poses a challenge. However,

quantitative EEG, particularly spectral analysis focused on EEG rhythms, shows

potential for di�erentiation. This study was designed to investigate discernible

di�erences in EEG spectral dynamics and entropy patterns during the pre-ictal

and post-ictal periods compared to the interictal state. We analyzed 20 EEG

ictal patterns from 11 patients with confirmed typical absence seizures, and

assessed recordings made during the pre-ictal, post-ictal, and interictal intervals.

Power spectral density (PSD) was used for the quantitative analysis that focused

on the delta, theta, alpha, and beta bands. In addition, we measured EEG

signal regularity using approximate (ApEn) and multi-scale sample entropy (MSE).

Findings demonstrate a significant increase in delta and theta power in the pre-

ictal and post-ictal intervals compared to the interictal interval, especially in the

posterior brain region. We also observed a notable decrease in entropy in the

pre-ictal and post-ictal intervals, with a more pronounced e�ect in anterior brain

regions. These results provide valuable information that can potentially aid in

di�erentiating epileptiform patterns in typical absence seizures. The implications

of our findings are promising for precision medicine approaches to epilepsy

diagnoses and patient management. In conclusion, our quantitative analysis of

EEG data suggests that PSD and entropy measures hold promise as potential

biomarkers for distinguishing ictal from interictal epileptiform patterns in patients

with confirmed or suspected typical absence seizures.

KEYWORDS

EEG, entropy, epilepsy, ictal, interictal, spectral analysis, spike-and-wave, typical absence

seizure
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1. Introduction

A typical absence seizure is a generalized epileptic event

characterized by a sudden, brief alteration of consciousness

(Bancaud et al., 1981). During these seizures, individuals often

experience loss of awareness and may struggle to recall events

that occurred during the episode (Fisher et al., 2017). In-depth

semiological analysis can reveal subtle clonic movements that

affect various facial regions (Sadleir et al., 2006). Oral and

manual automatisms are frequently observed, and patients may

show a tendency to continue a behavior that was occurring

before seizure onset (Sadleir et al., 2009). Typical absence

seizures are an important hallmark of many generalized epilepsy

syndromes. They can be examined effectively through simple visual

observation (Hirsch and Panayiotopoulos, 2005). Recently, video-

electroencephalographic (video-EEG) monitoring has become a

valuable tool for investigating these seizures, but it may not be

readily available in resource-limited regions where EEG procedures

often do not include video acquisition. Consequently, if the

technician fails to capture the event during EEG recording (i.e.,

by not examining the patient), the only means to confirm the

occurrence of an absence seizure is through EEG analysis.

The classic EEG pattern observed during a typical absence

seizure is characterized by regular, generalized spike-and-wave

activity, with a predominant anterior distribution occurring

at a frequency of 3 Hz (Koutroumanidis et al., 2017). In

certain cases, slight variations in this pattern may include

faster irregular spike-and-wave activity, ranging from 3.5–6

Hz, or polyspike-and-wave complexes (Panayiotopoulos et al.,

1989). It is important to note, however, that patients may

also exhibit interictal epileptiform discharges that share similar

features with the ictal pattern, making differentiation challenging

(Antwi et al., 2019; Springer et al., 2022). Some features may

provide clues to the ictal nature of the pattern, including

longer duration, greater frequency, morphology, or evolution, as

well as the presence of movement artifacts (e.g., blinking) that

may be indicative of an ictal pattern (Koutroumanidis et al.,

2017).

Differentiating between ictal and interictal EEG patterns in

patients with suspected typical absence seizures is crucial for

two main reasons. First, accurate diagnoses are essential for

patients with suspected epilepsy. Studies have shown that first-

degree healthy relatives of individuals with epilepsy can exhibit

interictal epileptiform discharges on their EEGs (genetic traits)

(Tashkandi et al., 2019). Therefore, distinguishing these patterns

accurately is necessary to avoid misdiagnoses in such cases. Second,

differentiating between ictal and interictal patterns is crucial for

managing patients with confirmed epilepsy, as the presence of an

ictal pattern on EEG recordings may indicate treatment failure

and the need to readjust the medication prescribed. Correct

identification of these patterns, then, will assist clinicians in

making appropriate decisions regarding treatment strategies and

optimizing patient care.

