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Events not conforming to a regularity inherent to a sequence of events elicit 
prediction error signals of the brain such as the Mismatch Negativity (MMN) 
and impair behavioral task performance. Events conforming to a regularity lead 
to attenuation of brain activity such as stimulus-specific adaptation (SSA) and 
behavioral benefits. Such findings are usually explained by theories stating that the 
information processing system predicts the forthcoming event of the sequence 
via detected sequential regularities. A mathematical model that is widely used to 
describe, to analyze and to generate event sequences are Markov chains: They 
contain a set of possible events and a set of probabilities for transitions between 
these events (transition matrix) that allow to predict the next event on the basis 
of the current event and the transition probabilities. The accuracy of such a 
prediction depends on the distribution of the transition probabilities. We argue 
that Markov chains also have useful applications when studying cognitive brain 
functions. The transition matrix can be  regarded as a proxy for generative 
memory representations that the brain uses to predict the next event. We assume 
that detected regularities in a sequence of events correspond to (a subset of) 
the entries in the transition matrix. We apply this idea to the Mismatch Negativity 
(MMN) research and examine three types of MMN paradigms: classical oddball 
paradigms emphasizing sound probabilities, between-sound regularity paradigms 
manipulating transition probabilities between adjacent sounds, and action-sound 
coupling paradigms in which sounds are associated with actions and their intended 
effects. We show that the Markovian view on MMN yields theoretically relevant 
insights into the brain processes underlying MMN and stimulates experimental 
designs to study the brain’s processing of event sequences.
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Introduction

During the last decades the predictive nature of the brain’s information processing has been 
increasingly emphasized, acknowledging that the processing of a current event is—to a large 
extent—determined by the already established knowledge, memory or model of the world 
(Gregory, 1980; Mumford, 1992; Friston, 2005; Bar, 2007; Ahissar et al., 2009; Clark, 2015). 
Considering that it is used in a predictive manner, this memory is sometimes called “generative 
model.” Research studying the establishment, representation and application of such generative 
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models typically presents sequences of events (stimuli) to participants. 
Event sequences are constructed in a way that they conform to one or 
several rules defining the succession of events, and it is tested how 
events are processed, depending on whether they do or do not 
conform to the rule(s). A consistent finding is that brain and 
behavioral measures reveal processing differences between rule 
conforming and rule violating events. They indicate facilitation in the 
processing of rule-conforming and a hindrance in the processing of 
rule-violating events. At the behavioral level, facilitation manifests as 
benefits such as increased accuracy in task performance, whereas the 
hindrance manifests as costs such as prolongation of response times 
(Parmentier, 2014). At the brain level, facilitation pays out in various 
forms of attenuation of brain activity, for example, stimulus-specific 
adaptation (SSA) in neural firing rates (Nelken, 2014; Carbajal and 
Malmierca, 2018; Willmore and King, 2023), N1-suppression 
(Horváth, 2015; Schröger et  al., 2015; Auksztulewicz and Friston, 
2016) or repetition positivity (Haenschel et al., 2005; Costa-Faidella 
et al., 2011) in the event-related potential (ERP), whereas hindrance 
is indicated by various prediction error signals such as the Mismatch 
Negativity (MMN) or the P3a (Näätänen, 1990; Bendixen et al., 2012).

Sequences of events are not only relevant in research on the 
predictive brain but also in the concept of Markov chains, a 
mathematical model concerned with the description, analysis, and 
generation of event sequences (Markov, 1913; Hayes, 2013). In Markov 
jargon, the possible events in a sequence are called the states of the 
system. The Markov chain is the process of the trajectory of the states 
over time. An interesting feature of Markov chains is that only the 
current state of the system determines what state(s) the system can 
change to at the next point in time; the trajectory on how the current 
state emerged does not matter (Markov property); in this sense a 
Markov chain is memoryless. Thus, the distribution of the probabilities 
of the possible states at the next stage is fully described by the 
probabilities of the possible transitions between the current and the 
next state. Consider the simple case that a sequence consists of two 
alternating events A and B (Figure 1A): the transition probability from 
event A to B equals the transition probability from event B to A, both 
being 1.0. As A does never follow A, and B never B, the respective 
transition probabilities are 0.0. Markov chains can be visualized as 
directed graphs (middle row of Figure 1) with the points from which 
the arrows emerge or at which they arrive being the possible states. 
The transition probabilities can also be listed in a transition probability 
matrix that contains the transition probabilities for all possible 
changes from one possible state into another (bottom row of Figure 1).

The transition probability matrix in Figure  1B describes a 
sequence, in which any of the four possible transitions is of equal 
probability, that is, it is equally likely to move from A to B as from A 
to A, and equally likely to move from B to A as from B to B. Please 
note, that the row sums of the matrix must add to 1.0, whereas the 
column sums do not need to add to 1.0. This is shown in Figure 1C: it 
describes a sequence where event A is always followed by event B, 
whereas B can be followed by A with a probability of 0.7 and by B with 
a probability of 0.3. The transition probabilities for a given sequence 
can be computed via the counts of the actually observed transitions 
listed in a transition frequency matrix. Normalizing the transitions 
row-wise yields the transition probability matrix.

The Markov chain concept can be generalized from the first-order 
examples illustrated in Figure 1 to Markov chains of higher-order. For 
example, second-order Markov chains describe stochastic processes 

in which the probability of a future state is based on the two preceding 
states. In principle higher-order Markov chains can include an 
unlimited number of preceding states to predict the next state, though 
the more states need to be considered the more memory intensive and 
the less parsimonious the model becomes. In fact, higher-order 
Markov chains are often needed to properly model stochastic 
processes in domains being characterized by higher-order 
dependencies such as the succession of states of weather over time, the 
succession of words in natural language, or the development of 
financial markets (Hayes, 2013). The concept has also been used in 
(cognitive) neuroscience to model, for example, decision-making or 
speech recognition. It has not yet received much attention in research 
of predictive processes like those using MMN and research in related 
fields (for few exceptions see below). This paper elaborates conceptual 
aspects and potential benefits of such a Markovian view on the MMN, 
and explores how Markov chains are a simple, yet useful approach to 
study and explain MMN. Specifically, to consider the event sequences 
used in MMN research as Markov chains can facilitate a better 
understanding of the informational basis underlying the elicitation of 
MMN, make implicit theoretical assumptions explicit, enable 
re-interpretation of existing research findings, and stimulate the 
design of theoretically relevant experiments. We start our elaboration 
by briefly introducing the field of MMN research and our rationale for 
regarding the Markov model as a proxy for the neural model 
(memory) underlying MMN elicitation.

Mismatch negativity

A sound violating a rule inherent to the preceding sequence of 
sounds (e.g., most sounds are of pitch A, the rule violating sound is of 
pitch B) has been shown to elicit an increased negativity in 
frontocentral regions of the scalp of the auditory ERP at a latency of 
around 150 ms in comparison to a sound that conforms to the 
regularity commonly labeled as MMN (Näätänen, 1990; Näätänen 
et  al., 2011). This simple frequency repetition rule is commonly 
referred to as the classical oddball paradigm, in which rule-
conforming sounds are called standards, whereas rule-violating 
sounds are called deviants. Importantly, rules can be more complex 
than the simple sound repetition rule. For example, tones violating the 
sequence rules “long tones are followed by high tones, whereas short 
tones are followed by low tones” also elicit MMN (Paavilainen et al., 
2007; Bendixen et al., 2008). MMN is accessible with neuroscientific 
methods other than EEG such as MEG, fMRI, NIRS, PET, human 
intracranial recordings (Näätänen, 1992), or animal in vivo whole-cell 
patch-clamp recordings (Valdés-Baizabal et al., 2021). It has been 
described for other modalities such as vision (Kimura, 2012; Stefanics 
et al., 2014; Czigler and Kojouharova, 2021), and even somatosensation 
(Butler et al., 2011; Strömmer et al., 2014) and smell (Ochiai et al., 
2021). It is generated in the respective sensory cortices, but generators 
in frontal brain areas may also be involved (Näätänen and Alho, 1995; 
Escera and Malmierca, 2014; Carbajal and Malmierca, 2018).

