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Introduction: Speech production involves neurological planning and articulatory 
execution. How speakers prepare for articulation is a significant aspect of speech 
production research. Previous studies have focused on isolated words or short 
phrases to explore speech planning mechanisms linked to articulatory behaviors, 
including investigating the eye-voice span (EVS) during text reading. However, 
these experimental paradigms lack real-world speech process replication. 
Additionally, our understanding of the neurological dimension of speech planning 
remains limited.

Methods: This study examines speech planning mechanisms during continuous 
speech production by analyzing behavioral (eye movement and speech) and 
neurophysiological (EEG) data within a continuous speech production task. The 
study specifically investigates the influence of semantic consistency on speech 
planning and the occurrence of “look ahead” behavior.

Results: The outcomes reveal the pivotal role of semantic coherence in 
facilitating fluent speech production. Speakers access lexical representations and 
phonological information before initiating speech, emphasizing the significance 
of semantic processing in speech planning. Behaviorally, the EVS decreases 
progressively during continuous reading of regular sentences, with a slight 
increase for non-regular sentences. Moreover, eye movement pattern analysis 
identifies two distinct speech production modes, highlighting the importance 
of semantic comprehension and prediction in higher-level lexical processing. 
Neurologically, the dual pathway model of speech production is supported, 
indicating a dorsal information flow and frontal lobe involvement. The brain 
network linked to semantic understanding exhibits a negative correlation with 
semantic coherence, with significant activation during semantic incoherence and 
suppression in regular sentences.

Discussion: The study’s findings enhance comprehension of speech planning 
mechanisms and offer insights into the role of semantic coherence in continuous 
speech production. Furthermore, the research methodology establishes a 
valuable framework for future investigations in this domain.
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1. Introduction

The speech planning process, based on the lexical access theory of 
speech production, consists of several stages of language processing, 
including lexical representation, semantic processing, and 
corresponding articulatory gestures. Typically, the process begins 
when speakers concentrate on a target concept and ends when they 
initiate the articulation (Levelt, 2001). Researchers have studied the 
mechanism of speech production both behaviorally and neurologically 
for many years with the aim of fully understanding the mechanism 
behind speech planning.

1.1. Investigation of speech production 
processing based on eye movement 
parameters

In behavioral studies, researchers have analyzed the latencies of 
speech planning in a speech production task by manipulating the 
syllable length, familiarity, and predictability of words (Meyer et al., 
2003; Clifton et al., 2016; Robidoux and Besner, 2018; Shao et al., 2019; 
Lelonkiewicz et al., 2021). The results of these studies indicate that 
speech planning is mainly affected by syllable length and word 
familiarity, rather than semantics. To investigate the semantic 
implications, the researchers started using noun phrase reading tasks 
to examine the delay in speech planning. They combined eye movement 
with acoustic measures to speculate about potential speech planning 
processes through the behavioral analysis of eye movements (Levelt 
et al., 1999; Inhoff et al., 2011; Kirov and Wilson, 2013). For instance, 
in object naming tasks, speakers usually look at the first object for 
around 500–700 ms, then begin inspecting the second object, and 
about 150–350 ms later, they initiate the articulation of the first object 
(Wilshire and Saffran, 2005; Meyer et al., 2007; Cholin et al., 2011). This 
indicates that when the eyes move from the current word to the 
upcoming word, there is a temporal overlap between the fixation of the 
upcoming word and the speech onset of the current word. These 
phenomena are interpreted as speakers looking ahead several words for 
the integrated processing of the current words. This phenomenon only 
occurs when the speaker can anticipate upcoming sounds by “looking 
ahead” in context (Dell, 1986). In recent years, numerous studies have 
started to investigate changes in the “eye-voice span (EVS)” of speech 
planning in continuous speech by asking participants to read sentences 
(Inhoff et al., 2011; Laubrock and Kliegl, 2015; Huang et al., 2018). In 
the second half of a sentence, as the speaker reads, the onset of uttering 
a word gradually approaches the onset of moving the eyes from the 
word. This results in speech planning not requiring “looking ahead” in 
the latter section of the sentence. This is probably due to the coherent 
contextual semantics of continuous speech production. In a sentence, 
the preceding words can provide helpful semantic information that can 
aid in understanding or predicting the meaning of upcoming words.

1.2. Neural model of language cognitive 
processing

Although behavioral studies may not offer ample explanations for 
cognitive processes during latent time, speech processing involves 
several complex neural interactions. Consequently, several researchers 

explored neurological aspects of speech processing. The Wernicke-
Geschwind Model (Damasio and Geschwind, 1984; Tremblay and Dick, 
2016) is a classic neural model that explains a single pathway of speech 
production, which involves (i) form-sound matching of visual word 
recognition in the left superior angular gyrus; (ii) auditory speech 
recognition in the left middle temporal cortex; (iii) semantic 
comprehension in the posterior cortex of the left temporal lobe 
(posterior Wernicke Area); (iv) motor planning of speech production 
by the Broca Area in the posterior inferior cortex of the left frontal lobe; 
and (v) articulatory motor control by the primary motor cortex in the 
central anterior gyrus. This model anatomically confirmed the 
importance of both semantic comprehension and phonological 
encoding as prerequisites for speech production. In contrast to the 
Wernicke-Geschwind model, a neuroanatomical model of speech 
production proposed by Hickok and Poeppel emphasizes dual route 
processing (Hickok and Poeppel, 2004, 2007; Sammler et al., 2015). The 
model consists of a ventral stream and a dorsal stream. The ventral 
stream extends bilaterally from the posterior middle and inferior 
temporal gyrus to the anterior middle temporal gyrus, supporting 
auditory comprehension. The model also suggests the presence of a left-
lateralized sensorimotor dorsal stream involving the superior temporal 
gyrus at the notch of the Sylvian fissure, as well as the posterior inferior 
frontal gyrus and lateral premotor cortex. According to this model, the 
dorsal stream is responsible for the articulatory behavior involved in 
speech production, while the ventral stream is responsible for semantic 
comprehension. More recently, Arbib (2017) attempted to integrate 
functional networks involved in language processing in the brain using 
a dual-stream model of visual and auditory processing. They found that 
when language comprehension operates at the level of using words as 
symbols, most of the syntactic and semantic processing is provided by 
the ventral pathway. On the other hand, the dorsal pathway functions 
when words are perceived and produced as objects of articulatory 
behavior (Arbib, 2017). These findings further support the dual-stream 
model of speech production and demonstrate that the two streams play 
distinct roles in the processing of semantic comprehension and 
articulatory movements. However, during the process of reading, as the 
number of words increases, the neural activities of different functional 
modules, including language information representation, semantic 
understanding, and phonetic planning, overlap and form a complex 
brain network (Schoffelen et al., 2017). As a result, the two-stream 
model encounters challenges in accurately describing the intricate and 
dynamic nature of this process, particularly in terms of the need for 
rapid comprehension and integration of continuous contextual 
semantics. It is possible to speculate that there might be varying degrees 
of emphasis in the activation of different pathways in the brain based 
on the level of difficulty in semantic comprehension. To gain insights 
into the underlying brain activity, it is necessary to investigate this by 
controlling for the semantic coherence of sentences.

