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Primary headache is a very common and burdensome functional headache

worldwide, which can be classified as migraine, tension-type headache

(TTH), trigeminal autonomic cephalalgia (TAC), and other primary headaches.

Managing and treating these different categories require distinct approaches,

and accurate diagnosis is crucial. Functional magnetic resonance imaging (fMRI)

has become a research hotspot to explore primary headache. By examining

the interrelationships between activated brain regions and improving temporal

and spatial resolution, fMRI can distinguish between primary headaches and

their subtypes. Currently the most commonly used is the cortical brain

mapping technique, which is based on blood oxygen level-dependent functional

magnetic resonance imaging (BOLD-fMRI). This review sheds light on the

state-of-the-art advancements in data analysis based on fMRI technology for

primary headaches along with their subtypes. It encompasses not only the

conventional analysis methodologies employed to unravel pathophysiological

mechanisms, but also deep-learning approaches that integrate these techniques

with advanced statistical modeling and machine learning. The aim is to highlight

cutting-edge fMRI technologies and provide new insights into the diagnosis of

primary headaches.
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1. Introduction

1.1. Overview of primary headaches

Primary headaches, which do not stem from any underlying
disease or secondary cause, are classified into four main categories
according to the International Classification of Headache Disorders
(ICHD-3) (Arnold, 2018) migraine, tension-type headache (TTH),
trigeminal autonomic cephalalgia (TAC), and other primary
headaches. Recent research shows that worldwide, around 52.0%
(95% CI: 48.9–55.4) of people are affected by active headache
disorder (Stovner et al., 2022), while findings from the 2019 Global
Burden of Disease (GBD) study report a prevalence of 35.0% (32.3–
37.7) for primary headaches (Steiner et al., 2020). Furthermore,
a comprehensive review of the prevalence of primary headaches
in child and adolescent was shown to be 62% (53–70) (Onofri
et al., 2023). Primary headaches, chiefly TTH and migraines,
have prevalences of 26.0% (22.7–29.5) and 14.0% (12.9–15.2),
respectively (Stovner et al., 2022). TACs alongside other primary
headaches are relatively rare, with incidence rates of about 0.05–
0.1% in the population (Eller and Goadsby, 2016; Kaniecki and
Levin, 2019; Kopel and Gottschalk, 2022; Nägel and Kraya, 2022).
Headache disorders impose a considerable burden and are highly
prevalent across the globe. Globally, headache disorders are ranked
by the GBD as the second major source of disability-adjusted life
years (DALYs) (Saylor and Steiner, 2018). The growing burden
on individuals, society, and the economy makes it essential to
adopt different management and treatment approaches based on
headache classifications (Weeks, 2022). However, a prerequisite for
this is an accurate diagnosis.

Primary headaches currently lack clear radiological and
physiological biomarkers, so their diagnostic criteria are still based
on symptomatology (Levin, 2022). However, clinical features are
often similar among different categories and complex situations,
such as varying severity levels or comorbidities, may make it
challenging to distinguish diagnoses based solely on these features.
As research on the pathogenesis of primary headaches deepens,
an increasing number of imaging, genetic, and neurochemical
markers are being discovered. Functional magnetic resonance

Abbreviations: ICHD-3, international classification of headache disorders;
ALFF, amplitude of low-frequency fluctuations; AUC, area under the curve;
BiLSTM, bidirectional long short-term memory; BOLD-fMRI, blood oxygen
level-dependent functional magnetic resonance imaging; CEN, central
executive network; CM, chronic migraine; CNN, convolutional neural
network; DALYs, disability-adjusted life years; DC, degree centrality; DFCP,
dynamic functional connectivity patterns; DMN, default mode network; DTI,
diffusion tensor imaging; DWI, diffusion-weighted imaging; fALFF, fractional
ALFF; FC, functional connectivity; FCD, functional connectivity density; fMRI,
functional magnetic resonance imaging; FPN, frontoparietal network; GBD,
the global burden of disease; HC, healthy control group; ICA, independent
component analysis; ITG, inferior temporal gyrus; MA, migraine with aura;
MCC, mid-cingulate cortex; mPFC, medial prefrontal cortex; MRS, magnetic
resonance spectroscopy; MwoA, migraine without aura; NDPH, new daily
persistent headache; NN, neural network; PAG, periaqueductal gray; PWI,
perfusion-weighted imaging; ReHo, regional homogeneity; ROI, regions
of interest; rs-FC, resting-state functional connectivity; rs-FCHo, resting-
state functional connectivity homogeneity; rs-fMRI, resting-state fMRI;
RVM, rostral ventromedial medulla; SN, salience network; SUNCT, short-
lasting unilateral neuralgiform headache attacks with conjunctival injection
and tearing; SVM, support vector machine; TAC, trigeminal autonomic
cephalalgia; TCC, trigeminocervical complex; ts-fMRI, task-state fMRI; TTH,
tension-type headache.

imaging (fMRI) technology, which has better temporal and spatial
resolution and which can be used to explore the underlying
pathophysiology of primary headaches, has become a hot research
topic because it can reliably and objectively differentiate different
categories of primary headache patients as a diagnostic tool
(Glover, 2011; Naegel and Obermann, 2021).

