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Background: Person-specific computational models can estimate transcranial

direct current stimulation (tDCS) current dose delivered to the brain and predict

treatment response. Artificially created electrode models derived from virtual 10–

20 EEG measurements are typically included in these models as current injection

and removal sites. The present study directly compares current flow models

generated via artificially placed electrodes (“artificial” electrode models) against

those generated using real electrodes acquired from structural MRI scans (“real”

electrode models) of older adults.

Methods: A total of 16 individualized head models were derived from cognitively

healthy older adults (mean age = 71.8 years) who participated in an in-scanner

tDCS study with an F3-F4 montage. Visible tDCS electrodes captured within the

MRI scans were segmented to create the “real” electrode model. In contrast, the

“artificial” electrodes were generated in ROAST. Percentage differences in current

density were computed in selected regions of interest (ROIs) as examples of

stimulation targets within an F3-F4 montage.

Main results: We found significant inverse correlations (p < 0.001) between

median current density values and brain atrophy in both electrode pipelines with

slightly larger correlations found in the artificial pipeline. The percent difference

(PD) of the electrode distances between the two models predicted the median

current density values computed in the ROIs, gray, and white matter, with

significant correlation between electrode distance PDs and current density. The

correlation between PD of the contact areas and the computed median current

densities in the brain was found to be non-significant.

Conclusions: This study demonstrates potential discrepancies in generated

current density models using real versus artificial electrode placement when

applying tDCS to an older adult cohort. Our findings strongly suggest that

future tDCS clinical work should consider closely monitoring and rigorously

documenting electrode location during stimulation to model tDCS montages

as closely as possible to actual placement. Detailed physical electrode location

data may provide more precise information and thus produce more robust tDCS

modeling results.
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Introduction

The population of adults over the age of 65 has been growing
at an ever-increasing rate and is expected to double by the
year 2050 (Indahlastari et al., 2021b). This growth highlights the
heightened need for non-invasive treatment options for cognitive
decline and other brain-related health concerns. One such option
is transcranial direct current stimulation (tDCS), which is a form of
non-invasive brain stimulation aimed at improving brain functions
and mitigating diseases in the older adult population (Brunoni
et al., 2012; Woods et al., 2016). For instance, tDCS has been
shown to have positive impacts in treating depression, anxiety, and
Parkinson’s disease (Brunoni et al., 2013; Shiozawa et al., 2014;
Alizadeh Goradel et al., 2016; Hadoush et al., 2018; Razza et al.,
2020; Stein et al., 2020), as well as improving working memory
performance in cognitively healthy and impaired older adults
(Berryhill and Jones, 2012; Saunders et al., 2015; Gomes et al., 2019;
Ciullo et al., 2021; Rodella et al., 2021). The application of tDCS
involves affixing two or more electrodes, consisting of the anodes
(current injection site) and the cathodes (current removal site), to
specific positions on the scalp. This setup allows for the delivery
of a mild electrical current (e.g., 1–2 mA) to stimulate the targeted
brain regions (Indahlastari et al., 2019a, 2019b). The assumption
underlying tDCS mechanisms is that the delivered electrical
current will reach the brain tissues, causing depolarization or
hyperpolarization of neuronal membrane potentials and affecting
neural plasticity (Brunoni et al., 2012).

Previous studies suggest that the outcomes of tDCS can vary
among recipients and one important factor contributing to this
variation is inter-individual differences in anatomy. In the aging
population, this observation is particularly influenced by structural
degeneration, such as brain atrophy, which occurs during the
aging process. However, measuring the electrical current delivered
by tDCS to the cortical region in vivo remains challenging.
To overcome this, person-specific models are constructed using
individual T1-weighted MRI structural images to estimate the
distribution of current delivered by tDCS within the head. These
models are often used to compute the current dose associated
with treatment response (Huang et al., 2013; Windhoff et al., 2013;
Indahlastari and Sadleir, 2015; Indahlastari et al., 2020). Further,
age-related structural decline can affect the amount of current
delivered in the brain. For example, our previous modeling study
demonstrated that applying a fixed dosage across a sample of older
adults resulted in varying distributions of electrical current in the
brain. Fixed dosing refers to prescribing the same stimulation
parameters, including current intensity and electrode montage.
Specifically, older adults’ brains received less current compared to
their young adult counterparts when the same dosage was applied
(Indahlastari et al., 2020).

To ensure accurate model estimates, it is crucial to place the
electrodes in precise stimulation locations within the models, as
this significantly impacts the accuracy of field measure estimates.
Typically, the electrodes in tDCS computational models are
artificially created during modeling pipeline in their ideal location
based on the standard 10–20 EEG system. Our previous brief
report (Indahlastari et al., 2023) compared current density results
generated from these artificial electrodes (artificial electrode model)
to those generated by using segmented electrodes at their real

location (real electrode model). Our prior findings indicated that
electrical current distribution produced from using artificially
placed electrodes were significantly different from those using real
electrode location, with varying percent difference ranging from
6.59 to 35.54% in the brain. Differences in current densities within
each tissue compartment ranged from 20.55 to 37.22%, with skin
exhibit the largest discrepancy (Woods et al., 2015; Opitz et al.,
2016; Indahlastari et al., 2019a; Knotkova et al., 2019).

In a prior analysis, we demonstrated that merely using the
planned electrode locations produced current density models that
were significantly different than those generated using the actual
electrode locations (Indahlastari et al., 2023). The present paper
aims to expand our prior comparison by investigating the effects
of electrode properties due to significant changes between the
two electrode models. To that end, the current study analyzed
the differences in contact area and electrode distance that could
potentially contribute to any significant changes seen between the
two electrode models. In addition, this study also assessed whether
each electrode pipeline would be sufficient to make predictions
regarding the delivered current dose and age-related structural
decline, such as brain atrophy. We hypothesize that both electrode
pipelines can significantly predict the relationship between current
density and brain atrophy in our older adult sample. The
implication of the present study is to caution tDCS researchers
about the importance of accurately representing electrode locations
when modeling tDCS for the same study.