However, experience has shown that in some cases, qualitative

analysis of EEG recordings through simple visual inspection may

not suffice to make definitive determinations (Blumenfeld, 2005).

Additional diagnostic techniques and expert interpretation may be

necessary to accurately differentiate between these patterns (Trenité

and Vermeiren, 2005).

Quantitative EEG analysis (qEEG) involves applying

mathematical techniques to time series data to reveal, or extract,

information that may not be readily apparent to the human eye.

In recent years, qEEG has proven to be a valuable tool in various

clinical contexts (Kramer and Kromm, 2019; Koberda, 2021;

Tenney et al., 2021; Munjal et al., 2022). One widely used approach

in clinical practice consists in analyzing spectral components by

means of the classic measures that include absolute and relative

power.

Numerous studies in the field of epilepsy research have focused

on analyzing the EEG power spectrum (Clemens et al., 2021; Irelli

et al., 2022; Zhong et al., 2022). Among these, special attention has

been given to the alpha rhythm, which is influenced by cortico-

thalamic interactions. These cortico-thalamic interaction have been

demonstrated to play a crucial role in generating generalized

seizures and spike-and-wave discharges (Bai et al., 2010; Carney

et al., 2010).

The hypothesis of this work, thus, concerns the neural

dynamics that occur in the moments immediately preceding

and following a typical absence seizure. We speculate that these

dynamics may induce subtle modifications in background EEG

activity, such as slowing, which could potentially be detected in

the spectral characteristics of the signals recorded. The study,

therefore, analyzes whether discernible differences in the spectral

content and the regularity of EEGs during the pre-ictal and

post-ictal periods, compared to the interictal state, can serve as

indicators to distinguish between the ictal and interictal nature of

the epileptiform patterns observed.

2. Materials and methods

2.1. Participants and EEG recording

Eleven patients (seven females) were recruited from the

Epilepsy Clinic at the “Country 2000” Hospital in Jalisco, Mexico,

based on the following criteria: (a) age 5–19 years; (b) confirmed

diagnosis of either childhood or juvenile absence epilepsy according

to the International League Against Epilepsy classification; (c)

presence of ictal EEG patterns (3–4 Hz bilateral spike-and-

wave discharges) with normal background; and (d) not on anti-

seizure medication at the moment of EEG recording. Potential

candidates with (a) structural brain abnormalities; (b) neurological

or psychiatric disorders; or (c) excessive interference or poor EEG

data quality were excluded.

All these patients were referred to the Clinic to undergo an EEG

because of clinical events suspecting typical absence seizures. In

fact, the EEG led to the confirmation of the diagnosis. That is why

all these patients were not on antiseizure medication at the moment

of the EEG. Six out of the seven patients demonstrated a previous

normal history and just recently had started with these suspicious

clinical events. Only one adolescent patient referred a prior bilateral

tonic-clonic (BTC) seizure at the age of 11 (4 years before the EEG).

We are aware that the potential underreporting or overlooking

of typical absence seizures by patients and their caregivers might
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complicate the precise onset timing of the epilepsy. Regarding

the particular case of the adolescent with the previous BTC

seizure, there is a chance that the epilepsy might have started

at that moment. However, we could not rule out that it was a

symptomatic seizure. Not withstanding, we decided to categorize

all these patients with new-onset epilepsy, while acknowledging the

possibility of delayed recognition.

A total of 20 typical absence seizures from these patients

were extracted from their EEGs for inclusion in the analysis. All

seizures were confirmed through behavioral testing by the EEG

technician (online) and analyzed by means of video-EEG by expert

clinical epileptologists/neurophysiologists (offline). All EEGs were

recorded using 21 electrodes placed according to the International

10–20 System, employing a Cadwell Arc Essentia 32 Channel

Clinical EEG system (high-pass filter: 0.53 Hz; low-pass filter: 70

Hz; sampling rate: 256 Hz; <5 k�) (Figure 1).

The study protocol was approved by the ethics committee of

the “Country 2000” Hospital, and all procedures were conducted

following the standards of the Helsinki Declaration. Written

informed consent was obtained from each participant (for adults)

or her/his parents (for children).

