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Within this third part of our mini-series, searching for the best and worst

automotive in-vehicle lighting settings, we aim to extend our previous finding

about white light illumination preferences by adding local cortical area activity

as one key indicator. Frontal electrical potential asymmetry, measured using an

electroencephalogram (EEG), is a highly correlated index for identifying positive

and negative emotional behavior, primarily in the alpha band. It is rarely understood

to what extent this observation can be applied to the evaluation of subjective

preference or dislike based on luminaire variations in hue, chroma, and lightness.

Within a controlled laboratory study, we investigated eight study participants

who answered this question after they were shown highly immersive 360◦ image

renderings. By so doing, we first subjectively defined, based on four di�erent

external driving scenes varying in location and time settings, the best and worst

luminaire settings by changing six unlabeled luminaire sliders. Emotional feedback

was collected based on semantic di�erentials and an emotionwheel. Furthermore,

we recorded 120Hz gaze data to identify the most important in-vehicle area of

interest during the luminaire adaptation process. In the second study session,

we recorded EEG data during a binocular observation task of repeated images

arbitrarily paired by previously defined best and worst lighting settings and

separated between all four driving scenes. Results from gaze data showed that

the central vehicle windows with the left-side orientated colorful in-vehicle fruit

table were both significantly longer fixed than other image areas. Furthermore, the

previously identified cortical EEG feature describing the maximum power spectral

density could successfully separate positive and negative luminaire settings based

only on cortical activity. Within the four driving scenes, two external monotonous

scenes followed trendlines defined by highly emotionally correlated images.

More interesting external scenes contradicted this trend, suggesting an external

emotional bias stronger than the emotional changes created by luminaires.

Therefore, we successfully extended our model to define the best and worst

in-vehicle lighting with cortical features by touching the field of neuroaesthetics.
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1. Review of the mini-series and study
motivation

In the coming years, personal individual driving will be

progressively replaced by autonomous or self-driving vehicles,

called robocars. Within this context, we investigated in part 1+2

of this mini-series the role of in-vehicle lighting personalized for

vehicle occupants. Part 1 focused on general preferences for colors,

positions, dynamics, and emotion relations evaluated globally

between study participants from China and Europe with Likert-

like questionnaires in a signaling context (Weirich et al., 2022a).

In the study, we found a strong cultural color preference and

color emotion dependency, especially in the level of attention,

which is important for the driving context. Color emotion or mood

dependency refers to the observation that different mono- and

polychromatic light stimuli are connected to different emotional

associations; for example, lower hue angles with red and yellow are

connected more to the feeling of attention. This effect was valid

for the European group but missing for study participants from

China. Part 2 extended these findings to the context of general white

light illumination (Weirich et al., 2022b). By displaying images as a

360◦ scene, we varied the correlation of color temperature (CCT),

light distribution, and brightness settings, which were applied to

four different driving scenes. These scenes varied in the time

and location domains. To maintain a high level of variation, we

decided to display one scene during a sunny day while driving

in a city. The second scene showed a dim light narrow forest

environment. In contrast, the third scene showed a wider, bright

greenish countryside view. Finally, driving scene four occurred

in Shanghai during the night, with colorful illuminated high-rise

buildings. Within these settings, only a combination of focused and

wider light cones with a mix of lower and higher CCTs performed

better than all other light settings, and we named the light setting

L6/L7; compare Figures 1A, B. This means that only a mix of lower

and higher CCTs combined reached the highest ranking measured

by psychological attributes. The in-vehicle scene was perceived

within the Chinese and European groups with a higher level of

satisfaction, value, and modernity. Furthermore, the scene itself

was rated as more interesting with a higher level of spatial feeling

and a brighter impression. By applying image transformation to the

perceptional image spaces of IPT (Ebner and Fairchild, 1998) and

CIE CAM16 (Li et al., 2017), we found, especially in the dimension

of chroma, a strong correlation with the changes of the outer

driving scene, which partially followed Hunt (1977). Furthermore,

in the dimension of lightness and hue, for the best lighting setting,

no lightness or hue shift should be observed between all four

abovementioned external driving scenes and the in-vehicle cocoon.

That means we were able to draft the first development guidelines

for light technical engineers, but we lacked an understanding

of the root cause. By presenting two representative examples,

comparing Figures 1A, B for a good illumination and Figures 1C,

D for a bad setting, we, as observers, are directly able to judge

the preferred setting without hesitation. This clear decision-making

process based on in-vehicle lighting variations is the exact target

that must be understood within this presented part 3. Therefore,

in the present study, we are not targeting a best or worst setting.

Rather, we focus on subjective cortical decision mechanisms, which

are involved based on preference or dislike in the context of

in-vehicle lighting.

2. Introduction

To gain a better understanding of the cortical mechanisms

responsible for defining a preferred or disliked luminaire setting, in

this study, we focused on the combination of subjective emotional

ratings and objective gaze data. Furthermore, we evaluated

potential changes in an event-related potential (ERP) study, which

is able to evoke emotional cortical electrical potentials measured

using an electroencephalogram (EEG). The basic mechanisms of

ERP studies are described in the literature (Husain, 2017; Lotte

et al., 2018; Weirich et al., 2023). In short, during a time-locked

presentation of repeated stimuli (in this study, we focus only on

visual stimuli), it is possible to keep signals correlated with brain

activity and, therefore, eliminate other signal activities, based only

on EEG recordings. By repeating the same stimulus, the level of

noise can, therefore, be reduced by the square root of the repetitions

(Collura, 2000).