In addition, most models of speech production are based on 
anatomy and functional magnetic resonance imaging (fMRI) functional 
networks. However, fMRI’s inferior time resolution prevents it from 
accurately demonstrating the interaction and dynamic changes between 
various brain regions that occur during speech processing, which often 
involves complex interactions between neurons that happen on a 
millisecond timescale (Carreiras et al., 2014). Studies show that speech 
planning happens with interactions among functionally and/or 
structurally linked brain regions that are spatially separated (Rubinov 
and Sporns, 2010; Park and Friston, 2013). Noninvasive 
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electroencephalography (EEG) can fully record the dynamic 
interactions between neurons with sub-millisecond resolution and can 
trace the neural processes involved in speech production, from 
low-level visual perception to word meaning, through appropriate 
designs. Furthermore, high-density EEG analysis technology can infer 
the source of the signal in the brain from scalp multi-channel electrical 
signals (Chang et al., 2018). Combining EEG with prior knowledge 
obtained from fMRI can comprehensively investigate the temporospatial 
brain process involved in continuous speech production (Zhao et al., 
2017). Therefore, this study used a multimodal data analysis method 
that combined EEG, eye-tracking, and speech data during oral reading 
of continuous sentences to examine the speech planning process from 
a human behavioral and neurological perspective. We expect that these 
methods will help us uncover the causes of the speech planning process 
mechanism from semantic processing.

In this study, our aim is to investigate the mechanisms underlying 
semantic processing in speech planning by using a multimodal analysis 
that integrates human behavior and neurology. Our methodology 
involves the simultaneous use of electroencephalography (EEG), 
eye-tracking, and speech behavioral data collected during the oral 
reading of continuous sentences. The central objective of our research 
is to examine how the semantic coherence within sentences affects 
speech planning in continuous speech production. To achieve this, 
we have designed an experiment that includes both regular sentences, 
which contain coherent contextual semantic information, and 
non-regular sentences that lack such information. This manipulation 
involves altering the word order within sentences. Given the crucial role 
of contextual semantic information in facilitating smooth and 
coordinated speech production, we hypothesize a significant correlation 
between anticipatory eye monitoring and semantic anticipation. This 
discovery could enhance the comprehension of the dual-stream model 
by establishing a clearer link between eye movement patterns and 
neural activity during speech production. Our analysis incorporates 
two primary approaches: a behavioral analysis using eye-movement 
metrics and a time-frequency dynamic brain network analysis based on 
EEG data. We propose the hypothesis that as participants comprehend 
semantic information coherently, the extent of anticipatory eye 
movements, indicating look-ahead behavior, will gradually decrease. 
This reduction in look-ahead magnitude is expected to stabilize within 
a certain range throughout the reading process. Additionally, we suggest 
that heightened semantic association suppresses the activation of 
semantic processing networks. Conversely, the presence of semantic 
inconsistency amplifies the degree of look-ahead, although its impact 
on anticipatory effects diminishes. These intriguing observations will 
provide insights into the activation of the brain’s semantic processing 
network, thereby complementing the dual-stream model of how 
semantic and non-semantic pathways coordinate speech production. 
Therefore, this study contributes to a deeper understanding of the 
intricate interplay between semantic processing, anticipatory behaviors, 
and the neural processes involved in speech production.

2. Materials and methods

2.1. Participants

A total of 38 graduate students, 26 male and 12 female, with a 
mean age of 25.0 years (SD = 1.8, range 22–29), were recruited for this 

study from JAIST and Tianjin University. All participants were native 
Chinese speakers with no history of reading difficulties, and had 
normal or corrected-to-normal visual acuity (Strasburger et al., 2011) 
and normal hearing and speaking abilities. They were assessed as 
right-handed using a modified Edinburgh handedness test (Oldfield, 
1971), and reported no neurological or psychological disorders. 
Pronunciation and eye movement tests were conducted, ensuring all 
participants had the same level of understanding of the experiments. 
Participants provided written informed consent, and were paid for 
their participation and informed of their right to terminate their 
participation at any time. All participants then took part in the 
sentence oral reading task after passing all tests and signing relevant 
documents. Technical problems, disorders, or incorrect stimulus 
reading led to exclusion of data from six participants. Ethical approval 
was obtained from the JAIST and Tianjin University Research 
Ethics Committee.

2.2. Language materials

For this experiment, we  specifically designed two types of 
sentences: regular sentences (RS) and non-regular sentences (NRS), 
each containing 60 sentences. RS contain normal semantic coherence, 
meaning their content is coherent and easily understood. Conversely, 
NRS sentences were created by randomly rearranging the order of 
words in RS and adjusting them. While each word in NRS sentences 
is individually understandable, the sentence as a whole does not make 
sense. To control for word-length effects on speech production, all 
sentences contained 8 disyllabic words with clear grammatical 
boundaries. Additionally, all disyllabic words were high-frequency 
words, ranging from 163 to 4,243 occurrences per million (Cai and 
Brysbaert, 2010). Table 1 provides examples for each sentence type.