2.2. EEG pre-processing

In this study, EEG recordings were low-filtered with a cutoff

frequency of 55 Hz. Distinct pre-ictal, post-ictal, and interictal

segments were considered from each EEG seizure recorded. The

pre-ictal segment included a temporal window of 1s prior to the

onset of the seizure, while the post-ictal segment comprised the 1s

interval following the termination of seizure activity (Figure 2). Not

always typical absence seizures start and finish abruptly. Therefore,

we decided to rule out 1 second prior to the initial deflection of

the first spike of the discharge and 1s after the final deflection of

the last wave of the discharge. We then selected for the analysis the

1s windows before and after these previously ruled-out windows

and categorized them as pre-ictal and post-ictal states respectively.

The temporal markers for both the pre-ictal and post-ictal segments

were identified by the medical specialist. The interictal segment

was selected while patients were in the eyes-closed condition. All

segments were standardized to a duration of 1s to ensure the

quasi-stationarity of the EEG signals.

2.3. Power spectrum analysis

After pre-processing, the power spectral density (PSD)

(Equation 1) of each EEG channel was computed using Fast Fourier

Transformation (FFT).

PSD(f ) = 10 ∗ log(|̂x(f )|2) (1)

A comprehensive assessment of the absolute energy in specific

frequency bands—delta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz),

and beta (14–30 Hz)—was conducted. To quantify the energy of

each frequency band, we estimated the energy of all frequencies.

Considering the factor of inter-subject variability, and in order

to facilitate comparisons, all energy values were normalized by

dividing each one by the standard deviation of the corresponding

frequency band. Finally, the mean energy value for each EEG

channel was computed for the interictal, pre-ictal, and post-ictal

states for each frequency band.

2.4. Entropy

We computed the approximate (ApEn) (Sakkalis et al., 2013)

and multi-scale sample entropy (MSE) (Costa et al., 2005) to

quantify the regularity of the time series data (Pincus, 1991;

Richman and Moorman, 2000). ApEn is used to assess the degree

of regularity in the data, with smaller values indicating higher

regularity, and larger ones suggesting reduced regularity (Acharya

et al., 2012). ApEn can also detect changes in underlying episodic

behavior that might not be evident in the data on peak occurrences

or amplitudes (Pincus and Keefe, 1992). This tool was also used

to compare regularity across the interictal, pre-ictal, and post-ictal

states. The computation of ApEn is defined by Equations 2, 3:

ApEn = 8m − 8m+1 (2)

with,

8m = (N −m+ 1)−1
N−m+1∑

i=1

log(Ni) (3)

where N denotes the number of data points and m represents the

number of samples where two segments are expected to exhibit

similarity. To address variability in the time scales present in the

biological signals recorded, we extended the analysis to multi-

scale sample entropy, an approach that enhanced the robustness of

our quantification of regularity. In summary, our comprehensive

data set incorporates various measures, including the energy in

four frequency bands, ApEn, and MSE, for all channels in each

time window. Each segment in the dataset was labeled to indicate

whether it corresponds to an interictal, pre-ictal, or post-ictal state.

2.5. Statistical analysis

After calculating the average energies and entropies for each

electrode, all features were normalized to Z-score values by

subtracting their corresponding mean and dividing by their

standard deviation (Figure 3). This approach was chosen to (i)

mitigate biases resulting from individual feature scales; and (ii)

focus on the nature of the distribution. Subsequently, outliers were

removed from each feature. An outlier was defined as a value that

fell outside 1.5 times the inter-quartile range below the 1st and

above the 3rd quartile. To conduct the statistical analysis based on

seizure behavior, the electrodes were categorized into four groups:

anterior (Fp1, Fp2, F3, F4, Fz), posterior (O1, O2, P3, P4, Pz),

temporal (F7, F8, T7, T8, P5, P6), and central (C3, C4) (Figure 1).

After that, a statistical pipeline was driven on each electrode

set. The pipeline consisted of a one-way ANOVA test to evaluate
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FIGURE 1

EEG set-up and electrode clusters used to conduct the statistical analysis.

FIGURE 2

Example of the 1 second windows chosen for the interictal, pre-ictal, and post-ictal states.

significant differences among the interictal, pre-ictal, and post-

ictal intervals for each feature. For the characteristics that

showed differences, a Benjamini-Hochberg procedure for multiple

comparisons was applied between time intervals. This approach

allowed us to identify statistical differences between pairs of

ictal windows.