1.2. Introduction to fMRI technology

Utilizing ultra-fast imaging sequences, fMRI is a technique
specifically designed to diagnose diseases by identifying functional
changes before they lead to pathological alterations detectable
by traditional MRI methods. Broadly, current fMRI methods
mainly include diffusion-weighted imaging (DWI), diffusion tensor
imaging (DTI), perfusion-weighted imaging (PWI), magnetic
resonance spectroscopy (MRS), and brain cortical function
localization techniques (primarily utilizing blood oxygen level-
dependent (BOLD) effects). Among these, brain cortical function
localization is widely applied, so fMRI typically refers to BOLD-
based functional magnetic resonance imaging (BOLD-fMRI,
hereinafter known simply as fMRI). Studies have shown that even
at rest, brain energy consumption accounts for around 20% of
the body’s total energy expenditure, with 60–80% of that energy
used for communication between neurons and their supporting
cells (Raichle and Mintun, 2006). Brain neuronal activity correlates
with changes in blood oxygen levels, and variations in the ratio
between highly paramagnetic deoxyhemoglobin and diamagnetic
oxyhemoglobin cause local field inhomogeneity, leading to
alterations in T2-weighted images. This enables the imaging of
brain function activity, brain tissue metabolism, and alterations
in local brain blood circulation, which is the main theory behind
BOLD-fMRI (Ogawa et al., 1990; Sun et al., 2021).

Widely utilized to investigate the functions and interactions
of particular brain regions, fMRI can be categorized into two
types: task-state fMRI (ts-fMRI) and resting-state fMRI (rs-fMRI).
These classifications depend on whether the patient must perform
specific tasks or receive predetermined external stimuli during
the imaging process. Due to the existence of spontaneous low-
frequency BOLD fluctuations in any brain region during rest, as
well as the fact that induced activity increases neuronal metabolism
by less than 5%, rs-fMRI has gained popularity in clinical research
because it doesn’t necessitate participants performing multiple
tasks (Smitha et al., 2017). Nonetheless, task design remains crucial
for eliciting meaningful brain activation and associated functional
connectivity patterns (Jiang et al., 2020; Zhao et al., 2023). FMRI
imaging technology requires data acquisition and reconstruction,
pre-processing (temporal calibration, head movement correction,
registration and normalization, spatial smoothing), and data
analysis (localization of brain activity, connection strength analysis,
prediction). When analyzing brain activity, attention must be given
to both local activity and functional connectivity (FC) between
various regions of the brain, employing two main rs-fMRI analysis
methods: functional segregation and functional integration (Biswal
et al., 1995; Fox and Raichle, 2007; Lv et al., 2018; Schramm
et al., 2023; Supplementary Table 1). Functional segregation
primarily concentrates on the distinct functions of various brain
regions, with main analysis techniques including amplitude of low-
frequency fluctuations (ALFF) and regional homogeneity (ReHo).

Frontiers in Human Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1256415
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1256415 August 29, 2023 Time: 13:48 # 3

Li et al. 10.3389/fnhum.2023.1256415

Functional integration, on the other hand, incorporates brain
activity into interconnected networks, mainly focusing on the
interaction between different brain regions. Common methods
include functional connectivity density (FCD) analysis, seed-
based FC analysis, independent component analysis (ICA), and
graph theory-based brain network analysis. Dynamic associations
and connections between various brain regions constitute the
brain’s functional networks, such as the default mode network
(DMN), salience network (SN), and frontoparietal network/central
executive network (FPN/CEN) which are most relevant to pain
detected by fMRI (Fox et al., 2005; van den Heuvel and Hulshoff
Pol, 2010; Naegel and Obermann, 2021). Different from the data-
driven rs-fMRI, ts-fMRI is model-driven, requiring meticulous
experimental design to clarify baselines, number of baseline
and task alternations, start and duration times, etc. Mainstream
analysis methods include generalized linear regression models and
hemodynamic response functions (Chen and Glover, 2015).

As multi-center big data research deepens, the study of
brain abnormalities is transitioning from group-based research
to individual studies, providing solutions for precise clinical
diagnosis and targeted therapy of brain disorders. Technological
advancements have facilitated high-quality fMRI with higher
spatiotemporal resolutions, yielding richer local anatomical
information and more accurate functional signals, thereby
promoting finer-grained brain function research. The ubiquitous
access to fMRI technology, its non-intrusive nature, relative
affordability, and commendable spatiotemporal resolution have
progressively strengthened its indispensable status within the
realm of functional neuroscience, such as brain cognition, aging,
and major brain diseases, among others (Hranilovich et al., 2023).

2. The role of fMRI technology in
diagnosing primary headaches

2.1. Background

With the continuous development of medical-engineering
integration, computer vision tasks, including image classification,
object detection, image segmentation, object tracking, pose
estimation, and image generation, have been widely used in many
fields (Zhang J. et al., 2021; Li et al., 2022a), such as automatic
supervision and differentiation of diseases such as the digestive
system (Barmpoutis et al., 2022; Chen H. et al., 2022), nervous
system (Qureshi et al., 2019; Hu et al., 2023), and reproductive
system (Liu et al., 2022; Fan et al., 2023) and so on. However, to
date, no medical imaging technology has been able to definitively
diagnose or differentiate primary headache disorders. Although
conventional neuroimaging techniques are widely used in clinical
for headache patients, they primarily serve as an exclusionary
diagnosis in most cases (Tedeschi et al., 2012). Consequently,
an increasing number of studies are investigating novel imaging
diagnostic approaches. FMRI has increasingly been employed
to explore the pathophysiological underpinnings of primary
headaches, contributing to a more comprehensive understanding
of brain activity networks and identifying potential intervention
targets. Therefore, fMRI offers a promising avenue for improving
the diagnosis of primary headaches.

Although still in its nascent stages in the investigation
of primary migraines, recent studies suggest that beyond the
fundamental pathophysiological exploration using fMRI, the
application of advanced statistical modeling and machine learning
techniques offers new possibilities for the differentiation and
diagnosis of primary headaches. Common machine learning
algorithm categories (Raschka, 2018) include supervised
learning, semi-supervised learning, unsupervised learning,
and reinforcement learning. Fundamental models encompass
Linear Regression, Logistic Regression, Decision Trees, Random
Forests, Support Vector Machines (SVM), K-Nearest Neighbors,
Neural Networks (NNs), and Naive Bayes, each with its respective
applicability and strengths and weaknesses (Supplementary
Table 2). Notably, the rapidly evolving and currently prominent
Deep Learning is an extension of NNs (LeCun et al., 2015). By
autonomously learning intricate feature representations and
representation learning, it excels in tasks such as medical image
analysis, disease classification, and prediction.