2.3. Multimodal data acquisition

The study was conducted within an electromagnetically shielded 
room, utilizing a Philips 246V5LHAB monitor with a 1,920 × 1,080 
resolution and 60 Hz refresh rate. Eye movements of the participants 
were binocularly recorded using an infrared video-based eye tracking 
system (Eyelink 1000 Plus, SR Research Ltd., Ontario, Canada) at a 
sampling rate of 1,000 Hz. Concurrently, speech was recorded via a 
Rode NTG-3 microphone, with a sampling rate of 44,100 Hz. EEG 
data was collected using an elastic cap equipped with 128 Ag/AgCl 
scalp electrodes, referencing left and right mastoids online and offline, 
and with a ground electrode located at AFz. The horizontal 

TABLE 1 Example stimuli.

Condition Example

RS 天气 预报 报道 天津 天气 凉爽 适合 旅游。

The weather forecast reports cool weather in Tianjin, 

suitable for travel

NRS 旅游 天津 预报 适合 天气 报道 凉爽 天气。

Travel in Tianjin forecast suitable for the weather reports 

cool weather

The example shows disyllabic word boundaries by spaces, which are not present in the actual 
experiment.
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electrooculogram (EOG) was measured with 2 electrodes at the outer 
canthi. The vertical EOG was measured with 4 electrodes placed above 
and below both eyes. All impedances are adjusted to below 5kΩ. The 
recorded data was amplified using a SynAmps RT amplifier 
(Neuroscan, United States) with a 1,000-Hz sampling rate. Participants 
were asked to place their foreheads in a fixator to secure their heads 
throughout the experiment recording.

A system for measuring eye movements, speech, and EEG was 
designed to conduct the experiment using MATLAB (version: 2017a) 
and PsychToolbox (version: 3.0.14) and simulate natural reading 
conditions. The experiment began with a nine-point calibration 
routine before each trial to ensure gaze accuracy deviation was less 
than 0.50. Figure  1 shows that each trial started with a 2,000-ms 
resting period, followed by a fixation cross that appeared at the screen 
center for 1,000 ms. Then, a randomly selected sentence was displayed 
at the center of the monitor. The eye movement and speech data were 
recorded separately for each sentence, starting synchronously when 
the cross disappeared and stopping when the participant pressed the 
ESC key to finish reading. The EEG data were recorded from the 
beginning of the experimental instruction and continued until all 
trials were completed. Time synchronization between EEG and 
behavioral data was achieved using Triggers. Each time the cross 
symbol disappeared, the system sent a Trigger with the number 255 
to the EEG waveform data, indicating the start of the current trial. 
Similarly, when the ESC button was triggered, the system sent Triggers 
of number 128 to the EEG data, indicating the end of the current trial. 
During this entire period, if the participant’s fixation point first 
appeared in any of the 8 words fields, a corresponding numbered 
trigger was marked on the EEG signal. Each participant completed 
two experiments, the RS experiment, and the NRS experiment. Each 
experiment consisted of three blocks of 60 randomly chosen sentences. 
The duration of the procedure per participant ranged from 52 to 
88 min, with simultaneous recording of EEG, eye movement, and 
speech data for the entire experiment. To ensure the stability of the 
oculomotor parameters during the experiment, the oculomotor 
parameters will be corrected again every tenth trails. We have also set 
up four buttons. They are Exit Experiment Program (Esc), Proceed to 
Next Trial (Enter), Tentative Trial (Space) and Return to Previous Trial 
(Backspace). When the experiment is tentatively resumed, the eye 
movement parameters will be  recalibrated to eliminate the eye 
movement drift that occurs after rest.

2.4. Eye movement and speech data 
analysis

In this study, we monitored both eyes during reading and used the 
average of the left and right eye movements as the data. Prior to 

statistical analysis, we  screened the eye-tracking record of each 
participant to remove erroneous fixations, blinks, and fixations that 
were very brief or long (less than 50 ms or greater than 750 ms) 
(Clifton et al., 2016). The horizontal position of the gaze was mapped 
to words positions, and standard measures were determined such as 
First Fixation Duration (FFD; duration of the first fixation on a words 
in first-pass reading), Mean Fixation Duration (MFD; mean of all 
duration of fixations on a words in first-pass reading), Gaze Duration 
(GD; sum of all duration of fixations on a words in first-pass reading), 
as well as skipping probability, single-fixation probability, refixation 
probability, and regression probability. All these metrics were used to 
measure behavioral outcomes. We also extracted the gaze onset time 
(GOn) and offset time (GOf) of every word in the sentence according 
to the eye movement trajectory. Only the first-pass reading, from the 
entry of the gaze point to the exit, was considered while regression and 
second-pass readings were disregarded. Additionally, SPPAS (Speech 
Phonetization Alignment and Syllabification), a speech automatic 
annotation and analysis toolbox, was employed to detect speech 
endpoints and to extract the pronunciation onset time and 
pronunciation offset time of every word. Moreover, the speech 
pronunciation onset time (SOn) and offset time (SOf) of each word in 
the continuous speech were also obtained. Finally, the eye-voice span 
(EVS) is calculated by the time difference between GOn and SOn 
(Laubrock and Kliegl, 2015).

In addition, we divided speech production into three different 
periods to be explored based on four time points: GOn, GOf, SOn and 
SOf. These periods consist of (i) the viewing period (VP) between 
GOn and GOf, (ii) the overlapping period (OP) between GOf and 
SOn, and (iii) the speech period (SP) from SOn to SOf. Together, VP 
and OP constitute the EVS.