Materials and methods

A total of sixteen cognitively healthy older adults (mean
age = 71.8 years) received in-scanner tDCS during MR imaging
sessions. Cognitive status was determined using the Montreal
Cognitive Assessment (MoCA) and deemed healthy with a score
of 20 and above. Additional details and information pertaining
to participant screening and recruitment can be found in the
previously published paper by Nissim et al. (2019). Individual
T1-weighted images were converted to head models using a
combination of manual and automatic processes. All models were
executed using ROAST with minimal modification to simulate an
end-to-end automatic tDCS modeling pipeline. Auto-segmented
tissues were further corrected manually to ensure that any
discrepancy in the generated results were only sourced from
the different electrode models instead of from inaccurate tissue
assignments. Individual segmented volumes in both electrode
pipelines were identical to isolate the differences in current
densities as originating solely from different electrode models.
Further details of the study methods are outlined in the following
subsections.

Imaging parameters and tDCS set-up

T1-weighted images relevant to model construction were
generated using the MPRAGE sequence in a 3T Philips Achieva
MRI Scanner (FOV = 240 × 240 × 170 mm, voxel size = 1 mm3,
TR = 7 ms, TE = 3.2 ms, flip angle = 8◦). Conventional tDCS was
applied inside the MR scanner using a NeuroConn DC-Stimulator
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for 12 min during the active condition and for 30 s during the sham
condition, with an additional 30 s of ramp up/down. Prior to the
imaging session, two 5 × 7 cm rubber pad electrodes with a layer
of Ten20 conductive paste (∼5 mm thickness) were affixed to each
participant at the F3 (cathode) and F4 (anode) locations following
the standard 10–20 EEG System outside of the MR scanner (Nissim
et al., 2019). A 32-channel head coil was then placed on participant’s
head after the electrodes were affixed to the head, prior to the start
of the MRI scan.

Head model construction

Acquired T1-weighted images were converted into head models
using a combination of automatic and manual processes. Each
head model was segmented into six tissue types: white matter
(including optic nerve and spinal cord), gray matter, cerebrospinal
fluid (CSF), bone, air, and skin. The number of tissue types
were selected to match the default setting of the ROAST 3.0
pipeline (Huang et al., 2019). All automatically segmented tissues
of white matter, gray matter, CSF, bone, and air were manually
corrected in Simpleware ScanIP module (Synopsys Ltd., CA, USA)
with a reference to an atlas following our published methods
(Indahlastari et al., 2021a). The remaining tissue regions outside
of the five segmented masks were categorized as skin. Since the
head coil was placed over the electrodes at the time of stimulation,
an imprint of electrode paste at each electrode location was
visible on the scalp/skin mask (Figure 1, Appendix B, in the
Supplementary material). Fully segmented head volumes were
then exported to ROAST for the remaining modeling steps. Details
of each modeled electrode’s construction are described in the next
subsections.

Artificial electrode model
The artificial electrode pad and gel were generated by

executing the default ROAST pipeline. Each electrode and gel
were placed at the F3 (cathode) and F4 (anode) locations on our
segmented volumes. Since the auto-segmented skin had imprints
of actual electrodes, the auto-generated gel in ROAST did not
cover the entire electrode and scalp interface area, leaving a
gap between generated electrodes and the scalp (skin mask).
Prior to volume meshing, the missing gel regions were manually
added in Simpleware to ensure there is no gap between the
electrodes and the scalp.

Real electrode model
Since tDCS was performed inside the MR scanner, the electrode

and paste were visible in acquired T1-weighted images for each
participant, as illustrated in Supplementary Figure 2 (Appendix B,
in the Supplementary material). Each electrode pad and paste
were manually segmented from the T1 images in Simpleware
and exported as binary masks to run the real electrode models.
These segmented electrode pad and paste volumes then replaced
the automatically generated electrode pad and gel (artificial
electrodes) within ROAST.

Finite element simulation

The remaining portions of the modeling pipeline, including
volume meshing and solution generation, for both electrode
models were executed using ROAST 3.0 within Matlab R2020a
(Mathworks, Natick, MA). The input command in ROAST assigned
F4 as the anode electrode and F3 as the cathode electrode with
a 70 × 50 × 3 mm pad size and 2 mA input current. In the
default ROAST, the size of the gel including the thickness mimics
the dimensions of the assigned pads. White matter, gray matter,
CSF, bone, and skin were assigned ROAST’s default conductivity
values of 0.126S/m, 0.276S/m, 1.65S/m, 0.01S/m, and 0.465S/m,
respectively (Bestmann and Ward, 2017; Huang et al., 2019). An
additional conductivity of 0.3178 S/m was assigned to the electrode
paste (Gilad et al., 2007) within the real electrode models. The
segmentation steps within ROAST were skipped to accommodate
for using the corrected segmentation volumes as input. The
electrode placement module of ROAST, during which artificial
electrodes are placed, was skipped during real electrode model
execution. Both electrode models were meshed using iso2mesh
and solved with getDP within the ROAST software. The Neumann
boundary condition was assigned using the open-source solver
getDP, which injects current at the F4 electrode and removes it at
the F3 electrode, while ensuring that there is no current leakage
anywhere on the head surface. The simulation produced 32 electric
field volumes, comprising 16 real models and 16 artificial models.
Current density volumes were then generated by multiplying the
electric field volumes with conductivity volumes of the six tissue
types.