The significant time window of ERPs, which consist of

emotional information, is ∼300–500ms (Righi et al., 2017) or up

to 900–1,000ms (Hajcak and Olvet, 2008) after stimulus onset. The

observed signal peak is also called late positive potential (LPP).

These potential changes could also be observed if the stimulus

presentation was only 120ms. Furthermore, the LPP between the

left and right central electrode positions was observed around

300ms after stimulus onset (Schupp et al., 2004). That means a

delay time of∼180msmight be observed between the stimulus and

emotional reaction, which is nearly double compared to the P100

peak evoked by visual stimuli (Odom et al., 2016). For positive and

negative emotions, the frontal alpha asymmetry (FAA), a power

difference between the front right and front left hemispheres in

the alpha waves between 7.5 and 12Hz, is a very highly reliable

signal indicator, as identified in a recent review (Byrne et al., 2022)

and previously thoroughly researched (Ahern and Schwartz, 1985).

Additionally, in the field of aircraft cabin preference, lower alpha

band power was associated with lower preference and vice-versa,

suggesting again a stronger alpha band responsibility (Ricci et al.,

2022). Moreover, there were no congruent results between the

identified preferences and final purchase behavior (Byrne et al.,

2022). The authors reviewed that either there was a lack of statistical

power or opposite findings, which led to the conclusion that there

are no correlations between preferences and purchase behavior

pertaining to the resulting decision-making process, measurable

in the time domain by the LPP as an ERP component or in the

frequency domain measurable by FAA. However, in a willingness-

to-pay decision task, higher frontal asymmetric frequency band

activities in the beta and gamma bands were strongly task-

correlated compared with single alpha activity change (Ramsøy

et al., 2018). That means it is still under debate which band or

specific cortical indicator is finally responsible for a decision-

making process based on connected emotions.

In the present study, we aim to enlighten this topic by applying

a correlation study between subjective preferences and brain

activity in the in-vehicle lighting context, which can be regarded
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FIGURE 1

(A, B) Lighting settings for good in-vehicle illumination, named L6 and L7. (C, D) An example of a bad lighting setting, labeled L4 and L8. (A–D) Study

results from our previous research (Weirich et al., 2022b).

as an interim stimuli strength comparing previous study settings

with clear stimuli to achieve a strong happy–fear emotional change

(Ahern and Schwartz, 1985). Furthermore, we want to understand

whether these subjective lighting-based preferences can be decoded

by cortical signal analysis.

Second, based on the above review of our mini-series, the

understanding should be enhanced to categorize a presented in-

vehicle lighting scene as good or bad. To achieve this, which scene

detail is responsible for such a decision-making process will be

investigated. According to the literature, especially the centrally

located picture areas are first perceived. This effect is called a

“central bias” (Tatler, 2007). However, whether this effect is more

biased to the right or left side of in-vehicle tables will also be

investigated, as shown in Figure 1. In such a scene, the level of

visual attention per scene object might depend on differences

between neighboring scene elements (Oyekoya and Stentiford,

2003). During the scanning process by the human visual system,

alternating fast jumps—named saccades—and longer stops—called

fixations—are executed. Information is primarily processed during

the fixations. The fixation can start from 10ms and last for several

seconds (Holmqvist and Andersson, 2017). However, the scanning

paths created by saccades and, therefore, the image location

combined with the duration of fixations recorded by eye-tracking

systems can provide insights into visual attention strategies. During

a face preference study, participants should select which of the

two presented faces they prefer. Initially, gaze data showed a

balanced distribution between both images that finally shifted to

the preferred face, named the “gaze cascade” effect (Shimojo et al.,

2003). The authors of the study concluded that gaze plays a major

role in preference decisions. This means that people tend to like

what they look at and tend to look longer at objects that they like. In

both cases, subjective value increased as reviewed recently (Wedel

et al., 2023).

Therefore, this study combined approaches measuring cortical

signal activity and gaze data, targeting a deeper understanding of

in-vehicle lighting preferences. To this end, we formulated our

research question as follows:

Q1: Are there specific objects available that are positioned in an

in-vehicle lighting scene and are strongly connected to a prefer

or dislike evaluation result?

Q2: How are the subjective preferences for in-vehicle lighting

scenes coded in cortical signals?

3. Materials and methods

We separated our study design into two parts: First, we invited

the study participants to define their most preferred and most

disliked illumination settings, which are named in this study as

good and bad lighting. For that, we created a highly immersive

360◦ image scene and presented it on a screen with six unlabeled

luminaire sliders. Furthermore, we presented subjective scales

as semantic differentials and as a five-step Likert-like emotion

wheel to quantify the level of good or bad lighting. During the

complete study period, we recorded gaze data to define special

areas of interest that are connected to the preference decision-

making process.

Second, we paired the abovementioned positive and negative

in-vehicle lighting settings and presented them in a binocular image

repetition study. In parallel, we recorded event-related cortical

potentials using EEG. Finally, we extracted specific EEG signal

features and compared them with event-related potentials that are

highly correlated with strong positive and negative stimuli. Both

sessions are explained in detail in the following Sections 3.1 and 3.2.

Frontiers inHumanNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1248824
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Weirich et al. 10.3389/fnhum.2023.1248824

This study design was approved by the Ethical Committee of

Fudan University, Approvement Number FE23073R. Furthermore,

all eight participants gave written permission for attendance.