At the core of the prevalent MMN theory is that our brain 
compares the neural representation of an incoming (standard or 
deviant) sound with the memory trace for the standard sound. If this 
comparison yields a mismatch, the MMN is elicited (Näätänen, 
1990). Thus, the presence of MMN is taken as evidence that the 
features characterizing the rule must have been encoded and that a 
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violation of this rule has been detected by the brain. Though, many 
MMN results can be explained by the somewhat simpler adaptation 
(release-of-refractoriness) hypothesis (O’Shea, 2015). According to 
this hypothesis, the feature-specific neurons underlying the elicitation 
of the N1 component of the ERP (overlapping in time with the 
MMN) adapt to the features of the frequently presented standard, 
resulting in an attenuation of the N1. The N1 in response to a deviant 
is (partly) elicited by feature-specific neurons that are less adapted, 
resulting in a relatively larger N1. When subtracting the standard 
ERP from the deviant ERP, the difference in the N1s emerges as the 
MMN. A similar claim has been made for the P2 component of the 
ERP, stating that the MMN emerges due to a differential state of 
adaptation between the P2 elicited by standards and deviants 
(Haenschel et al., 2005). Namely, frequently (standard) compared to 
rarely (deviant) encountered stimuli elicit larger P2 amplitudes, 
resulting in a negative difference in a deviant-minus-standard 
contrast. In a rabbit against hedgehog race like manner, there are 
many papers attempting to dismiss the adaptation hypothesis in favor 
of the mismatch hypothesis, which in turn, motivated the 
representatives of the other theory to improve the adaptation 
hypothesis in respective counter-publications (Winkler et al., 1993; 
Jääskeläinen et al., 2004; Näätänen et al., 2005; May and Tiitinen, 
2010). This race is ongoing.

Although memory-comparison based accounts of MMN already 
acknowledged its predictive nature (Näätänen, 1992), Winkler et al. 
(1996) were first to explicitly characterize the mental model of the 
acoustic environment underlying MMN in terms of perceptual 
inferences. They propose two essential functions of such a model: 
“inferring future events from the history of auditory input and 
checking the acoustic stream for anomalies” (p. 240). The MMN was 

suggested to be an indicator of model updating in the light of new 
information. Winkler et al. also proposed two essential characteristics 
of such a model: First, it includes detected relationships between the 
stimuli, and second, the inferences the model can draw from a 
sequence of stimuli depend on how deterministic or stochastic that 
sequence is. In 2007, Winkler presented the regularity-violation 
interpretation of MMN by explicitly stating that “the auditory oddball 
paradigm can also be described in terms of a regular relationship 
between sounds” (Winkler, 2007). The predictive memory or 
generative model contains the respective “predictive regularity 
representations” (Schröger et al., 2014; Winkler and Schröger, 2015). 
Although this rather Markovian view on the MMN seems to be widely 
accepted in the community, explicit reference to Markov chains or 
transition probabilities is rare in MMN research (Furl et al., 2011; 
Koelsch et al., 2016; Mittag et al., 2016; Tsogli et al., 2019, 2022; Korka 
et al., 2021).

The Markov model as a proxy for the 
neural model underlying MMN

According to the regularity-violation interpretation of MMN 
(Winkler, 2007), the rules inherent to a sound sequence, and 
consequently the violations of those rules, relate to the transitions 
between the types of sound (i.e., states in Markov terminology) 
constituting that sequence. In the simplest case there are two sound 
types, namely a (frequently occurring) standard and a (rare, 
interspersed) deviant. In a typical MMN experiment the transition 
probability from a standard to a standard is high, while the transition 
probability from a standard to a deviant is low. Or in other words, 

FIGURE 1

(A–C) Examples of 2-state Markov chains. Upper row: excerpts from event sequences; middle row: directed graphs of the Markov chains. S1 and S2 
denote the states, the numbers at the arrows denote the probability of a transition from the state from which the arrow emerges to the state the arrow 
points to. Note that transitions with a probability of 0.0 are not shown for ease of display. Lower row: transition probability matrices. The probabilities in 
each row must add up to 1.0.
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there are at least two possible transitions from one sound to the next, 
one of which has a larger transitional probability relative to (at least) 
one other. Hence, sequences of sounds in MMN experiments have 
properties of a Markov chain. Apart from this similarity at the 
descriptive level of stimulus structure, there is also a similarity 
between MMN theory and the Markov model on a more conceptual 
level. MMN theory assumes that there exists a neural or mental model 
hosting the detected regularities of a sound sequence. Although there 
is no consensus in the community on how these models look, it is 
often assumed that they generate predictions about forthcoming 
sounds (Winkler and Czigler, 2012).

We explore whether and to what extent the transition probability 
matrix in the Markov model can be regarded as a generative model 
that, literally, generates (predicts) the next sound in the sequence 
according to the stochastic process defined by that model. In this 
Markovian narrative the transition probability matrix of a Markov 
chain serves as a proxy of the generative neural model (i.e., the 
predictive regularity representations) underlying MMN elicitation. 
Therefore, the regularities detected by the brain’s information 
processing system correspond to (parts of) the entries of the transition 
probability matrix (Figure 2). Of course, this is a simplification with 
respect to the actual implementation as generative models include 
predictions at different time scales and at different levels of abstraction, 
even for simple perceptual entities such as pitch (e.g., Balaguer-
Ballester et al., 2009).

There is no possibility for the MMN-system to know what all 
possible states and their transition probabilities might be. Thus, the 
memory underlying MMN most likely only covers actually 
encountered states and their respective transitions. Thus, not all 
possible states and/or transitions are necessarily known, such that 
a given empirical transition matrix only ever represents a limited 
excerpt from the world. Yet, the incompleteness and ambiguity in 
sensory information is a problem any perceptual model needs to 
take into account. And furthermore, it may not even be desirable 
for a mental model of the sensory environment to represent all 
potential states to achieve sufficient predictive power as (memory) 
resources are limited. Thus, it is an interesting question which states 
and transitions are represented in the human brain—that is, to what 
extent our mental models may show Markovian properties. For 
instance, is it necessary to encounter a given state a certain number 
of times before it is included in the model? Fortunately, key 
assumptions made by Markov models can be translated into specific 
predictions, which can be tested empirically such as that precision 
trumps base rate (cf. chapter “Classical oddball paradigms”). 
Another difference between the Markov chain as a mathematical 
model and our brains is that we  do not have perfect memory. 
Whereas all events contribute equally to the Markov model in 
theory, both decay and interference but also current goals can result 
in unequal weighting of the encountered evidence in 
human memory.

On that note, two forms of underlying memory have to 
be distinguished here: First, the memory which corresponds to what 
has been learned from the preceding event sequence, that is, the 
probabilities of the transitions between events, which correspond to 
entries in the transition matrix of the Markov chain model. Second, 
the memory of the windoe of the event sequence that is considered by 
the MMN system: its length corresponds to the order of the Markov 
chain model.

Please note that the characteristic of a Markov chain being 
memoryless (Markov property, see above) and the assumption that the 
MMN-system is based on memory are not contradictory. This is, 
because the entries in the transition probability matrix represent the 
accumulated information about the succession of the different events 
(set of states in Markov terminology) over time. The transition 
probability matrix contains the previously encountered transitions 
(association of events) between the states at trial n-1 and trial n. Thus, 
we regard the transition probability matrix as a form of associative 
memory. More specifically, it is a directed association, because 
transition probability is specific to the order of two states (i.e., the 
transition probability from A to B is not the same as from B to A). 
Please note that the trajectory of experiences resulting in a specific 
memory content is not necessarily part of the memory itself. For 
instance, in other forms of implicit or explicit memory, such as 
declarative knowledge as in “Paris is the capital of France,” it is not 
uncommon that we do not remember how we obtained that piece of 
knowledge in the first place.

The transition probability matrix summarizes what has been the 
case in the past, in order to enable rational guesses about what will be 
the case in the future. To elaborate, when taking the situation 
described by the Markov model in Figure  2 (i.e., the transition 
probability matrix), the MMN-system would make, metaphorically 
spoken, inferences like this: “The current sound is S3, from the entries 
in the respective row of the transition matrix it follows that the next 
sound will be S2” or “The current sound is S2, from the entries in the 
respective row of the transition matrix it follows that the next sound 
will most likely be  S1.” Note, in the brain this process may not 
be realized in the form of explicit inference, but rather in the form of 
a joint representation of highly-associated stimulus features. This may 
be the case because the occurrence of parts of the constituents of a 
given object are already sufficient to activate the object’s full 
representation (Gregory, 1980)—a phenomenon described both in the 
concept of predictive regularity representation in MMN research 
(Winkler and Schröger, 2015) and in general principles of the 
representational brain such as in the theory of event coding (Hommel 
et al., 2001).