3. Results

Electrophysiological activity was analyzed during the three

intervals identified above: interictal, pre-ictal, and post-ictal, for

each frequency band (delta, theta, alpha, beta). The distributions of

energy and entropy are presented in Figures 4, 5, respectively. To

explore significant differences among these intervals for regional

electrodes, a statistical pipeline was performed, as detailed in the

Materials and methods section. Results of the statistical analysis are

shown in Tables 1, 2.

3.1. Regions

For the anterior region, we found significant differences in

delta, theta, alpha, ApEn, and MSE (p < 0.001 in all cases). Post-

hoc analysis revealed that post-ictal delta power was higher than

interictal (p < 0.001) and pre-ictal power (p < 0.001), whereas

the data for the interictal and pre-ictal periods generated non-

significant (NS) differences. Regarding theta power, there was a

significant difference among the three intervals, with post-ictal

showing higher power than pre-ictal and interictal (p < 0.05, p

< 0.001, and p < 0.05, respectively). For the alpha band, pairwise

comparisons showed higher power for the post-ictal compared

to the pre-ictal (p < 0.05) and interictal (p < 0.05). Regarding

entropy, both ApEn and MSE were lower for the post-ictal interval

compared to the pre-ictal and interictal intervals (p < 0.001 in all

cases).

In the posterior region, we observed significant differences in

delta, theta, ApEn and MSE (p < 0.05 in all cases) as well as for

the beta (p < 0.001). Pairwise comparisons showed that interictal
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FIGURE 3

Normalized average energy in the delta (δ), theta (θ ), alpha (α), and beta (β) bands of all windows corresponding to the interictal, pre-ictal, and

post-ictal states.

delta power was lower than pre-ictal (p < 0.05) and post-ictal

(p < 0.05), whereas pre-ictal and post-ictal intervals showed non-

different powers (NS). Regarding theta, only the post-ictal interval

showed higher power compared to the interictal one (p< 0.05). For

the beta band, individual comparisons showed lower power for the

pre-ictal interval compared to the post-ictal interval (p< 0.05), but

higher power when compared to the interictal period (p < 0.05).

Regarding entropy, both ApEn and MSE showed non-significant

differences when comparing the pre-ictal and post-ictal intervals

(NS).

The temporal region showed a similar pattern to the posterior

one, with significant differences in delta, theta, beta, ApEn, and

MSE (p < 0.001 in all cases). Post-hoc analysis revealed that

post-ictal delta power was higher than pre-ictal and interictal

(p < 0.001 in both cases), while the pre-ictal and interictal

intervals showed non-different powers (NS). Regarding theta,

there was a significant difference among the three intervals, with

the post-ictal interval showing higher power than the pre-ictal

and interictal periods (p < 0.05, p < 0.001, and p < 0.05,

respectively).

For the beta band, individual comparisons showed lower power

for the pre-ictal interval compared to the post-ictal interval (p

< 0.05), but higher powet when compared to the interictal period

(p< 0.001). Regarding entropy, only ApEn showed non-significant

difference when comparing the interictal and pre-ictal intervals

(NS).
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FIGURE 4

Distribution of Z-score values for the ictal energies in the brain regions studied. Diamonds show the mean of the distribution.

FIGURE 5

Distribution of Z-score values for the ictal entropies in the brain regions studied. Diamonds show the means of the distributions.

The central region only showed a significant difference between

the interictal and post-ictal intervals in thetawith a higher power in

the latter (p < 0.05).

3.2. Intervals

For the interictal interval, significant differences were observed

only for theta and alpha (p < 0.001 in both cases). Post-hoc analysis

showed that theta power was higher in the posterior region that

to the anterior and central regions (p < 0.001 and p < 0.05,

respectively). For the alpha band, individual comparisons also

showed higher power in the posterior region compared to anterior

and central regions (p < 0.001 and p < 0.05, respectively). The

temporal region also showed a higher power compared to the

anterior one in the alpha band (p < 0.05).

Regarding the pre-ictal interval, there were differences in delta,

theta, alpha (p < 0.001 in all cases), and beta, ApEn and MSE (p

< 0.05 in these cases). Pairwise comparisons showed that delta

power was higher in the posterior region compared to the anterior

(p < 0.05), temporal (p < 0.05), and central (p < 0.05) regions.