They were also informed about possible study risks and had the

possibility of quitting the study without a declaration.

3.1. Session 1: in-vehicle lighting
preferences

To evaluate whether favored or unfavored illumination settings

can be decoded via brain activity, we first created adequate visual

stimulation images. For that, we used a similar study setting as

in our previous research (Weirich et al., 2022b): We arbitrarily

presented four driving scenes to each subject, which were located in

(a) a sunny city, (b) a dim forest, (c) a sunny countryside, or (d) the

night of Shanghai, separated between a favorable and unfavorable

session. Since we presented the impression as a highly immersive

360◦ image on a 25-inch LED-Lit screen (Dell U2518DR) operated

at 60Hz, the subjects were able to rotate the camera view within the

second row of the vehicle. Furthermore, we placed six unlabeled

sliders to adjust chroma, hue, and lightness for either centered

focused spotlights (Lu1) or widely spread room-filling luminaires

(Lu2). The slider description was missing to prevent external bias

effects either from the view of long-time thoughts about their

meanings or from potential preferences to adjust one slider only.

All sliders should be equally recognized and operated. Since we

applied white light settings only, the changes in hue were limited

to step sizes located at the Planckian curve. For that, we varied

the CCT from 1,000K, a reddish warm white, to 33,100K, a

high blueish cold white. The step size was nonlinearly distributed,

achieving a smaller step size at lower and a larger step size at higher

CCTs. For chroma, we took 1/3 of C0 as the start value calculated

from the on-plank CCT value and varied this value inside CAM16

until we achieved three times C0 as the closing value. The step

size was linear since we were calculating in CAM16. For lightness,

we varied between zero, where the light was turned off, and the

brightest level until the displayed scene was not over-illuminated.

That means, even for the brightest setting, all scene details could

still be identified. For all three dimensions, we had 80 steps for

adaptation using the mentioned sliders, shown in the top row in

Figure 2A. The task for the study participants was to vary all six

sliders until they reached a level of most preferred or most disliked

in-vehicle lighting. This task was completed for each of the four

external scenes. The order of the external scenes arbitrarily varied

among the study participants.

Then, we asked the study participants to rate their favored and

unfavored settings. We used two different metrics to measure their

level of emotions. First, we used the same six fields of semantic

differentials rated by a 6-point scale, as described in detail in

our previous study (Weirich et al., 2022b), separated between

evaluative and in-vehicle perceptions. For the evaluative domain,

we set brightness, spatial, and interest, and for the in-vehicle

domain, we set modernity, value, and satisfaction as perceptional

dimensions. Second, to get a deeper understanding of actual

emotions, we used the Geneva Emotion Wheel (GEW) (Scherer

et al., 2013). We adapted the analog version to a digital one to

add five circles in different sizes representing the level of emotions:

smaller circles representing a smaller level and vice-versa. We also

deleted the possibility of adding another subjective feeling, which

was originally placed in the center of the wheel. Each subject

had to rate each emotion facet. The last part of this session gave

the subjects the possibility to write down their own comments,

thoughts, or suggestions about this study session itself. During the

answering of all questions in this session, we recorded participants’

gaze data using an eye tracker (Tobii X-120 Pro) at 120Hz to

better understand which part of the displayed vehicle scene was

important for their final favorable or unfavorable decision. Figure 2

summarizes and shows the session setting illustrated with the

Shanghai night driving scene.

3.2. Session 2: cortical emotion relations
based on displayed images

In the second session, we used 16-channel measurement

equipment with a 3D-printed headset (OpenBCI, Ultracortex

MarkIV, Open BCI, n.d.) to record EEG signals with a sample

frequency of 1,000Hz. Since we were recording with active dry

electrodes (ThinkPulse, Active Electrodes), it was necessary to

ensure that the electrodes were positioned suitably for noise

reduction. Besides the measurement standards (Odom et al., 2016),

to track electrode-skin impedance values, we defined our own valid

recording parameters based on a 1-s mean value and the standard

deviation and ratio of both, which can be stated as a signal-to-noise

ratio (Smith, 1997). Upper and lower limits of these were defined

based on an extensive pre-study.

As reviewed, frontal left and right hemisphere electrode

positions are significant for identifying positive and negative

emotions. Therefore, we selected the inion (IZ) to F3 for the left-

side channel and IZ–F4 for the right-side channel. Finally, we

added IZ–OZ for comparative cortical activity measurement. We

set the left ear lobe, location A1, as the ground electrode. Electrode

positions were defined according to the 10-10 international

standard for electrode placements (Acharya et al., 2016).

The evoked EEG time window was set as tmin = 0.0 s and

tmax = 0.5 s after stimulus onset, and single epochs were grand

averaged between all eight subjects. Each epoch’s rejection criterion

was set to 100 µV based on several pre-study investigations with

our recording equipment and based on a common understanding

that the P300 amplitude might be bigger than the P100 peak

(Ladd-Parada et al., 2014).

Furthermore, the EEG raw data were electronically filtered with

50Hz and 60Hz notch filters to reduce the electrical power noise,

and a bandpass filter was applied between 3 and 45Hz. Since in

China, the powerline signal operates at 50Hz, only a notch filter

at 50Hz might be sufficient. To be on the safe side and considering

that there are no sharp transitions between the passing and blocking

frequencies, we applied both notch filters with a second order.