Electrode property

In each electrode model, electrode contact area information
for artificial and real electrodes were sourced from the ROAST
output. The normalized electrode areas were computed by dividing
each contact areas by the averaged contact areas for the anode and
cathode electrodes within the artificial electrode model, and then
averaging the overall anode and cathode values together. We found
that the generated contact areas from ROAST default deviated from
the intended 35 cm2 electrode size. We believe this discrepancy
occurred from variations in scalp topology, which differed between
individual heads. Consequently, the electrodes might not always
perfectly align with the scalp or achieve a precise 35 cm2 coverage.
Due to this inconsistency, we calculated the average for all ’artificial’
contact areas and used this value to normalize all contact areas.
Since our study aims to compare the electrode properties of
the two pipelines, we chose not to use the intended contact
area value (35 cm2) and instead use the normalized values as a
metric of difference across electrodes. Electrode separation distance
between the anode and cathode electrodes was computed in each
model to quantify the relative location of F3 and F4 placements.
These distances were calculated as linear distances (the Euclidean
distance) and were computed as direct distances between the
midpoints of the short electrode edges of the anode and cathode
electrodes, as illustrated in Supplementary Figure 3 (Appendix C,
in the Supplementary material).
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Current density

Field maps generated by ROAST using two distinct electrode
paradigms were compared to discern any discrepancy in the
generated results. In each participant, the generated electric
field and current density values were compared between the
artificial and real electrode pipelines. To demonstrate the practical
considerations of the effect of electrode models on delivered current
densities in the aging brain, current density volumes were further
isolated in sub-regions such as the whole brain, gray and white
matter, as well as subcortical regions of interest (ROIs). Three
ROIs were selected to represent the typical stimulation targets
for F3-F4 location, and the regions commonly found to be the
first to decline in aging populations (Indahlastari et al., 2021a).
The selected ROIs include the superior frontal gyrus (SFG) and
the middle frontal gyrus (MFG) as an anatomical representation
of the commonly functional region, the dorsolateral prefrontal
cortex (DLPFC) commonly targeted by F3-F4 montage (Rajkowska
and Goldman-Rakic, 1995; Desikan et al., 2006; Kikinis et al.,
2010; Mai and Paxinos, 2012; Cieslik et al., 2013). In addition, we
included the inferior frontal gyrus (IFG) as an alternative targeted
region with this montage (DaSilva et al., 2015; Stramaccia et al.,
2015; Thunberg et al., 2020). The temporal lobe was included as
an example of a non-target region nearby the electrode location.
All ROIs were segmented using FreeSurfer v6.0. Tissue volumes,
such as gray matter, white matter, and sub-brain regions, were
computed in Matlab to estimate brain atrophy level as represented
by a total volume ratio for each brain region (Indahlastari et al.,
2020). Median values for each electric field and current density
volumes were computed for comparison between the two electrode
models. The median values were used instead of the mean values as
median values demonstrate measures of central tendency that are
not skewed by outlier data (Laerd Statistics, 2018).

Statistical analysis

Paired t-tests between the median values of current densities
in artificial versus real electrode models were carried out using
IBM SPSS Statistics version 27. Percent differences (PD) were
computed as the absolute differences between values obtained in
artificial and real electrode models relative to the real electrode
models. In addition, linear regression analyses to correlate volume
ratio and the computed current densities in both electrode models
were also performed in SPSS. Computed current densities were
then further restricted to the four selected ROIs for each electrode
model and correlated with electrode properties to discern any
relationship between them.

Results

Electrode locations for artificial and real electrode models were
rendered on individual head models to illustrate the generated
electrode location for each electrode type. Contact areas and
separation distance between anode and cathode electrodes were
plotted to quantify the variation in the shape of the electrodes
generated across the two models. Current density and electric field

maps were also generated for each of the sixteen participants using
both the artificial and real electrode models (32 volumes total). The
details of these comparisons and further analyses are described in
the following subsections.

Electrode location

The artificial and real electrode models are rendered on
individual participants as seen in Figure 1. This figure is a rendition
from our prior brief report and is included in this paper to showcase
the electrode locations from both pipelines as rendered onto
individual participants. Figure 1A depicts the location of generated
artificial electrodes and shows more consistency in electrode shape,
distance of separation between anode and cathode, as well as
placement on each head model. In contrast, Figure 1B depicts
electrode placement for the real electrode models and visually
demonstrates larger variations in electrode shape, separation
distance, and location on the scalp. The real electrode models also
demonstrated less symmetry with respect to the midline of the head
between the location of the anode (F4) and cathode (F3) electrodes.

Contact areas and separation distances between electrodes were
computed to quantify the variation seen in electrode shape between
the two electrode models. Figure 2A illustrates the distribution
of the computed normalized electrode area across participants.
As expected, the blue circles representing contact areas in the
artificial electrode models are more consistent in size (mean ± SD:
1.00 ± 0.03) as most of the normalized areas are closer to 1
as shown in Figure 2A. On the other hand, the real electrode
models (orange diamonds) showed a larger variation of contact
areas (mean ± SD: 1.12 ± 0.12). Normalized values were computed
with respect to the average electrode size. Figure 2B depicts the
variation in electrode separation distance between the anode (F4)
and cathode (F3) electrodes in each model. In addition, overall
larger separation distances were observed for the real electrode
models (mean ± SD: 7.15 ± 1.06 cm), especially for Subject 3, 9,
and 16, compared to the artificial electrode models (mean ± SD:
4.73 ± 1.22 cm).