2.5. EEG data analysis

2.5.1. EEG data pre-processing
The EEG recordings were pre-processed using the EEGLAB 

toolbox (Delorme and Makeig, 2004). Initially, a 1 Hz high-pass filter 
was employed, in order to eliminate DC offset or slow drift potential 
(<1 Hz). To reduce noise and interference from extraneous data, the 
original sampling rate was reduced from 1,000 Hz to 250 Hz. A 
low-pass filter with a cut-off frequency of 60 Hz was then used to 
retain the high gamma component involved in speech feedback. 
Additionally, a band-notch filter ranging from 49 to 51 Hz was applied 
to remove industrial frequency interference at 50 Hz. Defective 
channels with more than 10% anomalous fluctuations were removed 
prior to the averaging of the data. The continuous data was then 
divided into 180 epochs, each ranging from −1,000 ms to the end of 
utterance of each sentence at around 5,019 ms in the RS and 5,108 ms 

FIGURE 1

The procedure used in the present study.
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in the NRS, with the 1,000 ms pre-onset period serving as a baseline. 
The clean_rawdata() plugin in EEGLAB was utilized to de-noise 
continuous EEG channel data (Mullen et al., 2015).

Independent Component Analysis (ICA) was used to separate 
brain and non-brain effective source processes from the continuous 
EEG data (Delorme and Makeig, 2004; Chaumon et al., 2015). ICA 
effectively identified signal sources independent of each other in 
multichannel EEG data and projected them onto scalp electrodes. 
We applied the adaptive mixture independent component analysis 
algorithm (AMICA) to transform the scalp-EEG data from a channel 
basis to a component basis (Hsu et al., 2018) and separated those 
maximally independent cortical sources from biological artifacts and 
noise components (Chaumon et al., 2015; Pion-Tonachini et al., 2019). 
After rejecting noisy AMICA components, an equivalent current 
dipole (ECD) model of each brain independent component (IC) was 
computed using the standard boundary element method (BEM) head 
model embedded in the EEGLAB DIPFIT plug-in to localize dipolar 
sources on the cortex. The ICLabel plug-in applies a seven-class 
categorization for the independent components (IC) based on their 
spatiotemporal features, consisting of Brain, Muscle, Eye, Heart, Line 
Noise, Channel Noise, and Other, estimated by an expert (Pion-
Tonachini et al., 2019). In this study, we focused on brain-effective 
components, identifying the components with Brain label probability 
>0.7 and residual <0.15, while disregarding the rest automatically.

2.5.2. Group-level effective connectivity analysis
The source information flow toolbox (SIFT) was used in this 

paper to model continuous or event-related effective connectivity 
between ICs time series (Delorme et al., 2011; Mullen, 2014). During 
preprocessing, the data was epoched to −1,000 to 5,019 ms for the RS 
and −1,000 to 5,108 ms for the NRS relative to stimulus onset. A 
sliding window length of 250 ms, a window step size of 25 ms, and 60 
bins of logarithmic frequency ranging from 1 to 60 Hz were used. The 
Vieira-Morf algorithm was employed to fit a linear vector adaptive 
multivariate auto-regressive (AMVAR) model (Ding et  al., 2000). 
Following model fitting, stability, and residual whiteness tests, a 
multivariate method based on Granger causality (dDTF08, direct 
Directed Transfer Function) (Korzeniewska et al., 2008) was estimated 
from the AMVAR coefficients to determine multivariate information 
flow (Ding et  al., 2000; Schelter et  al., 2009; Blinowska, 2011). 
Connectivity measures were then propagated to the group level and a 
statistical analysis was performed using a group-SIFT method (Loo 
et al., 2019). To achieve spatial coherence of EEG dynamics, a Network 
Projection approach was utilized, similar to the voxel-by-voxel 
analysis in functional magnetic resonance images (fMRI). A 3-D 
Gaussian kernel was used to model each dipole, transforming their 
locations into probability density of dipoles. This was defined by full 
width at half maximum (FWHM) on a substrate of 76 anatomical 
regions of interest in the brain based on the Automated Anatomical 
Labeling (AAL) atlas. The names of the 76 anatomical regions of 
interest and their coordinate location parameters are listed. Next, an 
anatomical ROI-to-ROI pairwise weighted dipole density, weighted 
with dDTF08, was calculated, generating a connectivity matrix with 
76 × 76 edges of the graph. Each participant was associated with a 
four-dimensional tensor of ROI origins, ROI destinations, frequency 
bins, and time points. The tensors of individual participants were 
concatenated for each group, on which edges of the graph were 
selected. Intergroup comparison was performed on overlapping edges 

of the graphs between the groups using a two-sample t-test for both 
ERSP (event-related spectral perturbation) and weighted dDTF08 to 
generate the initial masked t-score maps with an uncorrected p < 0.05. 
Finally, group differences in the temporal dynamics and spatial 
structure of event-related effective connectivity were explored.

2.5.3. Dynamic time-frequency correlation 
analysis

We investigate the impact of reading sentences on the network of 
brain functions involved in speech planning to assess changes in brain 
activity. To enhance the spatial resolution of our EEG analysis, 
we utilized the pre-existing fMRI realizations of brain networks as 
both the initial values and constraints. The fMRI database of the Atlas 
of Human Brain Functions (available at Brainnetome atlas: http://
atlas.brainnetome.org/index.html) was utilized in this study to 
generate functional adjacency matrices based on the semantic brain 
functions (Fan et al., 2016). Firstly, filter out all brain regions in the 
Brainnetome database that are relevant to language functionality. 
Then, retain all brain regions within the language-related areas that 
have close connections to semantics. Construct a semantic functional 
brain network using these identified brain regions. Finally, 
we calculated similarities between each function using both fMRI-
based functional adjacency matrices (FAM) and EEG-based FAMs 
simultaneously, employing the Pearson correlation coefficient. Using 
this approach, we computed the correlation between the fMRI-based 
FAM and the time-varying FAM obtained from our EEG experiment, 
resulting in a time-varying correlation coefficient that characterizes 
the activity of the cerebral network. As the coefficient increases during 
a specific time interval, the corresponding brain network exhibits 
greater activation.