Regarding theta, there was also a higher power in the posterior

region compared to the anterior (p < 0.001) and central (p <

0.001)regions, but not to the temporal (NS) region. In addition, a

higher theta power was observed in the temporal region compared

to the anterior (p < 0.05) and central (p < 0.05) regions.

For the alpha band, individual comparisons also showed higher

power in the posterior region compared to the anterior (p <

0.001) and central (p < 0.001), but not to the temporal (NS)

region. A higher alpha power was also observed in the temporal

region compared to the anterior (p < 0.001) and central (p <

0.05) regions. Beta power only differed statistically between the

posterior and central regions (p < 0.05), with a higher power

in the former. Regarding entropy, only MSE showed a significant

difference between the posterior and anterior regions (p < 0.05),

with higher entropy in the latter.

With respect to the post-ictal interval, there were differences in

delta (p< 0.05), theta (p< 0.05), alpha (p< 0.05), ApEn, andMSE

(p < 0.001 in both cases). Individual comparisons showed only a

higher delta power in the anterior compared to the central region

(p < 0.05). For the alpha band, higher power was observed in the

posterior region compared to the anterior (p < 0.05), temporal (p

< 0.05), and central (p < 0.05) regions. Regarding entropy, these

comparisons showed significantly higher ApEn and MSE in the

anterior region compared to the temporal (ApEn, p< 0.05), central
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TABLE 1 P-values obtained in the one-way ANOVA tests and their post-hoc analyzes for each feature between brain regions.

Anterior Posterior Temporal Central

Inter-Pre 0.2136 0.0242 0.2667 0.2667

Inter-Post 0.0000 0.0036 0.0001 NSdelta

Pre-Post

0.0000

0.0000

0.0054

0.5760

0.0000

0.0001

NS

NS

Inter-Pre 0.0016 0.0653 0.0017 0.1089

Inter-Post 0.0000 0.0018 0.0000 0.0029theta

Pre-Post

0.0000

0.0105

0.0019

0.1305

0.0000

0.0306

0.0026

0.0897

Inter-Pre 0.2303 NS NS NS

Inter-Post 0.0014 NS NS NSalpha

Pre-Post

0.0004

0.0081

NS

NS

NS

NS

NS

NS

Inter-Pre NS 0.0055 0.0001 NS

Inter-Post NS 0.5773 0.0312 NSbeta

Pre-Post

NS

NS

0.0005

0.0029

0.0001

0.0263

NS

NS

Inter-Pre 0.2757 0.0285 1.0000 NS

Inter-Post 0.0000 0.0031 0.0000 NSApEn

Pre-Post

0.0000

0.0000

0.0048

0.4845

0.0000

0.0000

NS

NS

Inter-Pre 0.1434 0.0546 0.0491 NS

Inter-Post 0.0000 0.0015 0.0000 NSMSE

Pre-Post

0.0000

0.0000

0.0024

0.4144

0.0000

0.0000

NS

NS

p-value 0.001 0.05 0.1 NS

To facilitate reading and interpretation, red indicates non-significant tests, orange, tests with p < 0.1, yellow for p < 0.05, and green for p < 0.001.

(ApEn and MSE, p < 0.001), and posterior (ApEn, p < 0.001;

MSE, p < 0.05) regions. Finally, higher ApEn andMSE values were

determined in the temporal region compared to the central region

(p < 0.05).

4. Discussion

Differentiating between ictal and interictal EEG patterns in

patients with typical absence seizures has long been a focal point

for both clinicians and researchers. Recently, interest has grown

in utilizing novel qEEG analysis techniques to further explore

these phenomena (Antwi et al., 2019; Li et al., 2022; Springer

et al., 2022; Zhong et al., 2022). The primary objective of our

study was to investigate whether distinguishable differences exist

in the spectral and entropy characteristics of EEGs in the pre-

ictal and post-ictal periods compared to the interictal interval in

a group of patients with typical absence seizures. By exploring

these spectral distinctions. We sought to ascertain whether they

can potentially serve as valuable clinical indicators that will aid in

differentiating between the ictal and interictal nature of observed

epileptiform patterns.