Field maps

The generated field measures in the form of electric field
and current density volumes isolated to the brain (gray and
white matter) regions were plotted in each head model. Figure 3
shows the electric field and current density distributions of five
participants as an example of the output from the artificial and
real electrode pipelines. The remaining field measure visualizations
can be found in our previous publication (Indahlastari et al., 2023).
Overall, the electric field distribution pattern was generally similar
across subjects with larger values in the regions near the electrodes
and smaller values in the posterior regions, farther away from the
electrodes. Both electrode models demonstrated large electric fields
on the cortical surface located between the anode and cathode
placement, which is consistent with prior research. In addition,
a more symmetric distribution of high and low values across the
brain hemispheres was seen in the artificial electrode models, which
was expected given that the electrode placement for the artificial
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FIGURE 1

Renderings of artificial and real electrode models on each participant. Participant number is denoted with numeric values below each head model.
Electrode pad (red) and paste (green) are rendered in each participant for (A) artificially generated electrodes (artificial electrode models) and (B)
segmented electrodes from acquired T1-weighted images (real electrode models), depicting the location of the F3 (cathode) and F4 (anode)
electrode montage.

FIGURE 2

Scatterplot of electrode information for each participant within the artificial and real electrode models. Blue circles represent contact areas
computed in the artificial electrode models while orange diamonds represent contact areas computed in the real electrode models. (A) Normalized
contact areas were plotted for artificial (mean ± SD: 1.00 ± 0.03) and real (mean ± SD: 1.12 ± 0.12) electrode models, and (B) Electrode separation
distance between the anode (F4) and cathode (F3) electrodes were computed in the artificial (mean ± SD: 4.73 ± 1.22 cm) and real (mean ± SD:
7.15 ± 1.06 cm) electrode models.

electrode models were more consistent than the real electrode
models as seen in Figure 1. Visually, the variation in current
densities across participants provided additional insight regarding
the location of the selected slice respective to the electrodes’
placement. Participant 3 and 10, for example, exhibits larger values
in the frontal cortex within the artificial models, wherein the anode
and cathode were placed closer together compared to the real
models. Variations in anatomical structures across participants also
contributed to the high and low values of current densities. The
lateral ventricles appeared “larger” in participant 1, 4 compared

to participant 3, 10, indicated a larger degree of brain atrophy.
Therefore, the overall range of current densities was smaller (cooler
color) for participant 1, 4 than participant 3, 10.

Quantitatively, median current densities of the real electrode
models were significantly larger (p < 0.001), on average
(mean ± SD: 0.026 ± 0.004A/m2), compared to those of the
artificial electrode models (mean ± SD: 0.02 ± 0.002A/m2)
within the brain. Computed median current densities were also
significantly larger (p < 0.001) for the four ROIs (mean ± SDSFG:
0.050 ± 0.006A/m2, mean ± SDMFG: 0.049 ± 0.007A/m2,
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FIGURE 3

Electrode montage and field measures for five example participants. (A) Electrode montage for each person showing F4 as the anode (blue) and F3
as the cathode (red), (B) Individual electric fields, and (C) Individual current density volumes generated using the artificial (left) and real (right)
electrode models for participant 1, 3, 4, 6, and 10. Visualizations of all electrode montages are included in Figure 1.

mean ± SDIFG: 0.044 ± 0.009A/m2, mean ± SDTMP:
0.028 ± 0.005A/m2). The percent difference (PD) between
the median current density (J) values of the artificial and real
electrode models within the brain region ranged 6.59–35.54%, as
shown in Table 1. In addition to the restricted brain region, PDs
of the whole head were also computed to depict any differences of
J between the two electrode types across the entire head volume.
PDs ranged 0–37.33% for J values within the whole-head region.
Paired t-tests were performed between the ideal and actual median
datasets for Jwhole−head, as well as Jbrain. There was a significant
difference (p < 0.001) found between the population means of the
ideal and actual datasets for Jwhole−head, indicating a significant
difference in current density values produced from the two separate
modeling pipelines. The same difference (p < 0.001) was observed
in the t-test comparing the ideal and actual median values for
Jbrain. The t-test visualization, including the raincloud plots,
t-statistic maps, and J-difference maps, is illustrated in Figure 4.

Table 2 describes the t-test results in the selected regions of interest
including the superior frontal gyrus, middle frontal gyrus, inferior
frontal gyrus, and temporal lobe.

Electrode property and current density

Figure 5 illustrates the relationship between the computed
percentage differences for current density and electrode properties
(i.e., electrode distance and contact area). All percent differences
reflected the absolute difference values between the artificial and
real electrode models. Figures 5A, B demonstrates that the percent
difference (PD) in electrode distance has a significant positive
relationship with the percentage difference of current densities,
both in the whole-head (R2 = 0.913, p = 0.001) and in the brain
(R2 = 0.3583, p = 0.014). In contrast, contact area measures showed
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TABLE 1 Percent difference between median current densities in artificial versus real electrode models.

Participant Median J whole-head (A/m2) PD (%) Median J brain (A/m2) PD (%)

Artificial Real Artificial Real

1 0.0227 0.0284 20.07 0.0191 0.0219 12.79

2 0.0225 0.0359 37.33 0.0215 0.0308 30.19

3 0.0349 0.0469 25.59 0.0256 0.0363 29.48

4 0.0243 0.0243 0.00 0.0206 0.0232 11.21

5 0.0211 0.0272 22.43 0.0215 0.0255 15.69

6 0.0244 0.0323 24.46 0.0234 0.028 16.43

7 0.0306 0.0293 4.44 0.0186 0.021 11.43

8 0.0227 0.0302 24.83 0.0186 0.0231 19.48

9 0.0236 0.0317 25.55 0.0191 0.0252 24.21

10 0.0314 0.0372 15.59 0.0242 0.031 21.94

11 0.0225 0.0264 14.77 0.0186 0.0219 15.07

12 0.0288 0.0284 1.41 0.022 0.0256 14.06

13 0.0306 0.0362 15.47 0.0223 0.0238 6.30

14 0.0304 0.0318 4.40 0.0189 0.0216 12.50

15 0.0237 0.036 34.17 0.0242 0.0283 14.49

16 0.0216 0.0327 33.94 0.0204 0.024 15.00

non-significant correlation with current densities for the whole-
head and in the brain region. Since electrode distance was positively
correlated with computed current densities, further correlation
analyses were performed for the electrode distance PDs in various
regions within the brain. Figure 5C shows significant positive
correlation between electrode distance and current densities
isolated in gray matter regions (R2