3. Results

3.1. Behavioral results

Excluding 12 subjects whose eye movement data and voice data 
were lost during the recording process, a total of 26 subjects ‘data 
were analyzed. Table 2 summarizes the general descriptive statistics 
related to eye movement and pronunciation during oral reading. 
The reading time for the RS group was 5,019 ms (sd = 671), and 
5,108 ms (sd = 1,007) for the NRS group. After multiple 
comparisons, no significant difference was found between the two 
groups (F = 3.01, p = 0.083). Moreover, the required time to produce 
words was almost identical in both groups, with 314 ms (sd = 13) 
for RS and 319 ms (sd = 7) for NRS. Overall, there was no significant 
difference in FFD between RS and NRS (F = 3.4, p = 0.065). 
However, there were significant differences in MFD (F = 26.31, 
p < 0.001), GD (F = 344.17, p < 0.001), and EVS (F = 583.05, 
p < 0.001). The result of the RS, the EVS of the initial word is 770 ms 
(sd = 280) and decreases gradually to 545 ms (sd = 239) for the last 
word. As one can see, the time difference of the EVS between the 
initial word and the last word reached −225 ms although all of the 
word lengths were the same. On average, the EVS of the last word 
is about 29% shorter than that of the initial one. It indicates that the 
EVS of speech planning changes with the location of the words in 
continuous speech, and this change continues to the third word. 
Starting from the third word, the change in EVS has become smaller 
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and gradually stabilized. In addition, the EVS of the third word is 
544 ms (sd = 224) and has no significant difference with the last 
word (F = 0.1, p = 0.751). In contrast, for the NRS, the EVS of initial 
word is 599 ms (sd = 241) and the last word is 840 ms (sd = 282). The 
average EVS of the initial word and the last word differs by 241 ms, 
has significant difference (F = 34.99, p = 0.000). Moreover, the 
number of words in the sentence increased, the EVS increased 
slightly and there was no significant difference from the third word 
onwards. The average trends for FFD, MFD, GD, and EVS are 
illustrated in Figure 2A.

On average, the number of fixations in NRS was significantly 
higher than in RS (F = 170.81, p < 0.001). The RS group had a higher 
probability of skipping the first word compared to the NRS group, 
while the skipping rate of subsequent words was higher in the NRS 
group with the same final word. The single-fixation probability of RS 
was higher than NRS. The probability of refixations and regressions 
showed the same trend.

When examining three distinct periods of speech production, the 
statistical analysis revealed significant differences between the RS and 
NRS groups in terms of the mean values of VP. For the RS group, the 
mean VP was 517 ms (sd = 87), while for the NRS group, it was 475 ms 
(sd = 107) (F = 41.15, p < 0.001). Similarly, the mean OP showed a 
significant difference between the two groups, with 92 ms (sd = 143) 
for the RS group and 293 ms (sd = 265) for the NRS group (F = 315.38, 
p < 0.001). Furthermore, the mean SP differed significantly between 
the RS group (483 ms, sd = 72) and the NRS group (517 ms, sd = 140) 
(F = 35.45, p < 0.001). The mean EVS statistics were also significantly 
different, with 608 ms (sd = 114) for the RS group and 809 ms (sd = 104) 
for the NRS group (F = 583.05, p < 0.001).

Subsequent separate statistical analyses were conducted for GD, 
OP, SP, and EVS for each word in the sentences of both groups. In the 
RS group, the GD and SP of each word exhibited stable distributions 
ranging from 430 ms to 590 ms (average = 517 ms, sd = 87 ms; 
average = 483 ms, sd = 72 ms). The latency of EVS for pronunciation 
demonstrated two distinct descending phases: the first stage 
encompassed the first word (average = 770 ms, sd = 280 ms) to the 
fourth word (average = 543 ms, sd = 194 ms), while the second stage 
spanned from the fifth word (average = 593 ms, sd = 207 ms) to the last 
word (average = 545 ms, sd = 239 ms). Upon closer examination, it 
becomes apparent that the difference in EVS can be largely attributed 
to the decrease in OP, indicating an overall decreasing trend. In the 
NRS group, both GD and SP exhibited stable distributions between 
400 ms and 570 ms for each word (average = 475 ms, sd = 107 ms; 
average = 517 ms, sd = 140 ms). Similarly, the EVS latency for 
pronunciation displayed two stages: an ascending stage from the first 
word (average = 599 ms, sd = 241 ms) to the fifth word 
(average = 838 ms, sd = 226 ms), followed by a smooth phase from the 
sixth word (average = 838 ms, sd = 240 ms) to the last word 
(average = 840 ms, sd = 282 ms). Once again, this difference in EVS can 
be  largely attributed to the decrease in OP, with an overall 
upward trend.

This figure illustrates the distribution of the mean VP, OP, and SP 
for a sample of 180 sentences across 26 topics as shown in 
Figure 2B. The left and right figures, respectively, represent the RS and 
NRS conditions. The horizontal axis of the figure indicates the time 
scale, while the rectangle whose color varies across time reflects a clear 
visualization of duration and variation for the two groups under 
different conditions. The boundary between GOn and GOf is 

TABLE 2 Descriptive statistics for RS and NRS oral reading.

W1 W2 W3 W4 W5 W6 W7 W8

FFD [ms] RS 305 (152) 239 (135) 250 (111) 246 (98) 229 (87) 281 (110) 286 (117) 315 (155)

NRS 301 (146) 242 (147) 270 (137) 253 (134) 226 (110) 296 (133) 292 (138) 284 (157)

MFD [ms] RS 302 (149) 263 (134) 250 (110) 252 (109) 248 (105) 268 (115) 275 (124) 314 (163)

NRS 300 (146) 265 (143) 277 (137) 269 (136) 254 (127) 282 (133) 279 (139) 280 (156)

GD [ms] RS 596 (331) 649 (348) 485 (253) 470 (265) 632 (263) 521 (264) 570 (295) 735 (407)

NRS 680 (382) 634 (347) 571 (308) 581 (326) 666 (345) 569 (308) 678 (385) 762 (449)

EVS [ms] RS 771 (280) 694 (289) 543 (224) 544 (194) 592 (207) 594 (209) 588 (217) 545 (239)