We are aware that the Markovian narrative does not necessarily 
directly lead to an adequate understanding of the specific 
neuroanatomical or chronometric structure of the MMN system, but 
it draws attention to a central aspect of theories of MMN—namely the 
encoding of transitions between sounds. Whatever the exact nature of 
the MMN system is, eventually a theory of the MMN system has to 
come up with an explanation for the presence or absence of differences 
in brain activity (or behavioral performance) in response to events 
differing in conditional probability. We propose that the Markovian 
view can aid to formulate and to test constraints of MMN theory. For 
example, theoretically relevant transitions between sounds can 
be  accessed as cells or combinations of cells in the transition 
probability matrices. We argue that such an approach may stimulate 
MMN experiments and even lead to reinterpretation of existing 
research findings. In the following, we will examine three types of 
MMN paradigms from the Markovian view:

(1) Classical oddball paradigms emphasizing the different 
probabilities of different sounds types. The respective MMN theory 
postulates the importance of a memory encoding the features of the 
highly probable standard (i.e., a template of a specific stimulus). The 
Markovian view adds the potential importance of memory for 
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transition probabilities between the different sound types to classical 
MMN theory and posits ways to test whether they contribute to 
MMN. Importantly, the Markovian view allows to dissociate between 
global probability (or base rate, i.e., how frequently is a specific state 
encountered) and local probability (or conditional probability, or 
precision, i.e., how probable is a specific state given the current state). 
We will elaborate on this distinction and how it can promote our 
understanding of the processes underlying MMN.

(2) Between-sound regularity paradigms that focus on transition 
probabilities between adjacent sounds. The respective MMN theory 
emphasizes the role of detected regularities in those transitions to 
be used in a predictive manner. Although this is a showcase for the 
Markovian view, there are implications that deserve experimental 
proof. One of the theory’s implications is that the frequency of the 
occurrence of the sound per se (event probability or base rate of the 
event) should not matter as it does in the classical MMN paradigms. 
Also, only the relative frequency of the occurrence of the transitions 
should matter, but not their absolute frequency. One or both of these 
assumptions might not be met. A resolution of these issues is of special 

interest with regard to advancing the dispute whether MMN serves as 
a comparator process or reflects adaptation. In addition, for between-
sound regularity paradigms the Markovian view hints at asking which 
type of Markov chain is a reasonable proxy for the regularity 
representations underlying MMN. For example, some data appear to 
be compatible both with a first-order and with a second-order Markov 
chain, we will expand on this further on.

(3) Action-sound coupling paradigms use associations between 
button-presses and the sounds they produce. Strong associations (i.e., 
large transition probabilities) between a particular button-press and a 
particular sound are assumed to shape respective expectations of the 
sound following a button-press. Unlike in classical oddball paradigms 
and in between-sound regularity paradigms, predictions related to the 
next sound are not based on sound regularities, but rather on the 
association between an action and its (sound) effect. The intention to 
generate a particular sound (action-effect) includes the prediction that 
this particular action (e.g., left-button press) will yield the intended 
effect. In fact, according to ideomotor theory (James, 1890; Shin et al., 
2010), the intended effect guides the selection of the respective action 

FIGURE 2

Analogy between the transition probability matrix of the Markov model (left) and the predictive regularity representations of the MMN theory (right). In 
a Markov model, the next state of the system is computed by multiplying the current vector state with the transition probability matrix, in MMN theory 
the next sound is predicted on the basis of the detected regularities.
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generating this effect. The Markovian view would suggest that these 
action-based predictions are not different from the predictions based 
on sound regularities. If this were so, these action-sound coupling 
paradigms are well suited to study MMN mechanisms because they 
avoid concurrent local and global sound probability effects because a 
rare action can be associated with a high probable action-effect (low 
global sound probability but high local sound probability).

Distinction from previous Markovian 
approaches to MMN (and related 
research)

Regularity extraction, i.e., the learning processes underlying 
MMN elicitation include many facets. One of the facets is statistical 
learning, which is a diverse topic on its own that is covered by theories 
from cognitive psychology on various cognitive abilities in which the 
statistics of (co-)occurrences of events matter such as language 
acquisition (Saffran et al., 1996; Thiessen, 2017; Frost et al., 2019; 
Conway, 2020; Endress and Johnson, 2023). The Markovian view on 
the MMN we discuss in the present paper naturally is a simplification 
and it disregards many aspects of statistical learning.

Moreover, there exist computational theories that consider the 
emergence, maintenance, updating of and the competition between 
predictive models for sound sequences (Denham and Winkler, 2006; 
Meyniel et al., 2016). For example, in their paper, Meyniel et al. (2016) 
elaborate on the hypothesis that the brain continuously updates the 
time-varying matrix of transition probabilities between the stimuli it 
receives. Harrison et al. (2020) presented a variable-order Markov 
model which can learn higher-order statistics that change over time 
and which can consider memory constraints in detecting recurring 
tonal patterns. Unlike the present Markovian perspective, some 
computational theories take into account the neuroanatomical 
underpinnings of predictive models (Friston, 2005; Kiebel et al., 2009; 
Wacongne et al., 2012; Maheu et al., 2019; Tabas, 2021; Chien et al., 
2022). In a very recent computational approach tailored to model 
predictability of sound sequences, Chien et al. (2020) the simulated 
signals for predictable and unpredictable sound sequences resembled 
the observed MEG amplitude traces from a study by Barascud et al. 
(2016). Their model included short term plasticity for the neural 
responsiveness not only for the single tones, but also for the 
combination of successive tones, thus considering both, event 
probability and transition probability. Another important paper by 
Mill et al. (2011) shows that a Markov chain of two states is useful to 
disentangle effects of probability (frequent standard versus rare 
deviant) from effects of switching (from one sound to another; namely, 
from standard to deviant) in oddball sequences. With their 
computational model based on the convergence of depressing 
synapses at the single neuron level, plenty of SSA effects can 
be simulated.

As mentioned above, we know of only a few MMN studies that 
explicitly refer to a relation between the MMN-system and Markov 
chains or transition probabilities (Furl et al., 2011; Koelsch et al., 2016; 
Mittag et al., 2016; Tsogli et al., 2019, 2022; Korka et al., 2021). In the 
study by Furl et al. (2011), participants learned second-order Markov 
sequences of pure tones (with unpredictable first-order transitions): 
that is a certain succession of two tones (a pair) predicted with high 
probability which of five tones would follow next. Improbable 

compared to probable transitions evoked increased MEG responses 
150–200 ms after tone onset reflecting higher-order statistical learning. 
Koelsch and colleagues (Koelsch et al., 2016; Tsogli et al., 2019, 2022) 
presented isochronous sequences of sound triplets (characterized by 
timbre) to their participants in several studies. The first two sounds in 
such a triplet were fixed, while the probability of the third one varied. 
Low probability endings elicited an early anterior negativity that had 
an onset around 100 ms. Hence, Koelsch et  al. observed the 
characteristic frontocentral negative deflection in the MMN range and 
suggested that this reflects statistical learning of transitional 
probability distributions. Mittag et al. (2016) tested whether MMN 
relies on probabilities of sound patterns or on transitional probabilities 
by presenting rare tone-triplets among frequent standard triplets. 
Results showed that deviance detection underlying MMN uses 
transitional probabilities.

Taken together, these empirical papers demonstrate the relevance 
of between-sound transitions and have thus improved our 
understanding of the MMN-system. Furthermore, these findings are 
well compatible with a Markovian view. In extension to these previous 
papers, in the following we elaborate on how a Markovian approach 
can be  used for MMN research in a more systematic, canonical 
manner. To our knowledge, this is the first review on the relation 
between Markov models and MMN theory. However, the present 
paper only covers part of this relation. It disregards the development 
and updating of the predictive model itself. Rather, we explore what 
the predictive model underlying MMN looks like when interpreting 
existing data under the Markov narrative, thereby making some of the 
assumptions about the MMN-system explicit and pondering how 
those could be tested experimentally.

Classical oddball paradigms

In the classical oddball paradigm one tone (e.g., a high-pitch 
tone), the standard, is presented frequently (simple repetition rule) 
and another tone (e.g., a low-pitch tone), the deviant or oddball, is 
presented rarely; for example, p(Standard) = 0.9 and p(deviant) = 1- 
p(Standard) = 0.1. Deviants elicit the MMN (mismatch hypothesis) 
and/or an enlarged N1 (or smaller P2) compared to the adapted N1 
(or P2) for standards (∆N1; adaptation hypothesis). This classical 
oddball paradigm has been used in a plethora of MMN studies for 
various research questions. The elicitation of MMN is interpreted as 
evidence that the deviant has been detected by the information 
processing system and that some form of representation of the 
standard (and/or the regularity) had been established. As MMN is 
elicited even when participants do not intend to detect deviants or 
when they do not actively attend to the sound sequence, there is 
common agreement that MMN taps into implicit memory functions 
of the brain that govern subsequent, more conscious information 
processing (Tiitinen et al., 1994; Näätänen et al., 2011).