In addition, the bandpass filter frequencies were set to 3 and

45Hz with a second-order filter for gentle filtering and to prevent

overshoot or edge effects in the time domain. This range is also

commonly used for brain–computer interface applications (Renard

et al., 2010). Artifact removal was performed in two steps: first,
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FIGURE 2

(A) In-vehicle 360◦-night scene in Shanghai with unlabeled sliders to change hue as CCT, chroma, and lightness for spot and spatial luminaires in 80

steps each. (B) Emotion ratings based on our investigated semantic di�erentials (top) and based on the Geneva Emotion Wheel (down) are

segmented into five levels and presented as di�erent-sized circles. Green marked circles are the selected levels of emotions.

visual inspection of EEG data, and second, based on the applied

epoch rejection criterion at 100 µV. The baseline was corrected

at the stimulus and epoch starting points, set as 0 s. Baseline and

epoching procedures were performed using the Python library

MNE (Gramfort et al., 2013).

As an extension of our last study (Weirich et al., 2023), which

we applied in this study, we compared EEG activity between the

already investigated less emotional baseline and strong emotional

benchmark settings with the abovementioned four external driving

scenes and their good and bad in-vehicle lighting settings. For

stimulus presentation, we used 20 positive and negatively correlated

images from the Geneva Affective Picture Database (GAPED)

(Dan-Glauser and Scherer, 2011) to define our baseline and

benchmark stimulus levels. Neutral images were characterized

primarily by images of buildings, stairs, desks, or empty streets.

Strong positive images showed vacation islands, sunny beaches,

smiling faces, or colorful landscapes. Strong negative images

consisted of snakes, spiders, or violations of animals or humans.

The in-vehicle lighting stimuli were created as described in

Section 3.1.

As previously reviewed, we focused on later positive potential

(LPP) changes, such as those occurring 300–500ms after the

stimulus onset. The reason for this is that starting with P200,

early emotional arousal was measured, and P300 is characteristic

of voluntary attention. LPP is connected more with motivational

relevance (Righi et al., 2017). In the present study, we focused

more on early and initial emotional triggering induced by in-

vehicle lighting than on longer emotional relevance. For that, we

set the stimulus duration to 500ms. That means we set 30.771

frames as our stimulus duration using a 60Hz screen frequency.

We also set the stimulus repetition rate to 400, leading to a

total session time of 7.1min, including a short instruction. The

stimulus protocol was as follows: First, we presented the emotional

baseline defined by paired neutral images, each for 30.771 frames

duration. Second, we randomly selected a pair of favored and

unfavored luminaires out of one of the four driving scenes, which

was defined as described in Section 3.1. This means that we

started to select an arbitrary driving scene such as the night scene

in Shanghai. Then, we presented paired arbitrary positive and

negative created in-vehicle light settings. Consequently, during

one constant driving scene session, only the in-vehicle lights were

changed randomly between all eight positive and negative settings.

Randomization was performed using the built-in random function

in the applied stimulus presentation software Psychopy (Peirce

et al., 2019). For that, all in-vehicle images separated between

good and bad illumination were saved in a database. For each

iteration, Psychopy randomly selected one good and one bad in-

vehicle lighting setting. After all the defined settings were presented

once, a second round was started by selecting a random image for

the starting point. Finally, we showed strong positive and negative

images as emotional benchmark stimuli, again paired. An example

of highly positively and negatively correlated images of the GAPED

is shown in Figures 3A, C, and favored and unfavored lighting

settings from the sun-city scene are illustrated in Figures 3B, D.

4. Results

We investigated five women and three men with an average age

class between 25 and 34 years. All were healthy with a normal 20/20

vision acuity level, had no color vision deficits, and took no caffeine

or medications. In the following section, we present the results of

the preference session.

4.1. In-vehicle lighting preferences

As mentioned in Section 3.1, we recorded gaze data at 120Hz

and asked the study participants to adjust six unlabeled sliders to

achieve a good or bad in-vehicle lighting scene at four different

locations and time settings, including their emotional corresponds.

Statistical analysis was performed by comparing settings for bad

and good lighting groups. Since both settings were performed by

the same study participants and values were ordinal scaled, the
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FIGURE 3

(A, C) Images arbitrarily selected out of the GAPED (Dan-Glauser and Scherer, 2011): (A) A positive and (C) a negative emotional image. (B, D)

Examples from Session 2 for a favored (B) and an unfavored (D) illumination setting. (A, C) and (B, D) are also examples of a paired visual stimulation

group.

Wilcoxon signed-rank test was conducted. The significance level

α was set to 0.05. No corrections for multiple comparisons, such

as the Bonferroni correction, were applied. The effect size was

calculated using the coefficient r = |z|/
√
n, as recommended (Fritz

et al., 2012).

First, we summarize the averaged slider value for good or

bad lighting settings in Figure 4A. Since we changed chroma and

lightness based on a CCT as the hue, a zero hue value represented a

CCT of 4,800K, with zero chroma changes at the Planckian locus at

an average screen brightness, represented by zero values for all three

dimensions, as illustrated in Figure 4A.We found highly significant

differences (p < 0.05) between good and bad settings. For that, the

four external driving scenes were combined and evaluated for the

eight subjects, leading to a sample size of n= 4× 8= 32. Since n >

30, the asymptotic p-value was reported. For the spotlight setting,

Lu1 differences were observed in the dimensions of chroma (z =
−3.909, p = 9.25 × 10−5, n = 32, and r = 0.69), lightness (z =
−4.658, p= 3.18× 10−6, n= 32, and r= 0.82), and hue (z= 3.012,

p= 2.59× 10−3, n= 32, and r= 0.53). Furthermore, for the spatial

luminaire Lu2, these significant differences could be identified in

the dimensions of hue (z = 4.059, p = 4.90 × 10−5, n = 32, and r

= 0.71) and chroma (z=−4.367, p= 1.25× 10−5, n= 32, and r=
0.77). Since all effect sizes were larger than 0.5, an observed strong

effect size was found following Cohen (1988).