Within deep learning, there are several commonly used
neural network architectures. The Multilayer Perceptron (MLP)
(Rumelhart et al., 1986), a foundational feed-forward neural
network, comprises multiple fully connected layers and is employed
for tasks such as classification, regression, and clustering. The
Convolutional Neural Network (CNN) (Szegedy et al., 2015;
Messaoudi et al., 2023), characterized by its convolutional
and pooling layers, has seen notable enhancements through
modules like the Inception and the ResNet residual blocks.
CNNs, primarily tailored for image processing, have achieved
significant breakthroughs in computer vision tasks. Recurrent
Neural Networks (RNNs) (Hochreiter and Schmidhuber, 1997;
Cho et al., 2014), which introduce a consideration for sequences
data atop the CNN framework, possess a cyclic architecture
and are predominantly utilized for language modeling and
video data processing. Long Short-Term Memory (LSTM) and
Gated Recurrent Unit (GRU) are more advanced modules
common to RNNs. Autoencoder (Vincent et al., 2010) learns
efficient data representations through the reconstruction of
training data, including encoders and decoders, which can be
used for tasks such as data dimensionality reduction, feature
extraction, and model generation. Common improved models
include Sparse Autoencoder and Variational Autoencoder. The
Attention Mechanism (Vaswani et al., 2017), which uses attention
mechanisms to process sequence and image data, is widely used
in tasks such as machine translation, image description generation
and speech recognition, among which the classic improvement
module is the Transformer module.

These neural architectures have found broad applications;
for instance, a CNN model, integrating convolutional and fully
connected layers, achieved a diagnostic accuracy of 92.87% in
distinguishing Alzheimer’s Disease (AD) from healthy controls
(HC) (Li et al., 2014). Similarly, the Inception-based GoogleNet
reported an impressive accuracy of 98.74% in differentiating AD
from HC (Sarraf and Tofighi, 2016). Furthermore, a proposed 3D-
CNN-LSTM classification model has demonstrated an accuracy
of 96.4% in discerning varying degrees of cognitive impairment
(Noh et al., 2023). These deep learning-based frameworks are
of great significance for the classification of brain diseases in
clinical trials and large-scale studies, and by combining multimodal
fMRI data and clinical information, not only can they reveal the
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functional connections and functional networks between brain
regions, machine learning models are also able to learn the
pathological features of complex neural activities from large-scale
data, and through continuous improvement, the classification
accuracy of specific diseases can be further improved.

In this review, we first explore the pathophysiology of
various subtypes of primary headache based on BOLD-fMRI
imaging technology, and summarize the functional separation and
functional integration between brain regions, which may provide
basic data for further machine learning. Then, the research progress
of using advanced statistical modeling and machine learning
methods to distinguish or diagnose primary headache based on
fMRI data is mainly summarized. As machine learning is not widely
used in the field of primary headache, in order to summarize
machine learning-related research more comprehensively, we
conducted an exhaustive search (Figure 1) in PubMed, Web of
Science and CNKI, using keywords related to primary headache
and its subtypes, functional magnetic resonance imaging, statistical
modeling, machine learning, and diagnosis (including classification
or differentiation). The titles and abstracts of each study were
independently evaluated by the authors, reaching a consensus after
detailed scrutiny and discussion in case of conflicts. Reference lists
from each study were manually assessed to avoid the omission
of relevant research. Upon screening studies based on titles and
abstracts, the authors independently reviewed the full texts of the
remaining articles. After examining the full texts, research findings
relevant to the central theme of this paper were incorporated for
further analysis. Figure 2 summarizes trends over time for all
articles included in this review.

The following we discuss the subtypes of primary headache
separately, the first part of each subtype is a pathophysiological
discussion, which we summarize according to different brain
regions in the order of different analysis methods. The second
part is summarized according to the different headache categories,
in order of diagnostic accuracy from highest to lowest and the
specific characteristics of the included studies are summarized
in Supplementary Table 3 and the basic process of functional
magnetic resonance imaging combined with machine learning for
the diagnosis of primary headache is shown in Figure 3.

2.2. Diagnosis of migraine based on fMRI
technology

2.2.1. Exploring the pathophysiology of migraine
diagnosis through fMRI technology

Migraine is a genetically determined disorder of cerebral
excitability that manifests as an intermittent and recurrent
condition, leading to activation and sensitization of the
trigeminovascular pain pathway (Pietrobon and Moskowitz,
2013). Clinically, it is predominantly characterized by episodic
moderate-to-severe, pulsating, unilateral headaches. Furthermore,
it is frequently accompanied by symptoms of nausea and vomiting.
Light and sound stimuli, as well as daily activities, can exacerbate
the headache. Although the prevalence of migraines is not as
high as TTH, migraine patients frequently exhibit cognitive
and psychological abnormalities, with more severe symptoms,
more complex pathogenesis, and greater treatment demands

(Gu et al., 2022; Vicente et al., 2023). This is why current research
on migraines is more extensive and in-depth. While often linked
to a variety of internal and external influencers, the neurovascular
processes that contribute to the onset of migraines, a fundamental
neurological disorder, continue to necessitate more in-depth
understanding and analysis (Russo et al., 2019a). Evidence has
demonstrated that hypothalamic activation can be detected within
48 h prior to the onset of a headache, which has been interpreted as
a potential marker for the prodromal phase (Schulte et al., 2020).
The brainstem was activated continuously while the migraine
occurred, and the activation of the midbrain, hypothalamus and
cortex were also shown during this period (Weiller et al., 1995;
Bahra et al., 2001; Denuelle et al., 2007). Rs-fMRI research has
uncovered variations in the functionality of certain brain areas in
individuals suffering from migraines during interictal and ictal
phases, including recurrent involvement of the insula, brainstem,
limbic system, hypothalamus, and thalamus (Figure 4) and the
most prominent changes within FC networks include salience,
frontoparietal, executive, and sensorimotor networks (Damoiseaux
et al., 2006; Raichle, 2015); these alterations also correlate with
migraine duration, attack frequency, and pain intensity (Schwedt
and Chong, 2015; Coppola et al., 2016; Andreou and Edvinsson,
2019; Huang et al., 2019; Torres-Ferrús et al., 2020; Ashina et al.,
2021).