Classical MMN research shows that all basic dimensions of simple 
sounds such as pitch, location, duration and loudness are included to 
the memory representation underlying MMN. Moreover, also 
complex dimensions of sounds such as timbre, harmonicity or 
broadness are represented without explicit intention, as are speech 
signals (e.g., phonemes) and other natural sounds (e.g., ringtones). 
Many studies determined the influence of attention on the respective 
MMN, or compared MMN between different age groups or clinical 
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groups for a range of features. Others were interested in the acquisition 
and maintenance of the memory of the representations involved in 
mismatch processing and the influence of other cognitive factors such 
as attention or familiarity with the sounds (Näätänen, 1988, 1992; 
Bartha-Doering et al., 2015; Kirihara et al., 2020; Tervaniemi, 2022; 
Weise et al., 2023).

There are many ways to “translate” an oddball sequence of tones 
into a Markov chain. The simplest way is to pretend that there is only 
one rule which is defined by the repeated presentation of the standard 
tone (Figure 3A). In this case, the probability of the standard tone and 
also the transitional probability that a standard is followed by a 
standard is 1.0. If the sequence is modeled by the repetition rule, the 
deviant only “serves” as a challenge to this one-standard world, in 
order to test whether the rule has been encoded and whether a 
mismatch will be registered when an event does not conform to the 
rule. In fact, this is the prevailing description of an MMN experiment, 
likely because MMN researchers usually focus on the rules defined by 
the frequent standard. However, the sequence of sounds in these 
MMN experiments actually corresponds to a stochastic sequence 
including both standard and deviant sounds. Especially, when 
considering that typically deviants occur with some 10–20% 
probability, such that about every tenth to every fifth tone is a deviant. 
Therefore, a Markov chain that includes both standards and deviants 
is arguably more adequate to model an MMN-experiment than one 
that includes only the most frequent sound.

A Markovian look at the transition probability matrix in a 
sequence with p(Standard) = 0.9 and p(Deviant) = 0.1 immediately 
reveals that there are two transitions with rather high probability 
values: the transition standard-to-standard with a value of 0.9 and the 
transition deviant-to-standard with a value of 1.0 (Figure 3B). The 

latter is because there are intentionally no transitions from deviant to 
deviant in many MMN experiments. Consequently, the strongest rule 
(in terms of precision) in the typical MMN experiment is not that a 
standard follows a standard, but rather that a standard follows a 
deviant. Hence it is of high theoretical interest whether violations of 
this rule matter. If they do, the notion that transition probabilities 
between events are of importance (not merely the event probabilities, 
i.e., their base rate) would receive strong support. As the Markovian 
perspective predicts that precision (how probable is a specific 
transition) is more important than the base rate of transitions (how 
often is a specific transition encountered), this example raises the 
question whether highly probable transitions are learned even when 
that transition is encountered only occasionally, as is the case with 
deviant-to-standard transitions. Nevertheless, the view that only-
standards define the rules is so dominant that many researchers using 
classical MMN experiments (including those of our group) usually do 
not pay attention to transitions from rare, deviant sounds even if those 
transitions are of high probability.

Many classical MMN studies can be  described by transition 
matrices similar to the one in Figure  3B. However, as mentioned 
above, the majority of these studies focused only on the base rates of 
the two possible events. This view only considers brain responses to 
events that resulted from two out of the four possible transitions—
namely the transition from a standard to a standard and from a 
standard to a deviant. The standards in deviant-to-standard transitions 
were mostly neglected (excluded from analysis) and those from 
deviant to deviant largely do not occur within such sequences. The 
latter is due to an additional constraint in the design in most oddball 
experiments: each deviant has to be followed by at least one standard, 
which means that the deviant-to-standard transition probability is 1.0 

FIGURE 3

Two-tone classical oddball paradigm with a frequent standard (green) and an infrequent deviant (red) tone. Deviants elicit the MMN, which may 
be regarded as a genuine mismatch (prediction error) signal and/or the expression of differential adaptation to feature-specific neurons underlying the 
N1 (resulting in a small standard-N1 and a large deviant-N1). (A) Only frequently presented standard sounds are regarded as constituting the rule in the 
tone sequence; so only one type of transition has to be modeled; the respective transition probability matrix specifying the one transition is shown 
below. (B) The stochastic process of the two-tone sequence is characterized by a 2-state Markov model with four transitions (three are actually 
shown): each could be of possible relevance for the experiment; the respective transition probability matrix specifies the four possible transitions.
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(and the deviant-to-deviant transition is 0.0). If transitions matter, 
effects on brain and/or behavioral responses to violations of regular 
deviant-to-standard and deviant-to-deviant transitions should yield 
respective predictive regularity representations. Indeed, evidence for 
that was reported by Sussman and Winkler (2001). They were 
interested in the attenuation of the MMN to a deviant following a 
deviant (i.e., when a deviant is encountered after a sequence of 
standards a second deviant is presented with a certain probability 
before the sequence returns to the standard regularity). For that 
purpose, they manipulated the deviant-to-deviant transition 
probability, that is the conditional probability of deviant repetition 
(similar as in Figure  4A). Indeed, they found a stronger MMN 
reduction for the second deviant, if a deviant repetition is more likely 
to occur. In fact, there exist some studies reporting similar MMN 
attenuation for the second deviant relative to the first deviant (Sams 
et al., 1984; Deacon et al., 2000; Müller et al., 2005; Berti, 2008; Todd 
and Mullens, 2011).

However, one should consider that there is a different amount of 
SSA in standard-standard-deviant (first deviant) and standard-
deviant-deviant (second deviant) sequences (Ulanovsky et al., 2004). 
Thus, the comparison of first and second deviants is not well suited to 
measure the decline in MMN as an indicator for predictability. 
Lecaignard et al. (2015) controlled for adaptation effects in their study 
in which they compared ERPs for predictable and unpredictable 

deviants. The authors reported a decrease of the MMN with 
predictability. Interestingly, a similar effect occurred both at earlier 
latencies (70 ms after deviance onset) and at later latencies 
(300 ms, P3a).

Importantly, to our knowledge in none of the studies presenting 
successive deviants MMN was fully absent for a second deviant with 
high conditional probability. However, as mentioned in the previous 
paragraph, in almost all these studies second deviants are not 
compared with respective low repetition probability deviants but 
with first deviants (which are preceded by a standard). That is, 
possible adaptation effects are not controlled for. Moreover, to our 
knowledge, it has not yet been tested whether a standard unexpectedly 
following a first deviant (Figure 4A) yields a prediction error signal 
(MMN or P3a). If the MMN were only about transition probabilities, 
both the absence of a high-probable second deviant MMN and the 
presence of a fully-fletched MMN for standards following a first 
deviant that usually is followed by a second deviant would 
be expected. The finding that sound probability matters, questions 
the hypothesis that MMN solely relies on transition probabilities and 
is compatible with the adaptation hypothesis explaining (at least a 
part of) MMN as ∆N1 and/or ∆P2. However, the question still 
remains whether the conditional probabilities for stimuli following a 
deviant do or do not matter for the predictive model. To address this 
question, Coy et al. (2022) recently developed a modified oddball 

FIGURE 4

(A) Exemplary sound sequence of Coy et al. (2022) and prototypical results [MMN, RT (reaction time)]; unpredictable deviants elicit full amplitude MMN, 
predictable deviants smaller MMN (e.g., Sussman and Winkler, 2001) and, when deviants are targets, shortened RT (cf. Coy et al., 2022); according to 
the Markovian view, standards that create a deviant-repetition rule violation should elicit MMN and/or P3a. (B) Second-order transition probability 
matrix (S  =  standard, L  =  Low pitch deviant, H  =  High pitch deviant; SL  =  standard followed by Low deviant, …); e.g., cell(1,2) denotes the probability 
(0.1036) that an SS pair is followed by an L sound (low deviant); reaction times for deviants are listed in brackets; second deviants with high transition 
probability [i.e., HH, cell(3,3)] have by far the shortest reaction time. (C) First-order Markov chain that generates a highly similar tone sequence to the 
second-order Markoc chain in (B) but which represents a rather different proxy for the predictive memory underlying MMN.
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paradigm that improves control of confounds inherent to these 
previous studies.