NRS 697 (241) 772 (280) 756 (217) 814 (202) 849 (226) 871 (240) 860 (227) 850 (282)

Number of fixations RS 1.72 (1.20) 2.43 (1.21) 1.91 (0.94) 1.83 (0.97) 2.53 (1.01) 1.90 (1.01) 2.02 (1.05) 2.13 (1.37)

NRS 2.09 (1.29) 2.30 (1.19) 1.97 (1.06) 2.08 (1.11) 2.54 (1.25) 1.91 (1.07) 2.29 (1.32) 2.47 (1.59)

Skipping probability RS 0.13 0.01 0.01 0.02 0.01 0.02 0.03 0.09

NRS 0.08 0.04 0.05 0.04 0.03 0.05 0.06 0.09

Single-fixation 

probability

RS 0.41 0.18 0.34 0.39 0.12 0.35 0.30 0.28

NRS 0.30 0.19 0.31 0.28 0.15 0.33 0.24 0.20

Refixation probability RS 0.06 0.45 0.19 0.23 0.73 0.07 0.08 0.05

NRS 0.07 0.38 0.22 0.31 0.62 0.10 0.11 0.04

Regression 

probability

RS 0.09 0.49 0.22 0.24 0.73 0.08 0.11 0.07

NRS 0.09 0.43 0.26 0.36 0.63 0.15 0.17 0.05

Time to word 

pronunciation [ms]

RS 553 (370) 589 (298) 478 (220) 439 (212) 493 (220) 528 (234) 537 (258) 517 (87)

NRS 408 (285) 515 (301) 443 (237) 470 (213) 480 (259) 524 (289) 488 (285) 475 (107)
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represented by the red dashed line, while the blue dashed line 
represents the boundary between SOn and SOf. The blue, gray, and 
red squares represent the duration of VP, OP, and SP, respectively. The 
duration of EVS equals the total duration of VP and OP.

3.2. EEG results

The brain networks constructed from source space were mapped 
to the corresponding brain cortex, and the activated brain areas 
underwent statistical analysis. For significant edge values and cortical 
distribution, masking was applied on the distribution of the t-values 
associated with event-related effective connections, with p < 0.05. The 
effect of the baseline was eliminated in both groups of sentences 
during the reading period. Figure 3 illustrates the results of reading 
aloud for both the RS and NRS groups. The edge matrix of the brain 
network, the cerebral network node, visualization of the edge in 5 
views, and topography of the activated brain areas in 4 views were 
visualized separately for each data set. The right bars in matrices and 
topographic maps correspond to the t-values obtained after a 
two-sample t-test based on significance. Nodes in the brain network 
were categorized into seven different colored brain regions, as shown 
in the accompanying color bar diagram.

The results of the RS group during reading are displayed in 
Figure  3A. The study findings indicate the activation of 40 brain 
regions during oral reading. The connectivity between brain regions 
remains high through the visualization of brain network edge matrix 

and cortical visualization. A distinct dorsal pathway from the occipital 
lobe to the frontal lobe is evident. The visualization of the brain 
network reveals significantly more active connections between brain 
regions in the left hemisphere compared to the right hemisphere, 
indicating a pronounced left hemisphere bias. Figure 3B depicts the 
activation of 42 brain regions during reading in the NRS group. In 
comparison to the RS group, the brain network exhibits significantly 
higher connectivity strength and stronger cortical activation. 
Specifically, the right hemisphere regions, such as the superior parietal 
lobule, the central anterior and posterior gyri, and the frontal lobe, 
demonstrate stronger activation compared to the RS task, specifically 
in a substantial portion of the right frontal lobe. Brain network 
visualization depicts a markedly enhanced connectivity between the 
left and right hemispheres in the NRS group, demonstrating a bias 
toward the right hemisphere. Figure 3C presents a comparison of the 
brain regions’ activation during reading in the two groups of sentences. 
The results indicate a more balanced activation distribution between 
the left and right hemispheres in the RS group, with stronger 
connectivity among brain regions in the left hemisphere. In contrast, 
the NRS group demonstrates a distinct advantage in the right 
hemisphere, particularly with stronger activation in the right frontal 
and parietal regions. Brain network analysis reveals that the NRS 
group exhibits greater complexity and stronger connectivity in 
multiple brain regions than the RS group.

Earlier studies on brain rhythmic activity have consistently 
demonstrated that different frequency bands respond to various 
cognitive processes (Dai et  al., 2017; Schoffelen et  al., 2017). A 

FIGURE 2

Schematic diagram of the variation in the duration of VP, OP, and SP for the RS and NRS groups. (A) The graph illustrates the average trends of FFD, 
MFD, GD, and EVS for both the RS and NRS groups. (B) Depicts the variation in schematic diagrams for the duration of VP, OP, and SP in both the RS 
and NRS groups.
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comparison was made between the activation of the brain network of 
the RS and NRS groups in five different frequency bands; Delta 
1–3 Hz, Theta 4–7 Hz, Alpha 8–12 Hz, Beta 13–30 Hz, and Gamma 
31–60 Hz bands (Schoffelen et  al., 2017). As shown in Figure  4, 
analysis of the frequency band rhythm distribution revealed that the 
brain network in the RS group was mainly active in the Alpha and 
Beta bands, with a small distribution in the Gamma band. The Delta 
and Theta bands, conversely, showed negligible activity. The NRS 
group brain network, likewise, exhibited maximum activity in the Beta 
band, with minor involvement in the Alpha band. Consistent with the 
RS group, the activity in the Delta and Theta bands was insignificant. 
However, the NRS group did not demonstrate any significant activity 
in the Gamma band. It is apparent from the analysis that semantically 
inconsistent NRS sentences, in comparison to the semantically 
coherent RS sentences, show higher concentration and activity in the 
frequency band distribution.