Compared to the HC, migraine patients exhibit increased ALFF
values and BOLD signal variability in the insular cortex under
rs-fMRI. The resting-state FC (rs-FC) between the insula and
medial prefrontal cortex, inferior parietal lobule, Heschl’s gyrus,
pons, calcarine cortex, amygdala, cuneus, supplementary motor
area, central posterior gyrus, temporal lobe, fusiform gyrus, and
cerebellum is enhanced (Yu Z. B. et al., 2017; Coppola et al., 2018;
Ke et al., 2020). In contrast, connectivity decreases in the anterior
cingulate cortex and occipital regions (Niddam et al., 2016; Zhang
et al., 2020; Figure 5).

Numerous brainstem nuclei play roles in different types
of migraines, including the red nucleus, substantia nigra,
periaqueductal gray (PAG), spinal trigeminal nucleus, and the
median raphe nucleus, among others. Among these, the most
extensively studied structure is the spinal trigeminal nucleus.
Research indicates that compared with HCs, migraine patients
show increased variability in BOLD signals, ReHo, and power of
sub-low frequency oscillations in the spinal trigeminal nucleus.
Compared to HCs, FC is enhanced in migraine patients
between the brainstem and the periaqueductal gray matter,
median raphe nucleus, insula, and thalamus, and it decreases
between the medial prefrontal cortex, middle temporal gyrus,
orbital cortex, anterior cingulate cortex, brainstem, the inferior
parietal lobule, pre-central gyrus, supplementary motor area, and
the spinal trigeminal nucleus. However, contradictory results
have been shown in the hypothalamus, indicating a need for
further investigation (Lee et al., 2017; Schramm et al., 2023;
Figure 6).

Moreover, compared to HC, migraineurs exhibit increased
rs-FC between the PAG surrounding the midbrain and the
median raphe nucleus, ventromedial medulla oblongata, adjacent
gray matter around the aqueduct, hypothalamus, and thalamus.
Similarly, increased ReHo and sub-low frequency oscillation
power in the PAG and hypothalamus were observed in task-
based fMRI before migraine attacks (Meylakh et al., 2018). In
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FIGURE 1

Literature search flow chart.

FIGURE 2

Trends over time for all articles included in this review.

contrast, decreased rs-FC was found between the medial prefrontal
cortex, orbitofrontal cortex, and anterior cingulate cortex (Chen
et al., 2017). The duration and intensity of migraine pain have
been shown to be positively correlated with rs-FC of the PAG
and substantia nigra, and with the ALFF values of the bilateral
ventrolateral posterior thalamic nuclei and brainstem regions,
including the ventromedial medulla and the trigeminal-cervical
complex (Huang et al., 2019; Kim Y. E. et al., 2021). Conversely,
a negative correlation was found between the fractional ALFF
(fALFF) values of the left middle frontal gyrus and migraine pain
intensity (Wu et al., 2023).

The limbic system (Figure 7) has been identified as being
associated with migraines, particularly the amygdala, cingulate

cortex, and hippocampus (Wei et al., 2020; Zhang et al., 2020). It
was observed that rs-FC increased between the posterior cingulate
cortex, middle cingulate cortex, right insula and left anterior
cingulate cortex and almond nucleus, while rs-FC decreased
between the orbitofrontal cortex and right nucleus. The rs-FC of
the hippocampus is increased in the hypothalamus, cerebellum,
and occipital lobe regions, and decreased in the right nucleus
accumbens, inferior parietal lobule, and supplementary motor area.
Migraine sufferers also exhibit increased variability in the rs-BOLD
signal within the hippocampus (Lim et al., 2021). However, there is
still considerable heterogeneity in the rs-FC of the cingulate cortex
in current studies (Yu D. et al., 2017; Zhang et al., 2020; Kim D. J.
et al., 2021).
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FIGURE 3

The basic process of functional magnetic resonance imaging combined with machine learning for the diagnosis of primary headache.

Likewise, when compared to HC, there was an observed
increase in rs-FC from the hypothalamus to the medial
prefrontal cortex, parietal leaflets, visual areas, pre-central
gyrus, hippocampus, pons regions, and several other regions
in patients with migraines, as well as decreased rs-FC in the
hippocampal formation, anterior cingulate cortex, PAG, spinal
trigeminal nucleus, rostral ventromedial medulla, pontine area,
pre-central gyrus, frontopolar cortex, superior frontal gyrus,
fusiform gyrus, and lingual gyrus (Moulton et al., 2014; Coppola
et al., 2020; Meylakh et al., 2020; Figure 8).

In the thalamus, this is manifested as increased rs-FC with
the superior parietal lobule, inferior frontal gyrus, lingual gyrus,
and pre-cuneus, and decreased connectivity with inferior parietal
lobule, supplementary motor area, and anterior cingulate gyrus.
And contradictory results were noted in the insula and middle
frontal gyrus (Amin et al., 2018; Qin Z. X. et al., 2020; Figure 9).