In the Coy-paradigm (Figure 4A), there are two different pitch 
deviants. One of them is associated with a high transitional probability 
to a standard (non-repetition rule: yellow deviants). The other pitch 
deviant is associated with a high transition probability to a deviant of 
the same pitch (repetition rule: purple deviants). With this 
manipulation Coy et  al. embedded two diametrically opposed 
repetition rules in the stimulation sequence: when encountering a first 
deviant, the deviant type (i.e., the tone’s pitch) allows to predict 
whether the next sound is either more likely a standard or more likely 
another deviant. In a subset of cases these deviant-type specific 
transition rules are “violated,” that is, the non-repetition rule deviant 
repeats, the repetition rule deviant does not. In a proof-of-principle 
behavioral study, Coy et al. (2022) asked participants to press a button 
in response to all high and low-pitched sounds (i.e., all deviants), but 
did not inform them that the transition probabilities to the tone 
following a first deviant (which could be a deviant or a standard) were 
manipulated. Although participants were naïve to the repetition rules, 
detection speed was facilitated when a second deviant was predictable 
(high transitional deviant-to-deviant probability) but not when a 
second deviant was unpredictable (low transitional deviant-to-deviant 
probability). In the case that a first deviant was followed by a standard, 
the rate of false alarms increased when this transition was improbable 
(low transitional deviant-to-standard probability, i.e., high transitional 
deviant-to-deviant probability) compared to probable (high 
transitional deviant-to-standard probability, i.e., low transitional 
deviant-to-deviant probability). This paradigm has the advantage of 
including a reversed control condition for any chosen conditional 
deviant repetition probability so that the comparison between 
confirmation and violation of both a repetition rule (as in deviant 
repetition paradigms) and a non-repetition rule (as in the classical 
oddball paradigm) is enabled. Importantly, this paradigm provides a 
framework to dissociate local rules (defined by transition probability) 
and global rules (defined by base rate of stimuli or transitions). 
Namely, deviants always violate the global regularity because they are 
rare by definition, whereas standard always conform to the global 
regularity because they are frequent. Thus, within this paradigm one 
can compare whether the sound following a first deviant is improbable 
or probable based on the transition probability (high vs. low) 
associated with the preceding stimulus both when the sound in 
question is rare (deviant) or frequent (standard).

Please note, that in this paradigm the probability of the next tone 
does not only depend on the current tone, but also on the previous tone. 
Stochastic sequences in which the probability of a future state is based 
on the two previous states (second-order dependencies) can be modeled 
as second-order Markov chains (Figure 4B). An interesting comparison 
in this matrix is between reaction times of the last tones in the SS-H and 
the SH-H sequence with respective transition probabilities of 0.10 
[cell(1,3) in Figure 4B] and 0.80 [cell(3,3) in Figure 4B]. With this the 
differences in reaction times for a first high deviant (low transition 
probability) and a second (repeated) high deviant (high transition 
probability) can be assessed. Another interesting comparison is between 
SL-L [cell(2,2) in Figure 4B] and SH-H [cell(3,3) in Figure 4B], that is, 
between a second low deviant (low transition probability: 0.2) and a 
second high deviant (high transition probability: 0.8). These two 
comparisons yield reaction time advantages of 84 ms (first against 
second H deviant) and 78 ms (L against H second deviant) for the 

high-probability repeating deviant, demonstrating that high probability 
of deviant repetition manifests as a huge decrease in reaction times. 
Presumably, this is because a high compared to a low transition 
probability is equivalent to a better predictability of this sound.

However, it should also be noted that the sound sequence in this 
study cannot only be modeled by a second-order Markov chain, but—
although less accurate—by a first-order Markov chain (only 
considering transitions between adjacent sounds). In fact, the 
respective first-order Markov chain (Figure 4C) yields highly similar 
sequences as compared with the sequences for the second-order 
Markov chain. HH successive deviants have a much higher transition 
probability than LL successive deviants in the first-order Markov 
chain (0.44 vs. 0.17). Thus, one cannot be sure whether the actual 
difference in reaction time between second deviants in LL and HH 
pairs of Coy et al. (2022) study is based on a first- or on a second-order 
Markov model. Such a reinterpretation of the study’s data results in a 
different, more parsimonious conceptualization of the underlying 
generative model for the information processing system: the brain 
considers transitions between adjacent sounds only (first-order)—as 
opposed to the brain considers transitions between adjacent sound 
pairs (second-order). In order to decide, which alternative better 
explains the data, one could perform a model comparison and/or 
design an experiment including critical conditions discriminating 
between the two alternatives. One potential approach could be to play 
short excerpts from these sound sequences and ask participants to 
decide which sound should follow the last sound they heard. Their 
response can be compared with the respective prediction inferred 
from the first- and from the second-order Markov model. In any case, 
the Coy et  al. (2022) study provides evidence that transition 
probabilities matter for the performance in a behavioral task. Due to 
the nature of the task (only demanding a behavioral response to the 
deviants) other interesting comparisons between cells were not 
possible. For example, comparing cells with equal transition 
probability but different base rate probability (and vice versa) would 
be interesting [e.g., SH-S cell (3,1)] and SL-L cell [(2,2) in Figure 4B]. 
Also, the comparison of pairs of cells with equal ratio of transition 
probabilities, but largely different transition probabilities per se could 
be tested in future studies. For example, consider a scenario in which 
the transition probability for event B preceded by event A is twice as 
large as for D preceded by C (ratio of transition probabilities equals 
2). One might expect processing benefits for event B as compared to 
event D, as the relative predictability is higher. However, an identical 
ratio of transition probabilities can be  achieved with two small 
transition probabilities (e.g., 0.2/0.1 = 2), but also with one large and 
one small transition probability (e.g., 0.8/0.4 = 2). This may or may not 
make a difference in the brain’s predictive processing.

To conclude this section, it should be mentioned that it is also 
possible that the brain may not necessarily operate on a strictly first-
order or strictly second-order Markov chain, but that the order of the 
model (i.e., how many preceding states are considered for a current 
prediction) may be dynamic (Harrison et al., 2020).

Between-sound regularity paradigms

A showcase for the hypothesis that MMN is based on the encoded 
relations between successive sounds, is a paradigm in which two (or 
more) different tones are structured as a regular sequence. For 
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example, in a sequence of two alternating tones (e.g., high-pitch tone, 
low-pitch tone, high-pitch tone, low-pitch tone, …; Figure  5A) 
occasional order reversals of the two tones (i.e., the repetition of a 
given sound) elicit MMN (Nordby et  al., 1988; Alain et  al., 1994; 
Winkler and Czigler, 1998; Horváth et  al., 2001). In this type of 
paradigm, adjacent tones conforming to the alternation rule have high 
transition probability, tones violating the alternation rule (i.e., tone 
repetitions) have low transition probability. MMN is elicited by 
violations of the order rule, even when the base probability of the 
irregular sound (violating the order rule) is the same as the base 
probability of the rule conforming sounds.

An interesting variant of this paradigm has been introduced by 
Winkler et al. (2012), Mill et al. (2013), and Bendixen (2014) to study 
the streaming or grouping of the tones. They presented triplets of 
sounds in a fixed order with occasional deviations breaking this order. 
One instance of this is the so-called galloping paradigm 
(ABAABAABA): this sequence can be  heard as a single stream 
comprised of ABA_ABA_ABA triplets (sounding like a galloping 
horse, hence the name) or as two separate streams of single tones—
namely, an A-stream and a B-stream. The percept can switch between 
the two alternatives (grouping versus streaming) as a function of the 
frequency separation, the length of the silent interval between the 
tones, and the intention of the listener. In the grouping case, the 
respective predictive regularity representation can be conceptualized 
as a Markov chain with the possible standard state being ABA, 
whereas in the streaming case, the predictive regularity representation 
can be described as two separate Markov chains. A computational 
model for simulating such possible perceptual organizations (and 
their underlying predictive representations indicated by MMN) is 
CHAINS (Mill et al., 2013).

This between-sound regularity paradigm illustrates that an input 
sequence can usually be  “tokenized” in more than one way. The 
respective tokens correspond to the events (states) in the Markov 

chain, potentially used by the MMN system. Naturally, not all of the 
possible tokenizations are equally successful in terms of increasing the 
predictability of the sequence. When assuming that the goal of the 
brain is to maximize predictability of the sequence, identifying 
Markov chains with states (tokens) revealing high transition 
probabilities certainly aids in achieving this goal. This may be one 
mechanism through which perceptual organization (i.e., model 
selection) is driven.