Regarding the slow bands (delta and theta), we found a

significant difference between the interictal and peri-ictal (pre-

ictal and post-ictal) intervals across distinct brain regions. This

finding partially concurs with previous reports, as some authors

have demonstrated an increase in the power of lower bands during

the transition from the pre-ictal to ictal, and ictal to post-ictal,

states in patients with childhood absence epilepsy (CAE) (Kumar

et al., 2021). However, others have reported findings that lead

to the opposite conclusion. For example, Li et al. (2022), found

a decrease in delta oscillations from the interictal to the pre-

ictal state in a group of 21 patients with CAE. They proposed

that this result could be explained by decreased cortical activity

associated with slow oscillation in the brain. We, however, find

this explanation difficult to support in light of the corpus of

earlier observations.

In clinical practice, visual inspection of background EEG

activity in children and adolescents occasionally shows slowing.

For example, occipital intermittent rhythmic delta activity

(OIRDA) is an interictal pattern commonly seen in CAE

patients (Hirsch et al., 2022), some of whom may show a

continuous transition from OIRDA to an ictal epileptiform

pattern (Aird and Gastaut, 1959; Guilhoto et al., 2006).

These authors also suggested that an OIRDA pattern should

be interpreted as epileptiform in nature (Guilhoto et al.,

2006).

An increase in delta and theta activity prior to the ictal

epileptiform pattern has also been verified in animal models.

For example, van Luijtelaar et al. (2011) showed that the

simultaneous presence of delta and theta events in EEGs is a

condition for the occurrence of generalized spike-and-wave
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TABLE 2 P-values obtained in the one-way ANOVA tests and their post-hoc analysis for each feature between brain regions.

Inter-ictal Pre-ictal Post-ictal

Ant-Temp NS 0.8421 0.7865

Ant-Cen NS 0.6374 0.0141

Ant-Pos NS 0.0055 0.7052

Temp-Cen NS 0.2645 0.0703

Temp-Pos NS 0.0498 0.9971

delta

Cen-Pos

NS

NS

0.0005

0.0014

0.0268

0.1169

Ant-Temp 0.0629 0.0063 0.2493

Ant-Cen 0.9980 0.9501 0.9841

Ant-Pos 0.0007 0.0001 0.0867

Temp-Cen 0.3234 0.0147 0.2817

Temp-Pos 0.3415 0.6243 0.9232

theta

Cen-Pos

0.0006

0.0250

0.0000

0.0008

0.0340

0.1273

Ant-Temp 0.0013 0.0000 0.8991

Ant-Cen 0.2646 0.9405 0.9875

Ant-Pos 0.0000 0.0000 0.0095

Temp-Cen 0.7402 0.0213 0.8188

Temp-Pos 0.0678 0.1345 0.0385

alpha

Cen-Pos

0.0000

0.0317

0.0000

0.0001

0.0037

0.0299

Ant-Temp NS 0.1068 NS

Ant-Cen NA 0.8390 NS

Ant-Pos NS 0.0569 NS

Temp-Cen NS 0.0533 NS

Temp-Pos NS 0.9878 NS

beta

Cen-Pos

NS

NS

0.0053

0.0307

NS

NS

Ant-Temp NS 0.9995 0.0205

Ant-Cen NS 0.9967 0.0000

Ant-Pos NS 0.0587 0.0003

Temp-Cen NS 0.9992 0.0071

Temp-Pos NS 0.0626 0.5164

ApEn

Cen-Pos

NS

NS

0.0369

0.3245

0.0000

0.1286

Ant-Temp NS 0.8076 0.0803

Ant-Cen NS 0.9826 0.0000

Ant-Pos NS 0.0165 0.0099

Temp-Cen NS 0.9911 0.0105

Temp-Pos NS 0.1393 0.8014

MSE

Cen-Pos

NS

NS

0.0207

0.2422

0.0000

0.0791

p-value 0.001 0.05 0.1 NS

For a more readable interpretation, colors are displayed as red for non-significant tests, orange for those with p < 0.1, yellow for p < 0.05, and green for p < 0.001.

discharges in WAG/Rij rats. Studies using blood oxygen level

dependent functional magnetic resonance imaging (BOLD-

fMRI), meanwhile, have evidenced signal increases in various

brain regions more than 5s before the onset of electrographic

seizures (Bai et al., 2010). It seems, therefore, that a global

increase in delta and theta band power immediately before

an ictal epileptiform pattern may be a potential biomarker

for differentiation compared to an interictal epileptiform
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pattern, though this possibility needs to be explored in

greater depth.