GM = 0.518, p = 0.02) and non-
significant correlation for white matter regions (R2

WM = 0.245,
p = 0.051). Figure 5D illustrates the significant negative correlation
found between distance and current density PDs computed in
the superior frontal gyrus (R2

SFG = 0.411, p = 0.007), and the
significant positive correlation found in the middle frontal gyrus
(R2

MFG = 0.3583, p = 0.014) and the temporal lobe (R2
TMP = 0.895,

p = 0.0001), whereas a non-significant positive correlation was
found for the inferior frontal gyrus (R2

IFG = 0.237, p = 0.056).

Brain atrophy and current density

Computed current densities were correlated against
participants’ volume ratios to assess the relationship between
current density and brain atrophy in each electrode model.
Figure 6 illustrates the scatter plots for current density restricted to
the whole-brain, gray matter, and white matter. When considering
the relationship between the brain (white matter and gray matter)
and the median current density in the brain region, both electrode
models showed significant positive correlation with R2 = 0.4171
(p = 0.007) and R2 = 0.3236 (p = 0.021) for artificial and ideal
electrode models, respectively (Figure 6A). Current density
restricted to the gray matter (GM) and white matter (WM) also
shows significant positive correlation for both electrode models
(Figures 6B, C with the following values: R2

GM_artificial = 0.4167
(p = 0.007), R2

GM_real = 0.3318 (p = 0.02), R2
WM_artificial = 0.3231

(p = 0.022), and R2
WM_real = 0.2853 (p = 0.033). Overall, the

computed correlation coefficients (R2) are, on average, 7% larger in
the artificial models compared to the real models.

Discussion

The present paper compares current density volumes generated
using artificial electrode models versus those generated using real
electrode models in older adults. This study expanded analyses
from our previous publication that directly compared field maps
generated from the two types of electrode models in order to
estimate the current density distribution in conventional tDCS in
relation to individual levels of brain atrophy. FEM was used to
solve the Laplace equation with an applied current of 2mA total,
injected at the F4 (anode) site and removed at the F3 (cathode)
electrode location. Sixteen segmented head volumes consisting of
six tissue types (bone, skin, air, CSF, white and gray matter) were
derived from T1-weighted images of older adults. Each participant
had identical segmented tissue volumes for each electrode model
(artificial and real) to ensure that any differences observed from the
generated field measures were solely attributable to the differences
in electrode generation methods. While all models attempted to
mimic F3 and F4 electrode locations, variations in the placement of
electrodes at F3 and F4 was observed across participants. Contact
areas, on average, were found to be more consistent in the artificial
electrode models (mean ± SD: 1.00 ± 0.03) while the real electrode
models demonstrated a slightly larger variation of contact areas
(mean ± SD: 1.12 ± 0.12). Significant differences (p < 0.001) in
the computed current densities in the brain and ROIs were found
between the two electrode models. Contact areas showed a non-
significant correlation to the percent difference in current densities,
while electrode separation distance was significantly (p = 0.001)
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FIGURE 4

Raincloud plots, t-statistic maps, and current density difference maps of artificial versus real electrode models. Raincloud plots depicted as a
combination of boxplot, jittered point, and halved violin of computed median current densities for both electrode models. Performed paired t-test
were found significant (p < 0.001) for (A) Median Jwhole−head and (B) Median Jbrain between the artificial and real electrode models. (C) The t-statistic
map for the Real > Artificial contrast at p < 0.001 (uncorrected), plotted on the MNI152 template. (D) The Real minus Artificial current density
difference map (Am-2) within regions of statistically significant difference between conditions (p < 0.001, uncorrected), plotted on the MNI152
template.

correlated to differences in current densities between the two
electrode types.

Field measure comparison

Significant differences (p < 0.001) in current density values
generated by the artificial and real electrode pipelines provide
insight into the importance of incorporating correct electrode
geometry to improve the accuracy of field measure predictions in

tDCS. When examining the entire brain volume, the significant
difference in current density volumes, as illustrated in Figure 4,
excluded the frontal brain region. This pattern was primarily due
to the low current density values that accounted for the observed
difference. A sub-region analysis, conducted by performing a t-test
on ROIs within the frontal region, revealed significant differences
in current densities between the two electrode models in both the
superior frontal gyrus and the middle frontal gyrus (Table 2). In
addition, the field maps of the artificial electrode model consistently
showed lower median values compared to the real electrode model
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TABLE 2 Difference in current density, t-statistic, and p-value between
the two electrode models for selected ROIs.

Region of Interest (ROI) 1Jbrain (Am−2) t-statistic p-value

Superior Frontal Gyrus (SFG) 0.00392 4.89521 0.00019*

Middle Frontal Gyrus (MFG) 0.00245 4.04387 0.03156*

Inferior Frontal Gyrus (IFG) 0.00306 2.94485 0.15950

Temporal lobe 0.00551 5.17923 0.00013*

*Indicates significance at p < 0.05.

in the brain, and this was also observed in the majority of the
whole head. These lower current density values may indicate that
computational models underestimate the current density values
in regions of interest for tDCS recipients, especially those with
larger degrees of brain atrophy. Therefore, generated models
using artificial placement of electrodes without any information
regarding the physical location of the electrodes at the time of
stimulation should be considered with caution, as they may not
accurately depict the current dose delivered to desired brain tissue.
To that end, obtaining or documenting the physical electrode
placement information may be necessary to improve upon the
accuracy of generated current flow models mimicking tDCS with
conventional electrode configuration (large pads, typically using
10–20 EEG locations).