The Markov view is very simplistic, and lacks a specification of 
both the mechanism of how the sources of a sensory input are 
identified and how they are implemented in the Markov model. There 
exist more advanced approaches to tackle this question, for example 
in an evidence accumulation model by Barniv and Nelken (2015) that 
explains streaming, or in a more general Bayesian causal inference 
model by Shams and Beierholm (2022) that determines (competing) 
causal structures and evaluates them—such approaches generalize 
beyond auditory streaming/grouping phenomena.

Instead of isochronous presentations of single tones, tonal patterns 
consisting of concatenated tones with constant transitions between the 
tonal elements have been used in many MMN studies. For example, 
pairs of two tones differing in frequency (1,000 vs. 1,500 Hz) were 
presented in a study by Tervaniemi et al. (1999). In standard tone pairs 
(p = 0.9), the tones’ frequencies were in an ascending order (second 
tone is higher than first), whereas in the deviant pairs the tones’ 
frequencies were presented in descending order (second tone is lower 
than first). MMN was elicited in response to those deviant pairs. Such 
regularities defined by patterns can consist of more than two tonal 
elements and do not only pertain to transitions defined by pitch 
relations, but also to other features such as duration or intensity 
(Schröger et al., 1995; Winkler and Schröger, 1995). Interestingly, the 
absolute feature values defining the relation between the tones within 
a pattern (e.g., tone pair) do not need to be  constant within a 
stimulation sequence (e.g., 1,000 vs. 1,500 Hz) but the standard 

FIGURE 5

(A) Two-tone alternating paradigm, where a low and a high pitch tone are presented alternatingly, occasionally a high- or a low-pitch tone is repeated. 
Violations of the alternation rule usually elicit MMN (e.g., Nordby et al., 1988; Alain et al., 1994; Winkler and Czigler, 1998; Horváth et al., 2001). (B) Tone 
pairs are presented in ascending (high transition probability) or descending (low transition probability) pitch. Violations of the prevailing rule elicit MMN 
(e.g., Saarinen et al., 1992; Paavilainen et al., 1999).
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regularity defined by within-pair pitch direction can also be extracted 
when absolute feature values randomly vary between trials along the 
dimension of interest (here, pitch) (Schröger et al., 2007). Figure 5B 
illustrates such an “higher-order change” in the relation between the 
two tones in a pair (Saarinen et al., 1992; Paavilainen et al., 1999; 
Schröger et al., 2007; Paavilainen, 2013). Violations of the dominant 
within-pair pitch relation elicit MMN. These MMN studies with 
frequent (absolute and relative) relations in some feature between 
paired/grouped tones show that the Markovian view is not only 
applicable to transitions between adjacent stimulus events consisting 
of a single tone, but can be generalized to transitions between stimulus 
events which themselves are defined by some transition rule (e.g., 
melodic or speech sound patterns). In other words, to some extent the 
processing principle underlying MMN can be regarded as recursive, 
potentially including several levels of increasing abstraction 
corresponding to the different levels of potential transitions within 
and between sound events.

It should be mentioned that the amplitude of MMN in response 
to violations of the order of sounds is often somewhat smaller than the 
MMN obtained in the classical oddball paradigm. In principle, this 
observation is compatible with the hypothesis that two separate 
deviance detection processes contribute to the classical oddball MMN, 
one encodes the probability of sounds, the other the probability of 
transitions between adjacent sounds. The former deviant detection 
process is believed to represent some form of neural adaptation to the 
high probable standard (see above), which has been investigated in 
different contexts in human and animal research. It expresses as SSA 
to the regular sound in the neural firing rates in various species (for 
reviews Nelken, 2014; Willmore and King, 2023), in the amplitude of 
human mid-latency ERPs (for review see Grimm and Escera, 2012), 
the N1 ERP (Näätänen and Picton, 1987), and the P2 ERP (Haenschel 
et al., 2005). The latter deviant detection process is often described as 
a genuine mismatch response to the irregular sound, which cannot 
that easily be  explained by a difference in neural adaptation to 
particular features of the regular and the irregular sound (Näätänen 
et  al., 2005). However, although the auditory cortex consists of 
functionally distinct fields, it includes many interconnections (Kaas 
and Hackett, 1998). Thus, adaptation is not necessarily confined to 
local, channel-specific phenomena only. Rather, as explained by a 
model of May and Tiitinen (2010), the auditory cortex can be regarded 
as a system with variability in stimulus selectivity across cortical fields, 
resulting in complex and partially overlapping adaptivity patterns. 
Moreover, this system reveals a high context-dependence, which is 
achieved by (lateral) short-term synaptic depression. Newer variants 
of the May and Tiitinen model (Hajizadeh et al., 2019; May, 2021) are 
even able to model MMN in experimental scenarios that were 
previously taken as evidence against an adaptation account of 
MMN. For example, MMN to rare omissions of a sound (Yabe et al., 
1998) or the MMN obtained in the multi-standard-paradigm 
controlling for first-order adaptation effects (Schröger and Wolff, 
1996; Jacobsen and Schröger, 2001) can be simulated by the adaptation 
model of May (2021).

Within the framework of first- (feature values of the sounds 
themselves) and second-order (transitions between sounds) 
adaptation, smaller MMN in between-sound regularity paradigms 
compared to classical oddball paradigms can be  explained as 
follows: In the latter paradigm both effects add up, whereas in the 

former paradigms, in which there is no one frequent standard 
sound but the between-sound transitions are constant, only MMN 
effects of second-order adaptation (or supposedly genuine 
MMN) emerge.

Within the adaptation framework, observed MMN can be attributed 
to a combination of adaptation both to feature values of the sounds 
themselves and to feature values of transitions between sounds (e.g., 
direction of pitch change). It seems possible that there is stronger 
adaptation of the neuronal populations specific to the standard in the 
classical oddball (because only two pitch values occur, one of which more 
frequently than the other) compared to a standard in a highly variable 
pitch-pair context (many pitch values occur with more or less equal 
probability), implying that there is less adaptation to a specific feature 
value. However, both in the classical oddball and in between-sound 
regularity paradigms the between-sound transitions occur frequently 
and consistently adapt the same neuronal populations. Thus, in between-
sound regularity paradigms observed MMN is foremost driven by 
neuronal populations that adapt to frequently encountered transitions 
(smaller MMN), whereas in the classical oddball there is additional 
adaptation from the stimulus-features (larger MMN). Therefore, this 
could mean that instead of two adaptation mechanisms, there is simply 
a differential involvement of areas in auditory cortex that depends on the 
stimulus material/context employed in the study.

The newer computational models of adaptation phenomena and 
the latter considerations presented in the two previous paragraphs 
show how powerful neural adaptation mechanisms can be. This 
illustrates that interpreting predictive regularity representations of the 
MMN system as cells of the transition matrix of a Markov chain (see 
section “The Markov model as a proxy for the neural model underlying 
MMN”) is somewhat metaphorical. That is, the MMN system behaves 
as if it were a Markov model. The neural excitability in response to a 
predictable event may “simply” be  reduced through adaptation 
processes, even when the transitions (i.e., the standard regularity) in 
question are rather complex. Under this assumption, the probabilities 
in the transition matrix represent the level of adaptation to a particular 
transition. This implies that (at least) the auditory cortex may possibly 
not make genuine ex ante predictions. Although, on a more cognitive 
level adaptation may be  considered a mechanism of prediction 
nonetheless, following a simple heuristic—namely, “a transition that 
has been frequent in the past, is likely to persist in the immediate 
future.” That is, sensory prediction may correspond to optimizing 
neural processing to (i.e., to prepare for) events of high transition 
probability. In this sense, ‘predictions’ are implicit in the differential 
adaptation patterns across the brain networks (Denham and 
Winkler, 2020).

Applying their generic deviance detection principle in a 
computational model, Chien et  al. (2019) were able to simulate 
omission responses and MMN as activity of the same change detector 
mechanism. According to their model, these change detection 
processes take place locally in the auditory cortex in the form of 
reciprocal connections. These reciprocal connections are the source of 
MMN. The preceding regularity formation is achieved by short-term 
plasticity, and this short-term plasticity makes local excitatory-
inhibitory circuits prone to be change detectors. MMN and omission 
responses cannot be  explained by sustained activity (resonance) 
caused by previous stimulation extending to the current trial, but 
rather correspond to genuine activity related to pre-activated 
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responses at the time of the expected tone onset (Bendixen et al., 2009; 
Andreou et al., 2015).