The dynamic time-frequency correlation analysis method utilizing 
EEG brain network and fMRI functional template network 
(Figure 5A) involves calculating Pearson correlation coefficients of the 
spatially filtered semantic functional template network. The frequency 
range for the RS group was 8–60 Hz, including the Alpha, Beta, and 
Gamma bands, while the NRS group was limited to the Alpha and 
Beta bands. Figures 5B,C display the outcomes. The analysis of the RS 
group indicated a negative correlation (r = −0.211) between the EEG 
dynamic brain network and semantic functional network during 
continuous speech production. This negative correlation suggests that 

the semantic brain networks are less active and almost inactive during 
this process. In contrast, the analysis of the NRS group revealed a 
significant positive correlation (r = 0.349) between the EEG dynamic 
brain network and semantic functional network from 0 to 1,300 ms, 
followed by a quick decrease at about 1,400 ms (r = 0.334 to r = −0.272). 
The correlation gradually increased up to 2,600 ms (r = 0.283), then 
gradually decreased from 2,600 ms (r = 0.207) to 3,500 ms (r = −0.368). 
After that, the correlation increased again to 3,900 ms (r = 0.228), 
followed by a gradual decrease to −0.178. The findings reveal that the 
semantic network is prominently implicated in speech planning 
during the entire NRS task process. The network is recurrently 
activated and inhibited, demonstrating an overall inhibitory pattern.

4. Discussion

This study aimed to clarify the speech planning mechanisms 
during continuous speech production by measuring behavior (eye 
movement and speech) and neurophysiological (EEG) data while 
conducting continuous sentence reading. By controlling the semantic 
consistency of sentences, we  discussed the semantic processing 
mechanism in speech planning. For each sentence, the statistical 
analysis was conducted on a per-word basis using the start timescales 
obtained from the analysis of eye movement and speech data, 
specifically VP, OP, SP, and EVS. Subsequently, we compared the brain 
activity between semantic consistency (RS) and semantic 

FIGURE 3

(A) Shows the results of the brain networks matrix (top-left view), brain networks (down-left view), and cortical localization (right view) under RS tasks 
at the reading period; (B) shows that the results of the brain networks matrix (top-left view) brain networks (down-left view) and cortical localization 
(right view) under RS tasks at reading period; (C) shows the comparison of activated brain regions in the RS and NRS at reading period, with the RS 
group in blue and the NRS group in red, and differentiates between the left and right brains.

https://doi.org/10.3389/fnhum.2023.1253211
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Huang et al. 10.3389/fnhum.2023.1253211

Frontiers in Human Neuroscience 09 frontiersin.org

inconsistency (NRS), and analyzed its distribution across various 
frequency ranges. Lastly, we analyzed the dynamic process of semantic 
processing between two sentences based on the frequency range of 
distribution using dynamic spatial correlation analysis at a temporal 
frequency. As expected, the semantic network plays a critical role in 

the production of continuous speech. Furthermore, our findings 
suggest two distinct modes of speech production.

In a word-by-word analysis during speech production revealed 
that “look ahead” was prevalent in both the RS and NRS groups. Our 
results showed that the OP was always present and positive in both the 

FIGURE 4

Mean brain topography scores in delta, theta, alpha, beta, and gamma rhythms for the RS and NRS groups are shown in the figure.

FIGURE 5

(A) Shows the activation FAM (functional adjacency matrices) of the semantic processing network built on the basis of the fMRI a priori database in the 
left view; the right view shows the structure of the visualization of the network. (B,C) Shows the results of the dynamic time-frequency-spatial 
correlation analysis of RS and NRS with the semantic brain network template.
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RS and NRS. The implication of this result was that speakers access 
the latter lexical representations and phonological information before 
the speech onset of the current words. Hereby, by delaying the 
production of the first word in utterance until they had some sense of 
the availability of the phonological form of the upcoming word. This 
again demonstrates the expected effect of the speech execution process 
(Ortmanns et  al., 1996; Laubrock and Kliegl, 2015). That is, the 
production system to achieve fluently, speakers must scan ahead to 
determine which sounds to produce next. This suggests that the 
speakers planning ahead for upcoming words by gazing ahead to the 
next word. This benefit is obvious, as it can effectively avoiding 
mispronunciation and avoid becoming tongue-tied allows for fluent 
speech production.

One of the significant differences between the RS and NRS groups 
is that the OP and EVS manifests two different tendencies. With the 
exception of initial words, all subsequent words showed significant 
differences. In the RS group, looking ahead to plan seems to become 
gradually less significant. From the second word onward, planning for 
subsequent words no longer seems to require an ocular gaze. At the 
end of words, OP is reduced by 76%. Therefore, it can be inferred that 
immediately after gazing at current words, the articulatory system is 
ready to execute the pronunciation of those words. This phenomenon 
may be  attributed to the high degree of semantic coherence. The 
speech planning process is accelerated to the extent that the brain, 
comparable to ocular movements, is able to keep pace with the eyes. 
Eye-voice span (EVS) difference at the beginning was close to two 
words and reduced to one at the end. In the NRS group, the initial OP 
decreased slightly at the second word and increased gradually until 
the end of the sentence. Conversely, in the final words of the NRS 
group, OP and EVS increased by approximately 44 and 29% compared 
to initial words. The EVS covers the complete two-word span of the 
current and subsequent words.

Moreover, the absence of a significant difference in FFD suggests 
that there was no dissimilarity in the initial stages of lexical retrieval 
between the two groups of sentences. Previous research has 
demonstrated that the duration of first fixation can be affected by word 
length and word frequency. In our sentences, all the words have the 
same length and are high in frequency. Thus, the dissimilarities 
between GD, MFD, and EVS might be attributed to fixation points 
other than FFD, such as second and subsequent fixations as well as 
refixations. These fixation points might be engaged in higher-level 
lexical processing mechanisms, including semantic understanding 
and prediction. These higher levels of information processing are 
likely accountable for the discrepancies in eye movement patterns 
between RS and NRS.