In summary, a good lighting setting has a neutral white

CCT with a more unsaturated tiny darker tendency; compare

Figure 4A. That means good luminaire settings could be found in

the intermediate white area, as defined between 3,300 and 5,300K

(EN 12464-1, 2011), located closer to the white point. Contrarily,

the eight study participants defined a bad lighting setting as a higher

saturated warm–reddish hue and a high brightness setting, which

was primarily applied at the spotlight luminaire Lu1. That means

bad luminaire settings are often located in the warmer white area,

3,000K and below (EN 12464-1, 2011), and they are located farther

away from the white point. No brightness changes between good

and bad lighting settings were applied for the second luminaire Lu2,

which controlled the spatial illumination.

To represent this observation for good and bad illumination,

we chose the biggest difference from the initial zero level inside the

calculated confidence interval for hue, chroma, and lightness. The

results are shown in Figure 4C for a good setting and in Figure 4D

for a bad setting, both with a black background. Second, the total

visit duration was calculated from the raw gaze data and separated

between the vehicle’s interior and exterior areas. Furthermore, it

was evaluated at special areas of interest, which consisted of first,

a table with a colorful magazine and second, a mix of fruits with

a blueish jacket, as in-vehicle eye-catching approaches shown in

Figure 4B. Since we found a significant shorter duration within

the bad lighting session, we equalized the total gaze recording

within the bad and good lighting adjustments by scaling the bad

gaze recordings with 1.35. Furthermore, each vehicle window was

evaluated separately and labeled out_x, with x as the window

index. Statistical analysis was performed by performing a t-test for

dependent samples since the gaze data was rationally scaled. The

correlation coefficient r was calculated as r =
√
(t2/(t2+df )) to

calculate the effect size (Fritz et al., 2012). Within these areas, the
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FIGURE 4

(A) Best and worst slider settings separated and averaged within the four driving scenes shown. Besides the hue attribute of the spot luminaire Lu1

and the lightness attribute of the spatially spread luminaire Lu2, other perceptional dimensions showed a significant di�erence between good and

bad settings, as marked (*p < 0.05). (B) Gaze data were evaluated as the total visit duration separated between the interior and exterior areas of

interest. Furthermore, the fruit table with the blue jacket had a higher visit duration than the magazine table (*p < 0.05). (C) Averaged example of

good lighting setting compared to (D) bad lighting settings. (E, F) Emotional ratings according to the adjusted light scene.

central windows named out_3 (t = −8.819, p = 3.07 × 10−12,

n = 64, and r = 0.74) and out_4 (t = −8.817, p = 2.18 ×
10−12, n = 64, and r = 0.74) with the in-vehicle fruit table (t =
−5.316, p = 4.93 × 10−6, and n = 64, r = 0.55) received the

highest attention compared to the other selected areas evaluated by

combining the ratings for good and bad lighting sessions, asmarked

in Figure 4B, and averaging the resulting statistics. As calculated,

all effect sizes showed a strong effect with r > 0.50. This means

that the two central vehicle windows were highly correlated to

the external scene, and the fruit table with the blueish jacket was

highly connected to the attention of the in-vehicle scene, which

further underlines the importance of using colorful objects inside

a scene rating compared to blank spaces. Furthermore, we found

a significantly shorter visit duration for bad light settings than for

good light settings (t = 2.272, p = 0.03, n = 32, and r = 0.38),

with a medium effect size calculated based on the remaining vehicle
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interior, named the interior area, as shown in Figure 4B. This

observation could be generally explained by the fact that setting

up a satisfied level of illumination requires more iteration loops

than setting up a task level just to set bad lighting. That means

there are many possibilities to achieve a bad setting but only a few

to achieve a good one. Based on the collection of gaze data, the

left-positioned colorful fruit table including the blueish jacket, the

central glass roof, and the vehicle windshield collected the highest

visual attention level and were, therefore, strongly connected

to visual preference ratings and in-vehicle lighting adjustments:

People tend to look longer at objects that they like, as stated in the

Section 2.

Figures 4E, F shows the emotional ratings with a clear positive

tendency connected with the best lighting settings. For statistical

analysis, we conducted the asymptotic Wilcoxon signed-rank test

based on ordinal scaled values. Within the semantic differentials

evaluated at negative settings, the strongest emotional impact was

found in the dimensions of interest (z = 4.666, p = 3.05 × 10−6,

n = 32, and r = 0.82), value (z = 4.833, p = 1.34 × 10−6, n = 32,

and r = 0.85), and satisfaction (z = −4.626, p = 3.72 × 10−6, n =
32, and r = 0.81), matching with a high level of disappointment,

fear, and disgust identified in the emotion wheel. For brightness

(z = 4.245, p = 2.18 × 10−5, n = 32, and r = 0.75), spatial (z =
4.499, p = 6.82 × 10−6, and n = 32, r = 0.79), and modernity (z

= 4.572, p = 4.81 × 10−6, and n = 32, r = 0.80), the impact for a

bad light setting was less, which was also supported by a higher level

of interest, amusement, pleasure, and contentment. All effect sizes

showed a strong effect level. Thatmeans a worse lighting setting was

still able to evoke positive emotions, at least partly. On the contrary,

a good lighting setting could not support negative feelings.