Electrode location is essential in dictating the electric field
distribution within person-specific current flow models. Within
conventional tDCS, previous modeling studies demonstrate that
the largest electric field values are typically located somewhere
in between the anode and cathode electrodes rather than directly
underneath each electrode (Indahlastari et al., 2020). Our findings
support this statement, where the pattern of the electric fields
(Figure 3) is highly dependent on the electrode location for each
person. For instance, participant 10 exhibits a less symmetric
bilateral distribution of field measure in the real electrode model
compared to the artificial electrode model. Based on the electrode
location provided in Figure 3A, the anode and cathode location for
the real model in participant 10 are both shifted toward the left ear
and thus reflected the asymmetric electric field of Figure 3B with
a larger field appearing in the left hemisphere. This observation
directly supports the notion that the resulting field distributions
from current density models are highly dependent on electrode
location.

Electrode impact on current density

When considering electrode properties, greater discrepancies
in the delivered current density were largely contributed to
electrode separation distances as compared to measured contact
areas. Contact area refers to the electrode surface area interfacing
with the scalp. The contact area represents the sum of the current
density, which is the input current divided by the electrode
surface area, and it directly affects the distribution of current.
For instance, with a 35 cm2 contact area and a 2mA input
current, the total current density would be 2mA divided by
35 cm2, which equals 0.057Am−2. This value will increase if
the contact area is smaller for the same input current. Hence,
changes in contact areas can influence the amount of current

entering and exiting the head through the electrodes and can
affect the brain regions it reaches. Typically, a larger contact area
distributes the current over a broader surface, leading to a lower
concentration of applied current density to the head. Smaller
contact areas, such as in HD-tDCS, results in more focal and
intense applications of current density and thus can be used to
target brain regions near the electrodes (Dmochowski et al., 2011;
Datta et al., 2012; Alam et al., 2016; Mikkonen et al., 2020). On the
other hand, electrode separation distance represents the location
of the anode with respect to the cathode electrode. A pair of
electrodes that are placed closely together will experience shunting,
wherein most of the electrical current passes through the shortest
distance between the two electrodes that provides the current
pathway of least resistance, rather than traveling from the anode,
through the scalp and underlying head tissues, and toward the
cathode (Thomas et al., 2017; Mahdavi and Towhidkhah, 2018).
In prior research, the distance between F3 and F4 location can be
approximated by computing the Euclidean distance (Indahlastari
et al., 2019a). While the differences between the artificial and
real electrode models in both their measures of contact areas
and electrode distance were both significant, electrode distance
showed a significant positive correlation when compared to the
percent differences in current density in the brain and in selected
ROIs. Therefore, in our study, this observation implies that the
separation distance between the anode and cathode electrodes has
a greater impact than contact areas on generated current densities.
However, this observation may not be generalizable to other studies
as prior research has shown that greater difference in contact areas,
particularly the imbalance of anode and cathode electrode size, can
cause significant changes in the current density delivered to the
brain (Bikson et al., 2010; Faria et al., 2011; Saturnino et al., 2015).

Brain atrophy and individual variability

Computed brain volume ratio, an indicator of the degree of
brain atrophy in older adults, was positively correlated with the
generated current density, irrespective of the electrode pipeline
used. Brain atrophy is defined as the degeneration of tissue
that leads to structural changes and neuron organization in the
brain (white and gray matter) that can naturally occur with age
(Indahlastari and Woods, 2019). In this study, brain atrophy
was represented as the inverse of brain volume ratio, calculated
as the sum of gray and white matter volumes divided by the
intracranial volume (CSF, white and gray matter). Median current
densities in white and gray matter from both the artificial and real
electrode pipelines were positively correlated to the computed brain
volume ratio, which indicated a trend of larger current density
paired with larger volume ratio. This implies that increasing brain
atrophy resulted in less current reaching the brain contributed
by the thickness of CSF layer surrounding the brain, which
agrees with prior research in this area (Thomas et al., 2017;
Mahdavi and Towhidkhah, 2018; Indahlastari et al., 2020). Further,
a higher correlation coefficient was observed in the artificial
electrode models compared to the real electrode models. This
provides insight into the role of the electrode in relation to
atrophy sites. The placement of the artificial electrodes was more
consistent and exhibited less variance in current density values.

Frontiers in Human Neuroscience 09 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1274114
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1274114 November 20, 2023 Time: 16:28 # 10

Indahlastari et al. 10.3389/fnhum.2023.1274114

FIGURE 5

Correlation plots between current density and electrode properties. (A) Percent difference (PD) of median current density of the whole head (Median
Jwhole−head) are correlated with electrode distance and contact area. Significant positive correlation between J and electrode distance PDs
(R2 = 0.9133, p = 0.001) was found, while non-significant correlation was found between electrode contact area and J PDs (R2 = 0.1465, p = 0.143).
(B) Percent difference (PD) of median current density of the brain region (Median Jbrain) are correlated with electrode distance and contact area.
Significant positive correlation between J and electrode distance PDs (R2 = 0.3583, p = 0.014), while no correlation was found between electrode
contact area and J PDs (R2 = 0.0092, p = 0.724). Therefore, only electrode distance PDs are plotted against median current densities in panels (C,D).
(C) Percent difference (PD) of median current density (J) in the gray and white matter is correlated with electrode distance PDs. Significant positive
correlations between J and electrode distance are observed in gray matter regions (R2

GM = 0.5181, p = 0.02), but not in the white matter region
(R2

WM = 0.2450, p = 0.051). (D) Percent difference (PD) of median current density (J) in selected regions of interest is correlated with electrode
distance PD. Significant negative correlation between electrode distance and computed current densities was found in the superior frontal gyrus
(R2

SFG = 0.4106, p = 0.007) and significant positive correlation was found in the middle frontal gyrus (R2
MFG = 0.3583, p = 0.014) and temporal lobe

(R2
TMP = 0.8950, p = 0.0001). While positive, non-significant correlation was found for the inferior frontal gyrus (R2

IFG = 0.2374, p = 0.056).