Irrespective of whether one favors the powerful computational 
models of short-term plasticity in auditory cortex facilitating deviance 
detection via an emphasis on adaptation at local auditory levels (e.g., 
Mill et al., 2011; Chien et al., 2019; May, 2021), the predictive coding 
account of MMN emphasizing top-down predictive and bottom-up 
prediction error activity (e.g., Wacongne et al., 2012), or conceptual 
frameworks from cognitive psychophysiology locating the MMN 
between sensory and cognitive processing levels (e.g., Winkler and 
Schröger, 2015), there is plenty of evidence from experiments using 
between-sound regularity paradigms that transitions (between 
sounds) matter. Overall, this supports the Markovian view on 
MMN. However, this does not necessarily hold in any case. For 
example, Háden et al. (2023) reported that with temporarily jittered 
presentation of sounds newborn infants did not show statistical 
learning of transition probabilities.

One interesting sub-field of MMN research was motivated by the 
fact that our auditory world is not fully deterministic (as in classical 
MMN experiments), nor is it fully stochastic (as this would preclude 
the neuronal modeling of the world). Research by Winkler et  al. 
(1990) and Garrido et  al. (2013, 2016) revealed that the auditory 
system tolerates some stochastic variability in the statistical properties 
of incoming sounds. For example, Garrido et al. (2013) sampled the 
pitch of most of the tones (standards) from a Gaussian distribution, 
whereas “probe tones” were either equal to the mean of the distribution 
of the standard tones or largely outside this distribution. MMN was 
only elicited by tones outside the distribution (Figure 6A), with larger 
amplitude the smaller the variance of the Gaussian distribution for the 
standard tones was. Thus, the auditory system seems to be capable of 
learning non-deterministic, stochastic regularities from an uncertain 
world and of detecting outliers from a learned distribution. This has 

been an important step in MMN research as it reveals the ecological 
validity of the MMN approach. Yet, the distinction between 
deterministic and stochastic acoustic environments raises additional 
questions. Again, Markov chains are well suited to bring up interesting 
experimental scenarios contrasting mere “deterministic” with mere 
“stochastic” worlds. In a study by Schröger and Roeber (2021), the 
original finding in stochastic situations (Winkler et al., 1990; Garrido 
et al., 2013, 2016) was replicated (i.e., no MMN for tones at the center 
of the distribution of the standards; Figure 6A) and expanded to a 
partly deterministic world (Figure  6B), where the standard tones 
become predictable (e.g., because they follow an alternation rule). In 
this situation, deviant tones corresponding to the mean of the 
distribution of the standard tones elicit MMN, as they violate the 
prediction (regularity representation). The distinction between these 
two worlds (cf. Figure 6A vs. Figure 6B) represents an interesting 
scenario: it shows that the MMN system does not act as a human 
gambler would do—betting on green or blue in the stochastic world 
(Figure 6A). Please note, that also in the stochastic world, each of the 
two standard sounds is 10 times more likely to occur than a deviant 
sound (as they are in the deterministic world), and yet the 
MMN-system does not appear to generate respective predictions for 
the standards that will be mismatched when a deviant occurs. To our 
knowledge, it has not yet been systematically investigated when a 
stochastic world (e.g., in terms of ratios of the respective transition 
probabilities) becomes deterministic enough for the MMN system to 
get into action.

Action-sound coupling paradigms

We do not only passively listen to sounds that happen in the 
acoustic environment, but we  also intentionally generate sounds 

FIGURE 6

Two tones (green, blue) are played frequently, and two other tones (ocher, red) ralely. (A) In a “stochastic” world red tones elicit MMN/∆N1, while ocher 
tones do not as they belong to the distribution spanned by the standard tones (cf. Garrido et al., 2013; Schröger and Roeber, 2021). (B) In a 
“deterministic” world where the two standard tones ocher and blue alternate and become predictable, ocher (and red) tones elicit MMN; if the pitch 
separation between the two standard tones (green, blue) increases, deviant (ocher) tones elicit ∆N1 but still no MMN (cf. Schröger and Roeber, 2021).
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through our own actions, such as in speech and music or ringing a 
door bell. Oftentimes sounds provide feedback that a specific action 
achieved the desired outcome (or not), such as when hitting (or 
missing) a nail with a hammer. An increasing number of experiments 
used action-sound regularity paradigms to test for effects of violations 
or confirmations of action-effect intention. That is, whether or not an 
action yielded the intended, and thus predicted, effect. The results of 
these studies indicate that sounds conforming (relative to not 
conforming) to an intended action, and thus predicted effect, elicit N1 
suppression (and MMN) in a similar way as sounds (not) conforming 
to an auditory rule (Rinne et al., 2001; Hughes et al., 2013; Korka et al., 
2019, 2021; Darriba et al., 2021). Action-sound coupling paradigms 
illustrate that not only transitions from sound to sound can 
be relevant, but also transitions between actions and sounds. This 
makes these paradigms also an interesting target for our Markovian 
approach, considering that the Markovian perspective considers 
transitions between all possible states of a system, The respective 
transition probability matrices of such experiments can be  easily 
constructed as action-to-sound and sound-to-action transitions.

Taking an experiment by Korka et al. (2019), we examine how the 
association between an action (button-press) and its sensorial 
consequence (tone) can be formalized by means of a transition matrix. 
Korka et al.’s participants randomly produced tones of different pitch 
via left and right button presses (Figure 7). In a “tone regularity” 
condition, both buttons produced a high-pitch tone with high 
probability and a low-pitch tone with low probability. In the 
“intention” condition the low-pitch tone was produced by a left-
button-press and the high-pitch tone by a right button-press, such that 
both tones occurred with the same base rate. However, both buttons 
occasionally produced a tone associated with the opposite button 
(deviation from the button-tone association). Therefore, the tone 
sequence in the “tone regularity” condition consisted of an auditory 
standard and an auditory deviant at the level of pitch, while in the 
“intention” condition deviations occurred at the level of action-sound 
association (i.e., there were no pitch deviants in terms of base rate). 
Critically for our Markovian perspective, MMN was elicited both in 
response to low probability transitions between sounds (here, pitch 
deviants) and in response to low probability transitions between 
action and intended effect (here, button-tone deviants), that is even 
when the tone itself was not rare.

The finding that a sensorial prediction error signal like the MMN 
can be elicited in response to a sound conforming to a sensorial rule 
but violating an intended action-effect, is compatible with the 
predictive coding framework. That is because actions induce active 
(sensorial) inference to minimize prediction error (Friston and 
Stephan, 2007; Friston et al., 2010; Brown et al., 2013; Clark, 2013, 
2015). In a recent study (Widmann and Schröger, 2022) further 
evidence was gathered that action-intention trumps base rate (or 
global sound probability). In this study participants were instructed 
to press buttons with an asymmetric frequency. That is, one button 
was to be pressed frequently and the other button only occasionally. 
Each button-press produced either a frequent or a rare tone, but the 
button-tone association was varied between experimental conditions. 
In a “predictable” condition the frequently pressed button produced 
the frequent tone and the rare button produced the rare sound. This 
association between button-press and tone was set-up such that 
participants produced tones corresponding to a self-generated 
classical oddball paradigm. As the frequently pressed button produced 

the standard and the infrequently pressed button the deviant, the 
occurrence of the pitch deviant was predictable for the participant. 
Although these deviants violated the auditory regularity defined by 
pitch, they did not elicit MMN. The most plausible conclusion is that 
the transition probability between the button-press and the sound 
(and not the transition probability between sounds) governed the 
MMN process. This finding also demonstrates clearly that action-
intention can abolish prediction error at the level of MMN for a tone 
regularity deviant even when the action and the sound are rare. 
Interestingly, the N1 increase typically elicited in response to rare 
deviant tones compared to frequent standard tones was not affected 
(i.e., still present) by action-intention. This is further evidence that the 
Markovian perspective is compatible with the notion that transition 
probability between action and sounds is relevant to the brain. 
However, some prediction error signals (e.g., MMN) appear to 
be  more sensitive to action-to-sound transition probability, while 
others (e.g., N1) are foremost subject to the base rate of the auditory 
stimuli. This shows that the brain considers more than just one statistic 
in modeling the world and that such information may exert differential 
effects along the processing hierarchy.