4.2. Cortical emotion relations

To get a deeper insight into the differences in cortical activity,

we calculated the power spectral density (PSD) for the benchmark,

the baseline, and four driving scenes, as shown in Figure 5. For

that, the raw EEG data were first epoched based on the 500ms

stimulus window. Next, a grand average was calculated based on all

single epochs and within all eight study participants. This averaged

time-domain signal was then transferred to the frequency domain

using the multitaper method (Slepian, 1978). Next, the difference in

the power frequency distribution was calculated between electrode

locations F3–F4, F3–OZ, and F4–OZ and presented positive and

negative emotional stimuli. During the baseline condition, two

paired neutral images were presented. The cortical activity between

these two stimuli was calculated and described as neutral stimulus

1 and neutral stimulus 2, as shown in Figure 5A.

We found a higher right hemisphere activity connected to

negative emotions, illustrated as a red drop and blueish peak

in Figure 5B. Both phenomena were missing during the baseline

condition, as shown in Figure 5A. During this session, all three

recorded EEG channels followed the same pattern.

The frequency distribution of the three EEG channels in the

four investigated driving scenes is presented in Figures 5C–F. In

the figure, it is shown that for the sun-city driving scene, a similar

higher right hemisphere activity was observed, which was less

pronounced but followed the same lateral activity distribution as

our defined benchmark stimuli; compare Figure 5B. This means

that the arbitrary image presentation of paired good and bad

luminaire settings was able to evoke similar cortical activities

as recorded during high emotional stimulation, especially in the

sun-city scene. At first, when visually compared, the other three

driving scenes showed no congruent behavior at the investigated

power spectral distribution compared to the baseline or benchmark

setting. That means we probably found little evidence that

subjective emotional ratings and emotionally correlated presented

light settings might be connected and described by cortical signal

changes, especially in the frontal hemispheres.

4.3. Cortical signal classification

To further investigate this observation that there might be a

correlation between good and bad in-vehicle lighting and PSD, we

first applied a support vector machine (SVM) classification based

on a radial basis function as the kernel. The SVM classification

performance was first evaluated based on different epoch block

sizes, as shown in Figure 6A. Our selection criterion was defined

to obtain a high classification accuracy at a small epoch block size

to maintain a high number of remaining samples for statistical

comparison. For the classification procedure, we defined 20

classification features from time, frequency, and fractional space,

as shown in Figure 6B. In this figure, the time point at the lowest

amplitude (t_x_min) and themaximumPSD amplitude (fr_y_max)

had the highest feature importance ratings within the benchmark

setting and four driving scenes subtracted by the baseline setting.

Hereafter, we focus on the interpretation based on the identified

PSD numerics alone, since this observation is congruent with

previously investigated frontal asymmetrical cortical activity in

the frequency domain as a highly correlated index for identifying

emotional behavior (Ahern and Schwartz, 1985; Byrne et al., 2022;

Weirich et al., 2023). This means that PSD might be important

for strong emotional stimuli and also in the context of in-vehicle

lighting preferences. The PSD represents the power distribution of

the EEG signal in the frequency domain. Therefore, the presented

power per frequency bands can be calculated, such as for the alpha

waves, or global metrics, such as maximum and minimum, in a

more general context.

For the calculation of EEG features and the classification

procedure, we followed the identified effect observed in Figure 5.

This means that the single epochs in the time domain of the raw

EEG signal were first subtracted between the left F3 and right

F4 electrode positions only. Signals from the OZ location were

not considered for feature calculation. Next, for the emotional

benchmark and driving scenes, a further subtraction from the

neutral emotion baseline session was performed. For reference, the

resulting epoch signal for the benchmark session can be defined

as follows: epochs (benchmark) = epochs (benchmark, F3)–

epochs (benchmark, F4)–epochs (baseline) with epochs (baseline)

= epochs (baseline, F3)–epochs (baseline, F4). Since the total

recorded epoch numbers were unequal based on the applied

rejection criterion, the epoch block with smaller epoch numbers

was considered the limit for subtraction. Finally, 13 epochs were

averaged, and based on this evoked signal, time and frequency

features were calculated; compare Figure 6A. This means, we only
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FIGURE 5

Separation between three investigated channel di�erences of F3–F4, F3–OZ, and F4–OZ. The power spectral density (PSD) di�erences between (A)

neutral stimulus as the baseline and (B) positive and negative stimuli as the benchmark are shown. The presented PSD shows a high relation with

evoked emotions. That means the right electrode position F4 exhibits higher activation during the negative benchmark setting, as shown by the red

drop and blue peak. (C–F) Emotions evoked in four driving scenes. Especially in the sun-city scene, a similar channel di�erence is shown as in the

benchmark study setting. (A, B) Were taken from our previous research (Weirich et al., 2023).

evaluated relative changes in evoked potentials between the left and

right hemispheres and baseline settings. No absolute EEG feature

values based on evoked EEG data were calculated.