As a result, they delivered current to areas with thicker CSF,
leading to a reduced amount of current delivered within the brain.
This resulted in a slightly stronger correlation between current
density and brain volumes. Additionally, while the two correlation
coefficients from each electrode model were not identical, they
both demonstrate a significant correlation to changes in brain
volumes. Therefore, this finding serves practical applications of
current density modeling in older adults and demonstrates how
the electrode model discrepancy can affect results. Within this
study population, since both electrode models produced significant
correlations to computed brain volume ratio, either electrode
pipeline can be used to predict the effects of brain atrophy on the
delivery of current densities. However, this observation will need
to be tested in a larger sample and with different population types,
such as young adults or impaired older adults.

Variations in the distribution of current density across
participants exists within both the artificial and real electrode

model comparisons, highlighting the importance of constructing
person-specific models. Prior research demonstrates that variability
in current density and electric field distribution is mainly attributed
to inter-individual anatomical variation (Datta et al., 2012; Laakso
et al., 2015). Similarly, variability exists across participants in
our generated models as shown in Figure 3. For instance, when
comparing the lateral ventricles between participant 4 and 6 in
Figure 3C, participant 4 shows larger lateral ventricles, indicative
of greater brain atrophy. Therefore, participant 4 might not
receive as much current to their brain, given that current would
localize mostly within the CSF due to its higher conductivity.
This is verified by comparing the median brain current density
values between these two participants with smaller median values
reported for participant 4 (0.0185A/m2 for artificial, 0.0208 A/m2

for real electrode models) than those reported for participant
6 (0.0199 A/m2 for artificial, 0.0238 A/m2 for real electrode
models). This observation also agrees with prior modeling studies
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FIGURE 6

Correlation plots between current density and volume ratio. (A) Median current density (J) in the brain region for both electrode models are
correlated with brain volume ratio. Significant positive correlation between J and brain ratio is observed with R2

brain_artificial = 0.4171 (p = 0.007) and
R2

brain_real = 0.3236 (p = 0.021). (B) Median current density (J) in the gray matter region for both electrode models are correlated with gray matter
volume ratio. Significant positive correlation between J and volume ratio is observed with R2

GM_artificial = 0.4167 (p = 0.007), R2
GM_real = 0.3318

(p = 0.02). (C) Median current density (J) in the white matter region for both electrode models are correlated with white matter volume ratio.
Significant positive correlation between J and volume ratio is observed with R2

WM_artificial = 0.3231 (p = 0.022), and R2
WM_real = 0.2853 (p = 0.033).

that compute current density in association with degree of brain
atrophy (Thomas et al., 2017; Mahdavi and Towhidkhah, 2018;
Indahlastari et al., 2020). Therefore, constructing individual head
models remain crucial to ensure model accuracy and interpretation
of findings.

Model implication

Comparisons between the current densities generated from
artificial and from real electrode models reveal that current
flow prediction in tDCS can be further improved with precise
information of electrode location. While the real electrode models
depict actual location of electrodes at the time of stimulation,
most clinical tDCS studies typically perform stimulation outside
of the MRI scanner and do not have electrode imaging data.
However, documentation such as picture/photograph, diagram,
or 3D scans (Indahlastari et al., 2019a) can be used to inform
model frameworks when using automated current flow software.
This can be accomplished by selecting a more accurate electrode
location from the virtual 10–20 EEG cap that matches the actual
location at the time of stimulation, instead of merely using the
ideal montage placement intended for the study. For instance,
this study was planned to use F3-F4 montage. Based on the real
electrode information, selecting cathode electrode at F5 location
instead of F3 for participant 3 during an automatic modeling step
might be more appropriate to mimic actual electrode placement.
Therefore, pairing the utilization of end-to-end current flow
modeling software with electrode documentation can increase both
the robustness and accuracy of generated current flow models.
The accuracy of these models is essential for visualizing the
effects of stimulation on an individual’s brain as even small
variations in electrode location can result in significant differences
in current distribution downstream. As tDCS is utilized in
older populations to target specific brain regions associated with
cognitive decline, precise models combined with refined electrode

placement methods can assist in achieving optimal current values
for these targeted regions.