Previous studies have established that semantics is a key factor 
influencing speech planning in sentence reading (Clifton et al., 2007; 
Pickering and Gambi, 2018). This implies that cohesive contextual 
semantic information hastens the speaker’s speech planning process 
(Huang et  al., 2019), enabling them to anticipate the next speech 
position through semantic prediction. On the other hand, semantic 
inconsistency causes the speaker to invest more resources in 
scrutinizing and compensating for speech planning issues, ultimately 
impacting speech fluency. Comparing the outcomes of RS and NRS 
experiments, it is clear that smooth processing of semantic 
information is critical for continuous speech planning. Pronunciation 
is delayed when semantic information of subsequent words differs 
significantly from anticipated semantic principles. The delay 

guarantees accurate pronunciation devoid of tongue-tied speech. 
Conversely, if the semantic information of the following words is 
consistent with the predicted semantic information, the speaker’s 
pronunciation is fast and effortless, with negligible errors.

The neural data analysis results suggest a distinct dorsal flow of 
information during continuous speech production when there is 
semantic coherence. This information flow originates from the 
occipital lobe, passes through the parietal lobe, the central anterior–
posterior gyrus, and finally reaches the frontal lobe. Although there 
was no significant ventral flow of information, this result partially 
supports the dual stream model of speech production, as this model 
proposes that dorsal information flow processes non-semantic 
pathways. This pathway is primarily responsible for the representation 
of phonological information processing to articulatory execution 
(Hickok and Poeppel, 2007). Our interpretation of this result is that 
the ventral pathway of semantic processing becomes less important 
when semantics are predictable. As a result, the speaker can 
continuously plan and output speech segments by prediction without 
the need to achieve lexical fluency. The dynamic correlation analysis 
results of the brain’s semantic processing network confirms this point, 
as the semantic processing network is negatively correlated and 
continuously suppressed when there is semantic coherence. However, 
when semantics become incoherent, the dorsal information flow 
becomes less significant, and the frontal lobe displays significant 
activation. It is well-documented that the frontal lobes are strongly 
associated with attention (Corbetta and Shulman, 2002; Doricchi 
et  al., 2010), working memory (du Boisgueheneuc et  al., 2006), 
dyslexia (Vasic et al., 2008), and other linguistic cognitive functions. 
In particular, the middle frontal gyrus is highly activated during 
Chinese reading tasks (Yan et  al., 2021). Semantic incoherence 
increases the cognitive load of the language task, resulting in an 
increased need for attention allocation and more working memory 
consumption, which makes reading significantly more difficult. 
Therefore, during the NRS group, frontal lobe activation plays a 
significant role. Furthermore, the correlation results with the semantic 
processing network confirm that the activation of the semantic 
network is alternately positively and negatively correlated, with an 
overall decreasing trend. This indicates that speakers try to make sense 
of the sentence through semantic access to words before and after it, 
leading to a positive strong correlation in the early stage. However, the 
correlation gradually weakens because it was found that it cannot 
be correctly understood in the later period. The ups and downs during 
the reading aloud also prove that speakers have been trying to 
understand the sentences during continuous speech production.

The dorsal pathway in the dual-stream model is typically utilized 
to describe the processing of non-semantic linguistic information, 
whereas the ventral pathway primarily handles semantics. Through 
the analysis of dynamic brain networks, we have discovered that the 
coherence of semantics exerts differential effects on the activation of 
these two pathways. Specifically, coherent semantic information 
strengthens the activation of the dorsal pathway due to its contextual 
coherence, thus enhancing language prediction with minimal 
involvement of the ventral semantic pathway. Conversely, incoherent 
semantic information triggers repeated attempts to activate the ventral 
semantic pathway in order to disambiguate the semantics before and 
after and comprehend the sentence. During this process, the dorsal 
pathway solely furnishes basic phonological representations. 
Moreover, attention allocation and efforts to rectify erroneous 
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language occur through the engagement of higher cognitive regions 
such as the prefrontal cortex. Overall, the predictability of semantics 
appears to be  a potential regulator of comprehensive sentence 
comprehension and production. This distinction represents the most 
significant deviation from conventional language models, thereby 
warranting our focused investigation into semantic prediction in 
future research and analysis.

Overall, our behavioral analysis suggests that look-ahead is a 
prevalent phenomenon during continuous speech production. 
We  explain the critical role of semantic continuity in the speech 
planning process and present the variation pattern of look-ahead 
magnitude. Additionally, we demonstrate that semantic understanding 
plays a more significant role in continuous speech production than 
traditional predictors, such as syllable length and word familiarity. 
These findings are further supported by the analysis of neural data, 
which reveals a dorsal information pathway consistent with the dual 
pathway model and a heavy involvement of the frontal lobes during 
semantic discontinuity. Our study contributes to filling the gap of 
speech planning mechanisms during continuous speech production 
and provides a feasible research method for future studies in this field.

5. Conclusion

Our study seeks to explore the time variation and brain semantic 
network in continuous speech planning using behavioral and 
neuroscientific analyses. Based on our behavioral findings, we found 
that semantic predictability is a fundamental factor influencing the 
reduction in latency during continuous speech planning. In the 
presence of predictable sentence semantics, the degree of lookahead 
tends to decrease as the understanding of the sentence unfolds. 
Conversely, when semantic incoherence occurs, the eye-voice span 
continues to cover two words. In addition, we  observed that the 
correlation between the brain’s semantic processing network and 
semantic comprehension is strong during difficult comprehension 
tasks compared to easier ones. In conclusion, co-registering EEG, 
speech, and eye movements in continuous speech can be an effective 
way to gain insight into the brain’s speech planning process from 
fixation onset to speech onset. It can also provide a dynamic 
representation of the discourse planning process with high spatial and 
temporal resolution.
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Glossary

EEG Electroencephalography

EVS Eye-voice span

RS Regular sentences

NRS Nonregular sentences

EOG Electrooculogram

FFD First fixation duration

MFD Mean fixation duration

GD Gaze duration

GOn Gaze onset

GOf Gaze offset

SOn Speech pronunciation onset

SOf Speech pronunciation offset

VP Viewing period

OP Overlapping period

SP Speech period

FAM Functional adjacency matrices

ICA Independent component analysis

AMICA Adaptive mixture independent component analysis algorithm

MRI Magnetic resonance imaging

fMRI Functional MRI

SIFT Source information flow toolbox
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