EEG features are described by their mathematical function in

the description in Figure 6. Their names follow the structure to set

the first t as time, fr as frequency, frac as fractional dimension, and

band as relative band power. Next, the connected axis is written,

and finally, the applied function is written, such as min stands for

minimum. For references, t_x_min stands for the time point at the

amplitude minimum in the time domain. Moreover, t_y_min is the

value of the amplitude minimum in the time domain.

In the second step, we performed a t-test for dependent

samples to test for paired significant calculations to prove the

validity of the PSD maximum. We set the significant level α =
0.05 and normalized sign conserving the PSD maximum between

−1 and 1, calculated employing Welch’s method (Welch, 1967).

The difference between positive and negative settings based on

the benchmark and baseline conditions is shown in Figure 6C.

The analysis showed a small effect size (t = 3.351, p = 9.36 ×
10−4, n = 238, and r = 0.21) for the benchmark session and

no significant effect for the baseline session. Here, it must be

emphasized that for the baseline condition, we arbitrarily paired

two neutral images only, as shown in the inner layer in Figure 6C.

Furthermore, the emotional rating of each of the four in-vehicle

lighting scenes is shown in Figure 6D. To be able to compare the

baseline, benchmark, and four driving scenes, the epoch block size

of 13 was fixed based on our selection criterion, compare Figure 6A,

to obtain 238 samples for statistical evaluation. The identified

feature with themaximumPSD could significantly separate positive

and negative in-vehicle lighting settings within all four driving

scenes. We observed that in two of the four scenes, the forest (t =
4.025, p= 7.66× 10−5, n= 238, and r = 0.25) and the countryside

(t = 2.749, p = 6.43 × 10−3, n = 238, and r = 0.17), with a small

effect size, followed the trendline for a higher right cortical activity

during increased negative feelings. For sun-city (t = −5.982, p

= 8.11 × 10−9, n = 238, and r = 0.36) with a medium effect

size and night (t = −4.487, p = 1.13 × 10−5, n = 238, and r =
0.27) with a small effect size, this effect was inversed. That means

there might be an additional emotional offset produced by higher

interesting external scenes compared to a monotonous forest

or countryside setting, which contradicts the evoked emotional

changes created by light stimuli. Consequently, cortical activities

were evoked based on bad lighting, which follows the trend of

positive emotions.
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FIGURE 6

(A) SVM classification accuracy based on di�erent epoch block sizes. After averaging 13 single epoch elements, a classification accuracy of 82% was

observed in the benchmark baseline setting. Similar classification patterns were observed between all four driving scenes. (B) Normalized

permutation importance calculated for each EEG signal feature. Feature names are defined by time t, frequency fr, or fractional dimensions frac.

Next, the axis and applied function are written. The time points at the smallest amplitude (t_x_min) and the PSD maximum (fr_y_max) were identified

as features with the highest importance. The lowest amplitude in the time domain (t_y_min) had the lowest importance. Negative values induce

worse classification performance if a specific feature is used. (C, D) By applying the maximum PSD cortical feature with a block size of 13 × 238, a

high significant di�erence (*p < 0.05) between the benchmark images and all four driving scenes, as marked, was observed. Slope changes between

sun-city + night compared with forest + country scenes indicate a further emotional o�set, independent of the light settings. (C) Was taken from our

previous research (Weirich et al., 2023). (B) Feature description from left to right: Time point at the minimum amplitude, the maximum of PSD,

Petrosian fractal dimension, time point at the maximum amplitude, skew, spectral entropy, kurtosis, the frequency at the maximum of PSD, the sum

of absolute di�erences, relative band power between 7.5 and 30Hz, relative band power between 0 and 7.5Hz, amplitude variance in time, root

mean square of amplitude in time, the standard deviation in time, the peak-to-peak ratio in time, maximal amplitude in time, negative area in time

with abscissa as the reference, positive area in time with abscissa as the reference, amplitude mean value in time, and time point at minimum

amplitude. Relative band power was divided into two sections for initial investigation, combining first, the delta and theta waves (0–7.5Hz) and

second, the alpha, beta, and gamma waves (7.5–30Hz).

To further elaborate that the investigated single EEG feature,

the PSD maximum, plays an important role in identifying positive

and negative emotions in the context of in-vehicle lighting, the

identified frequencies at the maximum power were statistically

analyzed based on the defined feature named fr_x_max. Statistical

analysis was performed using a t-test for dependent samples. No

significant differences could be found during the benchmark setting

and within the four external driving scenes based on 13 averaged

epochs. Relative changes of the frequencies at the PSD maximum,

which were evoked and transferred to the frequency domain, were

on average 3.11 ± 0.49Hz for the positive and 3.06 ± 0.50Hz

for the negative stimuli during the benchmark settings. Over all

vehicle driving settings, the relative frequency varied on average

2.60 ± 0.19Hz for the positive emotions and 2.69 ± 0.19Hz for

the negative emotions. This means that there were neglectable

relative frequency changes observed, as also identified by the

abovementioned missing significances in the t-test.