When we consider how existing computational models of MMN 
generation may explain the detection of sounds violating an intended 
action effect, we see a few differences. To our knowledge action-to-
sound transitions have not yet been considered in the computational 
models of May and Tiitinen (2010), because their simulations were 
confined to auditory processes. The generic deviance detection 
principle by Chien et  al. (2019), however, assumes that change 
detection relies on a common neural mechanism, namely reciprocal 
wiring, and is thus not an exclusively auditory phenomenon, but also 
applies to crossmodal situations. Lastly, in our view a generalized 
predictive coding theory including action (Friston et al., 2010; Clark, 
2013) is the model most compatible with the experimental findings of 
action-sound coupling paradigms. This is, because the intended action 
effect can readily be regarded as a proxy for top-down prediction into 
the auditory processing level.

Apart from the salient action-to-sound transitions, the Markovian 
perspective reveals another aspect in action-sound-coupling 
paradigms when studying the lower left part of the transition matrices 
in Figure 7 that describes the study by Korka et al. (2019). Namely, 
there is not only a transition from button to sound, but also from 
sound to button (Aberbach-Goodman et al., 2022). In the example 
given here, the transition probability from any of the two sound types 
(high or low pitch) to any of the two types of button presses (left or 
right) is assumed to be 0.5. To avoid a bias in the button press types 
participants were instructed to randomly produce button presses but 
minding that, overall, left and right presses should be equiprobable. 
Yet, the sound-to-button transition is not entirely within the control 
of the experimenter, as participants may adjust their current action 
plan dependent on whether the action in the preceding trial yielded 
the intended action effect. That is, the outcome related to the button 
press in the preceding trial is potentially relevant to the preparation 
and/or execution of the button press in the current trial. A potential 
difference between match and mismatch of intended-action-effect and 
actually encountered sound in the preceding trial could manifest 
either or both in measures of motor behavior (e.g., speed, pressure), 
and brain activity (e.g., lateralized readiness potential, contingent 
negative variation). Indeed, such sequential effects have been studied 
to some extent (Pashler and Baylis, 1991; Notebaert and Soetens, 2003; 
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Roeber et al., 2009; Varga et al., 2022). While it is beyond the scope of 
this paper to discuss sound-to-action transitions in detail, the brief 
example given here stresses the point that the Markovian narrative 
may trigger hypotheses and aid in the development of respective 
experimental designs.

Conclusion, recommendations, 
limitations

The Markov model contains the accumulated knowledge about 
the succession of events. What happens next can be inferred from the 
respective transition matrix and the current state of the system. 
Similarly, for sequences of sensory events the brain can infer what is 
likely to happen next from detected regularities and the current event. 
Predictive regularity representations pertaining to probable and 
improbable transitions between events enable the differential 

processing of rule conforming and rule violating events, which, 
respectively, manifest as match and mismatch signals in the brain. This 
analogy might be  somewhat simplistic, but it works out nicely 
(Figure 2). Yet, the statement that the processes underlying MMN 
behave like a Markov chain turned out to be neither completely true 
nor completely wrong. On the one hand, the hypothesis that MMN is 
only about transition probabilities is not completely true, because 
brain and behavioral responses measured for high transition 
probabilities but low base rates are rather different from those 
measured for high transition probabilities and high base rates (cf. 
Figure 4). On the other hand, the hypothesis that MMN is about 
transition probabilities is not completely wrong—for example, because 
a rare deviant tone with a pitch in between the pitches of the two 
frequent standard tones (high base rate) only elicits MMN if the 
standard tones are alternating (high transition probability), but not 
when they are presented randomly (low transition probability; 
Figure 6).

FIGURE 7

(A) In the Tone regularity condition, participants are instructed to press the left and right buttons equiprobably; each button press produces low (green) 
or a high (red) pitch tone. Most of the left and most of the right button presses produce a high pitch tone, but sometimes they produce a low pitch 
tone (deviant). The deviant tones (violating tone regularity) elicit MMN. (B) In the Intention condition, participants are instructed to generate the low 
tone with the left and the high tone with the right button equiprobably. In 20% of the trials a button press produces the “wrong” tone (i.e., high instead 
of low and vice versa). Although those deviants do not violate a tone regularity, they elicit MMN. This is because these wrong tones violate the intended 
action effect. The upper part of the figure shows excerpts of the sequences (adapted from Korka et al., 2019). The middle part shows the directed 
graphs of the Markov chains. The lower parts show the respective transition probability matrices.
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We introduced a taxonomy emphasizing transitions between 
events distinguishing three different types of MMN paradigms: 
classical oddball paradigms, between-sound regularity paradigms, 
and action-sound-coupling paradigms. Experimental data from all 
three types of paradigms are compatible with the Markovian 
perspective in many respects. However, when base rate of events is 
not controlled for (which in the MMN literature is largely the case), 
base rate can confound observed (ir)regularity effects. This shows 
that the brain’s attempts to model the world are not confined to 
transitions between successive events as a purely Markovian view 
might suggest, but that many different types of information facilitate 
the detection of invariances. Critically, our Markovian taxonomy 
provides a helpful tool to identify these sources of information—a 
transition matrix formalizes all potential transitions, thereby 
revealing potentially relevant contingencies in an experimental 
stimulation that may be overlooked otherwise. Moreover, findings 
both from classical oddball paradigms and from between-sound 
regularity paradigms can be  accounted for by prediction-based 
accounts and primarily adaptation-based accounts, as both are able 
to simulate data from critical MMN experiments (e.g., omission 
paradigm, multi-standard paradigm). Moreover, although predictive 
coding accounts are already well conceptualized to model the 
processing of event sequences in action-sound-coupling paradigms, 
non-prediction-based accounts may possibly explain observations 
similarly well (Chien et al., 2019). While a Markovian view on MMN 
does not necessarily translate into a preference of one theoretical 
account of MMN generation over another, it can help make 
assumptions more explicit and thus, testable. For instance, whether 
base rate should matter, or whether frequency of transitions (base 
rate) should trump precision (transition probability).

Obviously, base probabilities of the sounds and transition 
probabilities between sounds are not completely independent from 
each other. That is, varying the event probability has an impact on the 
transition probabilities and vice versa. However, to a certain extent, 
one can be modulated without affecting the other, as can be seen in 
Figures 6A,B. In addition, sounds with high transition probabilities 
can be presented with rather low base probability (cf. Figure 4). This 
allows to design critical experiments, testing for the independent and 
combined contributions of base rate and transitions in (ir)regularity 
processing. This helps to distinguish different types of MMN 
mechanisms. To our knowledge, there are (almost) no studies 
considering all entries (and their combinations) in the transition 
probability matrix when designing and analyzing respective (ir)
regularity experiments. This is a pity, as this could yield relevant 
information for MMN theory-considering Markov chains might 
reduce this shortcoming in experimental design.

Describing apparently different experimental frameworks in the 
common format of transition probability matrices, will also facilitate 
a more systematic comparison of the structure and the results of 
different studies. The Markovian view could therefore inspire new 
experimental ideas, for example, to investigate the brain’s processing 
of one specific transition rule that is embedded either in an overall 
more deterministic or in a more stochastic context. For instance, in an 
experiment with three different sounds one row in the transition 
probability matrix can be identical (rule of interest: B is followed in 
80% by C and in 20% by A), but the other rows (transitions between 
other possible sounds) are deterministic (A is always followed by B 
and C is always followed by A) in one condition and stochastic (A is 

equiprobably followed by B and C; C is equiprobably followed by B 
and A) in the other condition.

Throughout this paper we pointed to potential limitations of a 
purely Markovian narrative (cf. section “Distinction from previous 
Markovian approaches to MMN (and related research)”). For example, 
a Markovian approach does not really care about the dynamics in the 
establishment and modification of predictive regularity representations 
as a function of the dynamics in the world and as a function of the 
constraints in the information processing system. Moreover, it is 
rather unspecific with regard to concrete neural networks achieving 
the brain’s fascinating ability to detect and use rules inherent to event 
sequences. Despite those limitations it seems promising to dig deeper 
in more specific subfields with this approach, for example, to consider 
the learning of the rules and the neural underpinnings. A broader look 
such as the present one, has two advantages: First, it may serve to sort 
the field according to more general principles. Second, it may foster 
exchange between rather different scientific disciplines (such as 
neurophysiology, computational modeling, and experimental 
psychology) on a joint topic such as the processing of sound sequences. 
In this paper, we  shed light from the Markovian view on the 
MMN. However, the present approach can easily be generalized to 
other research fields where event sequences are comprised of sensory 
stimuli and/or behavioral responses such as implicit learning, sense of 
agency, theory of event coding, sensory-motor cycles, stimulus–
response compatibility, associative learning, action-effect prediction, 
working memory, and others.
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