It is noteworthy that many studies have analyzed differences
between migraine with aura (MA) and migraine without aura
(MwoA). First, 192 rs-FCs were predominantly located in
the occipital lobe, sensorimotor network, part of the medial-
cerebellum, cingulate-orbitofrontal network, DMN, and FPN,
capturing the features of MwoA and identified as neural biomarkers
(Tu et al., 2020). Compared to HC, MwoA exhibited reduced rs-
FC homogeneity (rs-FCHo) in the insula, limbic regions (cingulate
cortex), and thalamus, with decreased FC between insula and
anterior cingulate cortex, pontine nuclei to superior parietal lobule,
middle temporal gyrus and middle frontal gyrus, as well as between
the anterodorsal nucleus and the left precuneus, ventroposterior
nucleus and the pre-cuneus, inferior parietal lobule and right
middle frontal gyrus, while ReHo presented contradictory results

(Zhang J. et al., 2016; Lo Buono et al., 2017; Qin Z. et al., 2020;
Qin Z. X. et al., 2020). Similarly, spontaneous ALFF reductions in
the spinal trigeminal nucleus and hypothalamus were observed in
MwoA during the pre-ictal phase (Kim Y. E. et al., 2021). Both
during and between MA attacks, increased FC from the left pontine
nuclei to the primary somatosensory cortex and increased sub-low
frequency oscillatory power were detected (Hougaard et al., 2017;
Meylakh et al., 2018). The occipital cortex and the extracorporeal
visual cortex geniculate, particularly the lingual gyrus, were also
found to play a crucial role in the ictal and interictal phases of MA
(Russo et al., 2019b). In patients with complex MA, the rs-FC in the
left lingual gyrus within the visual network and the right anterior
insula within the sensorimotor network were significantly higher
compared to simple migraine and MwoA (Silvestro et al., 2022).
Changes in rs-FC during the period between migraine attacks in
patients MA and MwoA were also observed in the visual cortex
and a diverse array of brain regions involved in visual processing
(including the middle frontal area, insula, anterior cingulate gyrus,
superior parietal lobule, and cerebellum), although there are still
discrepancies between studies (Arca et al., 2021; Ashina et al., 2021).

Some differentiated studies have also been undertaken on
patients with two different courses, chronic migraine (CM) and
episodic headache. The hypothalamic cluster exhibits a heightened
BOLD signal response to painful stimulation of the trigeminal
nerve in CMs relative to episodic migraine and HC (Schulte et al.,
2017). Using bilateral caudate nuclei as seeds, we discovered that
the FC values between the right caudate nucleus and brain regions
primarily involving emotion, cognition, and sensory processing
were elevated in CM patients compared to HCs and those with
episodic migraines (Yuan et al., 2022). Additionally, increased
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FIGURE 4

Functional magnetic resonance imaging (FMRI) studies reveal recurrent brain areas in migraine patients.

rs-FC was observed between the spinal trigeminal nucleus and
hypothalamus in CM patients, whereas no such phenomenon
was observed in episodic migraine patients (Lerebours et al.,
2019). Similarly, hippocampal rs-FCD increased in CM patients,
while decreased in MwoA (Dai et al., 2021). Other research has
shown that, in CM, the connectivity between the executive control
network and the default mode network as well as the dorsal
attention system is reduced, while the interconnectivity between
the latter two is increased, which may be related to the severity of
headaches (Coppola et al., 2019).

2.2.2. Efficacy of machine learning and advanced
statistical modeling based on fMRI data in
migraine diagnosis

In the context of migraine research, Yang et al. (2018) extracted
three features (ALFF, ReHo, and strength of regional FC) from rs-
fMRI data of migraine patients, mapped these to functional images,
and applied a deep learning approach based on the Inception
module of CNN. The CNN, utilizing these three rs-fMRI features,
was capable not only of distinguishing migraine patients from
HC, but also separating two subtypes of migraine. This method
achieved an accuracy rate exceeding 90% for classifying migraine
and HC, as well as MwoA and MA. Specifically, under the feature
of strength in regional FC, the Inception-based CNN achieved
the highest recognition rate of 99.25% with an area under the
curve (AUC) of 0.99 when distinguishing between the HC and the
migraine group (Figure 10A). Sun et al. (2023) utilized group-
level ICA and dictionary learning to segment regions of interest
(ROIs) in the brain. Based on the ROIs, they extracted regional
average time series signals, segmented and expanded them into
subsequences, and trained a model within a bidirectional long
short-term memory (BiLSTM) network. Capturing the dependency
of neuronal activity over time, the softmax function was used
for binary classification. Migraine patients and HCs achieved a
classification accuracy of 96.94%, with an AUC of 0.98, and a
relatively short computation time (Figure 10B). Nie et al. (2023)
extract reliable features based on recursive feature elimination
of support vector machines, and obtain the optimal subset of
features by eliminating suboptimal features one by one while
maximizing the accuracy of feature association classification.
An automated identification framework for migraine patients
and HC was developed, using rs-FC intensity signatures and
dynamic FC patterns (DFCPs). Their findings suggest that the

classification effect of DFCP attributes is superior to rs-FC strength
characteristics. However, when the time window length is 24 s,
combining these two features results in the best performance, with
the best accuracy of 96.81% and the best precision of 95.41%.
Xiao et al. (2018) used linear-SVM, k-nearest neighbor, Radial
Basis Function SVM (RBF-SVM) and decision tree to classify and
compare migraine and HC respectively. The results showed that
in the classifier trained with fine features, the linear -SVM and
RBF-SVM both obtained the best classification accuracy rate of
93.97%. Jorge-Hernandez et al. (2014) developed a set of machine
learning algorithms through graph theory analysis, demonstrating
that the classification accuracies of migraine patients using NN
and SVM classifiers were 92.86% and 87%, respectively. Wang Q.
et al. (2022) combined degree centrality (DC) and SVM analysis,
revealing a significant decrease in the DC values of the bilateral
inferior temporal gyrus (ITG) among migraine sufferers. A positive
linear correlation was found between the left ITG and MIDAS
scores. SVM results indicated that the DC value of the left ITG
has the potential to serve as an imaging diagnostic biomarker
for migraines, with utmost diagnostic precision, sensitivity, and
specificity rates of 81.82, 85.71, and 77.78%, respectively. The above
results show that machine learning on fMRI data has excellent
discrimination ability in the differentiation between migraine
and HC. Compared with other models, NNs and SVMs have
better discrimination ability, especially after fine feature training,
or combined with some other feature data, can obtain better
diagnostic accuracy.