While a significant difference was found in computed current
densities between the artificial and real electrode models, the
extent of the current density differences varied across sub-cortical
locations. Percent difference of current densities in the ROIs, which
represented the difference between the generated current densities
using artificial versus real electrode models, showed differences of
up to 38% (Figure 5D). The electrode montage F3-F4 typically
targets the dorsolateral prefrontal cortex (DLPFC) (Nord et al.,
2013; Tremblay et al., 2014; Dedoncker et al., 2016) to enhance
executive functions, including working memory improvement and
speed processing. Both the superior frontal gyrus (Brodmann Area
9) and the middle frontal gyrus (Brodmann Areas 9 and 46)
anatomically represent the DLPFC regions (Mai and Paxinos, 2012;
Cieslik et al., 2013). Moreover, the F3-F4 montage has also targeted
the inferior frontal gyrus to improve response inhibition, migraine,
and pain control (DaSilva et al., 2015; Stramaccia et al., 2015;
Thunberg et al., 2020). Regarding the target brain regions, smaller
differences in current density were noted in regions closer to the
electrode location, such as the superior frontal gyrus, the middle
frontal gyrus, and the inferior frontal gyrus. In contrast, for non-
target regions, larger differences and a more pronounced positive
correlation were observed in regions farther from the electrodes,
such as the temporal lobe. Therefore, using artificial electrode
models with location information solely sourced from the study
montage should be taken with caution when analyzing subcortical
regions further away from electrode locations. In addition, the
superior frontal gyrus (SFG) displayed a significant negative
correlation, while the other ROIs showed positive correlations.
Although the SFG correlation was negative, it had a relatively
shallow gradient. We suspect this could be due to variations
in individual electrode placements, particularly the asymmetrical
positioning of electrodes around the SFG ROI. This resulted in
a unique, mild negative correlation compared to other ROIs.
This observation suggests that the other ROIs were less affected
by electrode asymmetry. Hence, future studies investigating the
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distance between the ROI and the stimulation site as a potential
mediator might offer more profound insights into these variations.

Normalized electrode contact areas observed in the real models
implied that actual contact areas deviated from the planned
electrode size. Our segmented electrodes did not align with the
presumed 35 cm2 planned electrode surface area, yet they reflected
the actual stimulation condition. Certain obstacles, such as hair or
the placement of the MR head coil, can impede accurate electrode
positioning in real-world scenarios and affect resulted contact
areas. This discrepancy underscored the motivation for our study
to carefully documenting electrode placement information at the
time of stimulation. Unfortunately, when creating models based
on clinical study, it is common in tDCS modeling to rely solely
on the ideal electrode position set at the planned location, without
cross-referencing them with the actual/real electrode locations.
Therefore, it is crucial that a modeling study corresponds closely
with its clinical counterpart, taking meticulous care to ensure
electrode positions are as precise as possible. For instance, our
previously published study comparing modeling and functional
connectivity from the same data utilized the segmented electrodes
in the model sourced from the MR data instead of the ideal location
of the planned electrode montage (Indahlastari et al., 2021a).
Nevertheless, when applying tDCS, the researchers should ensure
the electrodes are placed in the planned locations as accurately
and consistently as possible, as electrode placement discrepancy
beyond 1 cm from the intended location can reduce the accuracy
of generated electric fields (Opitz et al., 2018).

Model limitation and future direction

We acknowledge several limitations within this study that
might affect our reported findings. The accuracy of manually
segmented real electrode models, such as electrode pads and
paste, were limited by the quality (e.g., image resolution and
contrast) of participants’ T1-weighted images. Therefore, there
may be imperfections, such as overestimation or underestimation
of electrode edges and shape at the interface of electrode-scalp
boundary, resulting in inconsistent electrode size and affecting
their modeled contact areas. Further, the size of the artificial
electrode gel was not adjusted to match the presumed actual paste
thickness of 5 mm; instead, it retained the assigned electrode pad
size thickness of 3 mm. Modifying this was not feasible without
explicitly altering the default ROAST code. However, we compared
current density volumes for the whole head (Jwhole−head) and the
brain (Jbrain) using electrode thicknesses of 3 mm versus 5 mm.
The results were very similar (average SSIM = 0.9998 Dice: 1
for Jbrain and SSIM = 0.9987 and Dice = 0.9999 for Jwhole−head)
as shown in Supplementary Table 1. Additionally, the electrodes
segmented in the real models might have a different thickness
compared to those in the artificial models. The actual electrodes
were segmented based on the information from the T1 data.
While physical measurements were performed to obtain F3 and
F4 location in actual stimulation, the final measurements of the
electrode information, such as electrode contact area and distance
between the two electrodes, were not physically recorded during
the live tDCS sessions. The lack of physical measurements of real
electrode final location prevented us from directly checking our

real electrode segmentation quality. Therefore, while real electrode
location depicted a more accurate representation of the electrode
positioning during the stimulation session, its accuracy can be
improved with additional documentation. Further, this comparison
study was conducted across a small sample of sixteen older adults.
The average of differences in median current density between the
two electrode types may change with an increased sample size
and/or different population types. Therefore, the results in this
study will need to be verified in a larger population.

At present, applications of tDCS employ a fixed dosing
approach, wherein the same stimulation parameters (including
electrode location) are prescribed across all participants within
a single study. While tDCS outcomes are promising, there is
variability in the success of treatment among recipients, even when
using a fixed dosing approach. This variability may be attributed,
at least partly, to the inter-individual variability of brain atrophy
that occurs with aging and to the human error that occurs when
placing the electrodes. Computational models are widely used to
predict behavioral responses to stimulation, and they typically
use artificially created electrodes to represent intended montages.
However, the final electrode location used during stimulation might
deviate from the planned locations in intended montages, leading
to inaccurate field measurement generation. Based on the findings
of this study, rigorous documentation of electrode locations is
eminent to producing more accurate field measures (e.g., current
density, electric field). This documentation can further aid in
selecting electrode locations that are more precise when utilizing
automated current flow modeling software and thus produce a
more robust prediction.

Conclusion

This is the first study of its kind to evaluate the accuracy
of computational models demonstrating the delivery of current
in older individuals by using the manually segmented electrode
models as a baseline for comparison. We found a significant
difference (p < 0.001) between the current density values generated
by simulations using artificially created electrode models and those
using the manually segmented electrodes. The findings of this
study strongly suggest that rigorous documentation of electrodes
(e.g., location, separation distance, size, contact area, etc.) at the
time of stimulation provides crucial information for generating a
more accurate prediction of tDCS electric fields. These findings
further inform future research practices in tDCS or related fields,
particularly those that involve computational models to predict
clinical outcomes of non-invasive brain stimulation such as tDCS.
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