Our study also showed a significantly different pattern of

spectral changes between regions. Although we found an increase

in the power of the slow bands across all regions, the most

pronounced effect was detected in the posterior area. This finding

is not in line with previous work, since some authors have reported

a predominant change in the frontal region immediately before

the seizure, based on both EEG (Li et al., 2022) and BOLD-fMRI

analyzes (Bai et al., 2010).

Several theories on the brain onset of absence seizures have

been proposed. Most suggest a complex interplay between cortical

(i.e., frontal, parietal) and subcortical (i.e., thalamus) structures

(Meeren et al., 2005). Because of the well-known spatial resolution

limitation of EEG recordings and our low-density electrode array,

we decided not to explore this issue in detail. However, our

findings suggest that a quantitative spectral metric with greater

posterior focus could be more suitable for differentiating ictal vs.

interictal epileptiform patterns in cases of epilepsy with typical

absence seizures.

Regarding entropy, our study revealed a significant decrease

from the interictal to the pre-ictal and post-ictal intervals, a

decrease that had an anterior predominance compared to the other

regions. Entropy is a non-linear measure of the uncertainty and

has been shown to represent the level of chaos that occurs in the

brain (Costa et al., 2002). It can be deduced, then, that a system

with higher entropy is more irregular or chaotic. Translating this

into brain physiology, there is increasing evidence that various

pathological processes are associated with atypical and often, but

not always, reduced measures of brain physiological complexity

or entropy (Escudero et al., 2006; Bosl et al., 2011). Thus, our

findings suggest that EEG-based entropy in anterior regions may

be a potential biomarker for differentiating ictal vs. interictal

epileptiform patterns in cases of epilepsy marked by typical absence

seizures.

5. Conclusion

In conclusion, this study focused on investigating

distinguishable differences in the spectral characteristics of

EEGs during the pre-ictal and post-ictal periods compared to

the interictal interval in patients with typical absence seizures.

Through the exploration of these spectral distinctions, we sought

to identify potential indicators that may aid in differentiating

between ictal and interictal epileptiform patterns. As stated above,

our findings indicate a significant increase in the power of the

slow bands (delta and theta) during the pre-ictal and post-ictal

intervals across several brain regions, especially in the posterior

area. This suggests that a global increase in delta and theta band

power immediately before an ictal epileptiform pattern could serve

as a potential biomarker for differentiation.

Our study further revealed a significant decrease in entropy

from the interictal to the pre-ictal and post-ictal intervals, with

a more pronounced effect in the anterior regions. This decrease

suggests a reduction in brain complexity during these intervals, and

supports the potential use of EEG-based entropy in anterior regions

as a biomarker for differentiating epileptiform patterns.

Despite its numerous valuable insights, however, our work

has some limitations that must be considered before confidently

generalizing its findings. First, we recognize that the sample size

was relatively small, though our research marks a crucial initial

step in quantitatively addressing this issue in clinical practice. As

we continue forward, expanding the sample size will undoubtedly

strengthen the robustness of our conclusions. Second, the absence

of a control group (a set of interictal epileptiform patterns) might

initially limit the clinical application of our findings. Nonetheless,

we are committed to performing a second-step validation study

to validate and refine our results, to ensure their reliability and

usefulness for the wider medical community. Third, while we

explored specific quantitative metrics in this study, we are aware

of the potential of other, more complex quantitative measures, for

clinical practice, as other researchers have demonstrated (Kramer

and Kromm, 2019; Munjal et al., 2022). We envision incorporating

these advanced techniques into our future research endeavors to

expand the depth and breadth of our findings.

Despite these limitations, our findings support the assertion

that quantitative analysis of pre-ictal and post-ictal intervals can

be potential EEG biomarkers to identify the ictal nature of the

epileptiform discharge and potentially differentiating it from the

interictal one in patients with confirmed or suspected typical

absence seizures. Future research, with larger sample sizes and

more complex quantitative methods, is warranted to validate and

expand these findings.
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