Furthermore, there have been studies investigating the
diagnostic efficacy of migraine subtypes. Li et al. (2022b) have
proposed an intelligent auxiliary diagnostic algorithm for MwoA
diagnosis, using a 3 dimensions CNN model. Compared to
HC, this method achieved a maximum diagnostic accuracy of
98.40% (Figure 10C). Zhang Q. et al. (2016) utilized rs-fMRI
data to extract three features and combine them with regional
gray matter volume data from structural MRI. They employed
a multi-kernel strategy for feature selection and combination,
followed by training an SVM classifier to differentiate subjects
at the individual level. A leave-one-out cross-validation method
was employed to evaluate the performance of the classifier, the
final classification accuracy for distinguishing MwoA patients and
HCs was 83.67% (sensitivity 92.86%, specificity 71.43%), where the
anterior cingulate cortex, prefrontal cortex, orbitofrontal cortex,
and insular cortex contributed the most discriminative features.
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FIGURE 5

Changes in functional connectivity in the insular in migraine patients.

FIGURE 6

Changes in functional connectivity in the brainstem in migraine patients.

Fu et al. (2022) utilize fALFF per voxel and use sophisticated
machine learning of fMRI to confirm abnormal fALFF patterns and
extract them as features for constructing discriminant models by
SVM. They demonstrated that the trigeminal neck complex/ventral
medial medulla (TCC/RVM), cingulate mesocortex (MCC), medial

prefrontal cortex (mPFC), and temporoparietal junction are key
brain regions to distinguish migraine. High accuracy (79.3%),
sensitivity (78.6%), and specificity (80.0%) were demonstrated
in differentiating MwoA patients from HC. When further
identification of patients with chronic migraine, the ability of
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FIGURE 7

Changes in functional connectivity in the limbic system in migraine patients.

machine learning to distinguish is equally significant. Chong et al.
(2017) utilized machine learning techniques to analyze the FC of
33 pain-related seed regions in individual rs-fMRI data, finding
that the rs-FC of the right middle temporal lobe, posterior insula,
mid-cingulate cortex, left ventromedial prefrontal cortex, and
bilateral amygdala regions best differentiated migraine patients
from HC. Forward stepwise search using diagonal quadratic

discriminant analysis, as well as an in-house developed machine
learning pipeline (encoded in MATLAB), to determine which
principal components contribute to classification accuracy. A 10-
fold cross-validation revealed an optimal classification accuracy of
86.1%, with higher accuracy of 96.7% in patients with extended
illness duration (>14 years) and 82.1% in those experiencing
shorter duration (≤14 years). Chen et al. (2019) found that,
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FIGURE 8

Changes in functional connectivity in the hypothalamus in migraine patients.

FIGURE 9

Changes in functional connectivity in the thalamus in migraine patients.

compared to HCs, both episodic migraine and CM patients had
significantly reduced hypothalamic volumes as observed through
high-resolution fMRI. This offered good diagnostic accuracy for
CM (sensitivity 81.25%, specificity 100%). Morphometric analysis
of voxels indicated a positive linkage between diminished anterior
hypothalamic volume and the incidence of headaches in CMs,
whereas a negative correlation was found with the reduced
volume of the posteromedial hypothalamus and the frequency
of both episodic migraines and CMs. Studies have also been

conducted to distinguish migraine from other confusing secondary
headaches. Dumkrieger et al. (2022) included clinical features,
structure, and functional resting state measurements as latent
variables. Fit the data using a classifier for principal component
ridge logistic regression. Calculate the average accuracy using the
Leave One cross-validation. Through internal variable selection
and principal component creation, the average accuracy of FC
data was 72%, and the average accuracy of FC-free data was
63.4%.
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FIGURE 10

Machine learning and advanced statistical modeling of fMRI in migraine diagnosis. Adapted from (A) Yang et al. (2018), (B) Sun et al. (2023), and (C) Li
et al. (2022b), respectively.

In summary, machine learning and statistical modeling
using commonly employed fMRI data have demonstrated good
diagnostic performance for migraine. Furthermore, these methods
indicate that patients with longer disease duration may have higher
classification accuracy. However, the diagnostic performance is
slightly lower when differentiating migraine subtypes such as
those without aura or with aura, and comparing chronic or
episodic migraine with HC. Further in-depth studies involving
similar machine learning and statistical modeling approaches can
potentially distinguish migraine subtypes more effectively and
improve classification accuracy.

2.3. Diagnosis of TTH based on fMRI
technology

2.3.1. Exploring the pathophysiology of TTH
diagnosis through fMRI technology

Tension-type headache is characterized by dull, constricting,
or pressing band-like pain around the head and is the most
common but under-researched primary headache disorder with
an incompletely understood pathophysiology. The initial whole-
brain voxel-wise fALFF research performed utilizing rs-fMRI data
in a study, and the results showed increased fALFF in the right
posterior and anterior insula in episodic TTH sufferers compared
to HC, decreased fALFF in the posterior cingulate cortex, and a
negative correlation between right anterior insula fALFF and TTH
attack frequency (Yang et al., 2023). Further research detected lower
ALFF values in TTH across six frequency bands, predominantly
localized to the middle and superior frontal gyri (Li et al., 2021).
ReHo analysis of the spontaneous neural activity in TTH across
various frequency bands demonstrated augmented ReHo within
the right medial superior frontal gyrus in the conventional band
(0.01–0.08 Hz) and slow-5 band (0.01–0.027 Hz), when compared

to HC (Zhang S. et al., 2021). However, a previous study found
significantly reduced ReHo values in the bilateral caudate nucleus,
subcallosal area, shell nucleus, left middle and superior frontal
gyrus in the TTH group (Wang et al., 2014). These contradictory
results may arise from disparities in diagnostic criteria and severity
of TTH across studies.

2.3.2. Efficacy of machine learning and advanced
statistical modeling based on fMRI data in TTH
diagnosis

Wang Y. et al. (2022) selected the bilateral amygdalae and
left hippocampi as seed regions for rs-FC analysis, assessing their
discriminative capacity for TTH sufferers compared to HC and
migraineurs. According to the rs-FC between the left amygdala
and bilateral corpus callosum/cuneus, the AUC, sensitivity, and
specificity for discriminating migraines from TTH were 0.822,
78.3, and 81.8%. Based on the rs-FC between the left amygdala
and left Heschl’s gyrus, the AUC, sensitivity, and specificity for
discriminating migraines from TTH were 0.868, 82.6, and 81.8%.
Using the rs-FC between the left amygdala and right Heschl’s gyrus,
the AUC, sensitivity, and specificity for discriminating migraines
from TTH were 0.830, 78.3, and 86.4%. Due to the restricted
number of studies and their sample size, the aforementioned
findings must be treated with discretion until further validation of
the research’s reproducibility is achieved.

2.4. Diagnosis of TAC based on fMRI
technology

2.4.1. Exploring the pathophysiology of TAC
diagnosis through fMRI technology

Trigeminal autonomic cephalalgia encompasses a collection of
distinct primary headaches, characterized by moderate or severe
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FIGURE 11

Changes in the functional connectivity of the hypothalamus in patients with cluster headache.

one-sided pain located in the distribution area of the first branch
of the trigeminal nerve, and is combined with cranial autonomic
symptoms and signs. The low occurrence rate of TAC presents a
challenge in carrying out large-scale investigations and randomized
clinical trials (Diener et al., 2023). The prevailing theory for years
has been that the hypothalamus triggers, and then activates the
trigeminal autonomic reflex, a hypothesis many accept to explain
chronic cluster headache, which is the most frequently observed
condition in this category (Hoffmann and May, 2018). FMRI
analysis mainly focuses on FC and abnormal activation in cortical
areas, brainstem, and hypothalamus (Sprenger et al., 2004; Matharu
and Zrinzo, 2010; Morelli et al., 2013; Chiapparini et al., 2015;
Naegel and Obermann, 2021). ICA and seed correlation analysis
of rs-fMRI data showed increased FC between the hypothalamus
and the pre-genual anterior cingulate cortex, visual cortex, bilateral
secondary somatosensory cortex, right middle occipital gyrus, right
thalamus, and right insula in cluster headache patients compared
to HC (Figure 11). And variations within the sensorimotor and
primary visual networks in CH patients displayed a reduction
(Rocca et al., 2010). Another study indicated a strong reduction
in FC in the right frontal pole and right amygdala pathways in
chronic cluster headache patients compared to HC (Ferraro et al.,
2022). Rs-fMRI analysis revealed that, compared to the control
group, left-sided cluster headache patients displayed decreased
fALFF in the left cerebellum, left putamen, left frontal lobe, left
anterior cingulate, and right posterior central gyrus, while right-
sided cluster headache patients exhibited decreased fALFF in the
right cerebellum, right cingulate gyrus, right superior parietal
lobule, right inferior parietal lobule, right posterior central gyrus,
and left precuneus, with no areas showing increased fALFF (Chen
Y. et al., 2022). Another rarer subtype is short-lasting unilateral
neuralgiform headache attacks with conjunctival injection and
tearing (SUNCT); several fMRI studies (May et al., 1999;
Matharu et al., 2003; Auer et al., 2009) conducted during multiple
attack periods showed activation of the posterior hypothalamus,
brainstem, right pre-central, superior frontal, inferior frontal,
middle frontal cortex, and bilateral supplementary exercise area.

2.4.2. Efficacy of machine learning and advanced
statistical modeling based on fMRI data in TAC
diagnosis

Messina et al. (2023) collected clinical, functional, and
structural MRI data from migraineurs, cluster headache

sufferers, and HCs. By employing ICA and SVM algorithms
for classification analysis, this supervised machine learning
approach, in combination with multimodal imaging data,
resulted in an 89% classification accuracy for differentiating
migraines from HCs and a 98% accuracy for differentiating
cluster headaches from HCs. The accuracy in distinguishing
between cluster headaches and migraine patients reached 99%
when using a combined MRI-clinical classification model.
Bilateral hypothalamic and PAG functional networks were
the most important fMRI features for classifying migraine
and cluster headache patients from the control group.
Comparison revealed that, unlike migraine patients, those
with cluster headaches showed diminished functional interactions
between the left thalamus and cortical areas, areas crucial for
interoception and sensory integration, serving as the most
discriminative fMRI feature for distinguishing cluster headache
patients.

2.5. Diagnosis of other primary
headaches based on fMRI technology

Other primary headaches include those induced by coughing,
exertion, or sexual activity. Research has analyzed a subtype of
headache within this category known as new daily persistent
headache (NDPH) (Robbins et al., 2010), characterized by the
sudden onset of daily headaches lasting for 3 months or longer,
with secondary causes excluded. A study (Qiu et al., 2023)
using structural magnetic resonance imaging combined with
multimodal brain imaging analysis of magnetoencephalography
found that NDPH patients had abnormal brain morphology
such as cortical area, cortical thickness, and gray matter volume,
accompanied by abnormal cortical neural activity. Another
study (Wang et al., 2023) using fMRI to map abnormal
FC in NDPH patients showed abnormal FC in multiple
brain regions involved in emotion and pain perception and
regulation, but these abnormalities did not correlate with
clinical features. All in all, the exploration appears to be only
superficial. Studies on other primary headaches are scarce and
may require further classification; therefore, this review cannot
provide a summary of research related to diagnosis in this
category.
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3. Current status and future
prospects

With the development of science and technology, many
technologies such as biomarker research (Singhal et al., 2023),
neuroimaging technology (Aberathne et al., 2023; Castaldo et al.,
2023), artificial intelligence and machine learning (Rahaman
et al., 2020, 2021; Chen A. et al., 2022; Inoue et al., 2023),
and remote monitoring and sensor technology (Lu et al.,
2023; Rahman et al., 2023) have been widely used to explore
various diseases and achieve interesting results. Machine learning
discussed in this article has been the hottest topic in the field
of artificial intelligence in the past 10 years, among which
deep learning, classification, neural networks, etc. are the most
common keywords in this field (Nam et al., 2022; De la Vega
Hernández et al., 2023). Similarly, fMRI studies have gradually
developed a complete system from focused activity and functional
connections to complex networks and dynamic models. In
particular, research on psychiatric disorders, such as the large-
scale collaborative project that has been carried out and integrated
multicenter fMRI datasets from ten research institutions and
clinical hospitals in China, reveals the reproducible disruption of
functional connectomes in patients with major depressive disorder,
providing a promising paradigm for understanding pathology
and exploring clinical biomarkers (Xia et al., 2022; Zhang et al.,
2023).

Although in terms of signal acquisition, BOLD-fMRI
technology is an indirect measurement of neural activity, which
limits the temporal resolution, and various unpredictable factors
may interact with the signal and reduce its signal-to-noise ratio,
resulting in BOLD signal loss or spatial distortion. But continuous
technological improvements are addressing these shortcomings
(Glover, 2011; Campbell and Weber, 2022). Bibliometric analysis
shows that, especially after 2017, research on fMRI combined
with machine learning has grown considerably, enabling deeper
exploration of neuronal characteristics behind individual behaviors
and brain diseases, and imaging biomarkers for prediction have
gradually been identified (Sun et al., 2021). However, the use
of these emerging technologies in primary headaches is still
minimal. This may be due to the fact that many studies of the
pathophysiology of primary headache have been conducted in
recent years, but its pathogenesis is still poorly understood, and it
has not been well connected with new technologies (Ferrari et al.,
2022).

Therefore, fMRI combined with machine learning is still an
area of active research in the diagnosis of primary headache,
whether to develop biomarkers or classification algorithms, or
to use fMRI data alone or in combination with structural
MRI data (Zhang Q. et al., 2016; Tu et al., 2020). This trend
may be due to the lack of attention paid to diseases such
as TTH, which is also associated with lower rates of medical
visits due to milder symptoms. There is also considerable
heterogeneity in the assessment of headache disorders based
on ICHD because of the inevitable subjectivity (Kopel and
Gottschalk, 2022). In addition, it is difficult to obtain a large
sample size when conducting clinical research, the selection
process may have different criteria, and the image changes at
different stages of the disease may be different, which makes it

difficult to carry out multicenter research data sharing. There
are currently no publicly available datasets for fMRI for primary
headache, and the studies included in our review are all single-
center clinical studies with various heterogeneities in the study
process, resulting in low reproducibility of design and results.
Best practices for improving reproducibility include method
transparency, eliminating errors, using prior assumptions and
power calculations, using standardized instruments and diagnostic
criteria, and developing large-scale, publicly available datasets
(Hranilovich et al., 2023). In the future, on the basis of the
pathophysiology obtained by fMRI exploration, more statistical
models and deep learning models should be combined, or other
technical means such as blood biomarkers and structural magnetic
resonance. For example, more large-scale, multi-center, large-
sample studies are carried out to realize the transformation
of individual diagnosis from the concept stage to the clinical
application stage.

4. Limitations

There are some limitations to this article. First, there is a
lack of consistent objective indicators to assess headache severity
and frequency of attacks, so this section is less summarized
here. Second, further classification of each primary headache
subtype is considered as there are few and no studies that are
primarily discussed herein. Third, because the results of the current
fMRI exploration of the pathophysiology of primary headache
have not been standardized, all studies in machine learning
analysis have collected and created datasets independently. Last
but not least, statistical modeling and machine learning based
on fMRI data for the diagnosis of primary headache is still
scarce, and this article only summarizes the characteristics of each
study in detail, and has not yet been able to further unify the
results of all studies.

5. Conclusion

This article describes the latest classification and epidemiology
of primary headache, summarizes the principles and
implementation methods of fMRI technology, and reviews
the latest progress in data analysis and diagnostic model
design of primary headache and its subtypes based on fMRI
technology. It covers classical analytical methods for studying
pathophysiology and combines them with advanced statistical
models and machine learning. FMRI studies associated with
primary headaches reveal functional changes in different
brain regions, and machine learning and statistical modeling
have demonstrated their excellent diagnostic performance,
especially when combined with other data such as structural
MRI. In addition, patients with a longer course of disease may
also increase diagnostic accuracy. However, the number of
studies is limited and reproducible is low, so the results need
to be interpreted carefully. The continuous improvement of
fMRI technology and machine learning models, and the in-
depth study of primary headache provide great potential for
diagnosis and prediction.

Frontiers in Human Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1256415
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1256415 August 29, 2023 Time: 13:48 # 14

Li et al. 10.3389/fnhum.2023.1256415

With the advent of artificial intelligence and big data
in healthcare, these advances are expected to contribute to
precision medicine for functional neurological disorders such as
primary headaches. This review provides a bridge for medical
and engineering researchers who are committed to combining
advanced imaging technology and artificial intelligence technology
for neurological disease research, provides powerful tools and
ideas, and also provides a reference for clinicians or neurology
researchers, helps to understand the pathophysiological mechanism
and diagnostic methods of primary headache in a deeper way,
and encourages us to do more exploration in the diagnosis of
primary headache.
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