5. Discussion

We applied our identified cortical EEG feature, the PSD

maximum (Weirich et al., 2023), which can also be stated as a more

general index compared to the frontal alpha asymmetry (FAA)
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(Ahern and Schwartz, 1985; Byrne et al., 2022), which only takes the

alpha waves (7.5–12Hz) into account in the context of in-vehicle

lighting scene preferences.We compared the results with emotional

ratings and gaze data recorded via eye-tracking. First, we decided

to take the total visit duration, defined as the time between the

first and last fixation on an area of interest (AOI), as our key index

calculated by gaze data, which was suggested in an extensive review

about the correlation between eye-tracking metrics and cognitive

or emotional processes (Skaramagkas et al., 2023). They identified

fixation duration, the number of fixations, total fixation time,

saccade amplitude, and the number of saccades as strong indices

connected with visual attention. Moreover, fixation duration, the

first fixation probability, blink rate, and pupil size were correlated

with an increase in emotional arousal. Combining both, only

fixation duration could identify both dimensions, which, integrated

over time and AOI, represents the total visit duration per AOI.

Within the investigated AOIs, the central vehicle windows and the

left side-orientated colorful fruit table together with the blueish

jacket received significantly longer visits during the best and

worst adaption processes, as shown in Figure 4B. For the central

vehicle windows representing the external driving scene, this

phenomenon is widely understood in the literature as “central

bias”. Physiologically roughly explained, a center starting point

is highly favorable for following oculomotor saccade activations

for scanning additional image areas (Tatler, 2007). The fruit table

located at the left side in-vehicle area collected significantly more

attention than the front right-side table with the colorful magazine.

This means that daily colorful objects are highly associated with

preference ratings and should be applied in a related scene for

preference ratings.

Second, it is shown in Figures 4A, C that the hue for the

best lighting setting between spot- and spatial luminaires did

not vary, which clearly contradicts our previous finding (Weirich

et al., 2022b): We found that the best lighting setting should

be a mix of lower and higher CCTs with the same scene setup.

One explanation for this could be, first, the smaller sample size

within this study when compared to our previous study. Second,

in our previous study, we rated preselected luminaire settings.

In the present study, we allowed participants to freely choose

between various possibilities. Anyway, our aim within this study

was not to define the best setting. Rather, we focused on the root

cause to identify why one specific luminaire vector consisting of

hue, chroma, and lightness is able to achieve a supporting or

contradicting subjective evaluation.

The results of the identified semantic differentials and emotion

wheel, Figures 4E, F, are congruent in terms of satisfaction, value,

and interests, which are clearly worse for bad applied lighting.

Moreover, the identified bad lighting settings were still able to

evoke, at least to some extent, positive emotions in the fields of joy,

pleasure, and contentment. Actually, how the quality of lighting can

be defined is still under debate. One direction is to focus on the

combination of space, user task, and applied lighting (Allan et al.,

2019). However, to what extent and with which metrics subjective

evaluations should contribute to this very general approach has not

yet been decided (CIE, 2014).

Furthermore, the decoding of positive and negative emotions

was congruent with the literature (Ahern and Schwartz, 1985): A

higher level ofmaximumPSDwas observed in the right hemisphere

for negatively correlated emotions; compare Figures 5B, 6C. Here,

this frontal asymmetry was especially observed in the gamma

frequency band; it was observed less in the beta band and was

nearly negligible in the alpha band. Moreover, a contradiction

was observed between the presented external driving scenes for

the sun-city and night settings, as shown in Figure 6D. Here,

a subjectively rated negative in-vehicle light setting created a

cortical activity that significantly correlated with a higher level of

positive emotions. This contradiction between subjectively rated

scale settings and measured cortical activity could be explained

based on the viewing content. Both scenes can be stated as

highly interesting compared to the monotonous countryside or

forest setting. That means here, we probably biased the evoked

illumination-based emotions with interesting stimuli. The same

separation between external interesting and monotonous scenes

was also identified in the second part of this mini-series (Weirich

et al., 2022b). This phenomenon gives further research a great

opportunity for deeper insights, perhaps by also combining several

EEG features, as shown in Figure 6B, to optimize the classification

accuracy in two or more emotional settings. One example of that

might be the further subdivision of the applied relative band power.

In this initial investigation, we separated the bands only between

0–7.5Hz and 7.5–30Hz, considering that for frequencies below

3Hz, the amplitude is affected by the described bandpass filter,

as mentioned in Section 3.2. As identified by the permutation

feature importance analysis, the 7.5–30Hz group achieved a higher

level of importance than the second group. This means follow-up

studies can separate the higher frequency group by narrowing the

important frequency ranges.

Furthermore, it was reviewed that there might be a neuronal

connection between P300 and LPP, and both responses are related

more to the significance of the stimulus than to the stimulus

itself (Hajcak and Foti, 2020). In this extensive review, LPPs are

defined starting at 300ms after stimulus onset in ERPs, and the

signal is maximized at the centroparietal electrodes such as CPz. In

emotional responses, only a slight difference between unpleasant

and pleasant emotional images was recorded, but a large signal

difference between both emotional settings and neutral stimuli was

found. The P300, elicited by an oddball task, was further increased

if the target was connected to emotions (Schupp et al., 2007). This

means that the more important, the more personally significant,

or the more memorable a stimulus is perceived to be, the greater

the cortical activity (Donchin, 1981). Taking these findings in the

context of the presented study, the following conclusions can be

stated in the context of neuroaesthetics. First, a time window of

500ms, or alternatively 200–350ms, is sufficient (Schupp et al.,

2007), after stimulus onset for recording cortical activities in the

content of less emotional image ratings by focusing on either P300

or LPPs, since both potential changes are actually connected to each

other and are represented in a similar time window. This means

that in-vehicle lighting preferences alone, without direct emotional

stimuli, can be decoded by cortical activities, and this presents a

novel finding in the field of neuroaesthetics. Second, since both

potentials are connected to each other, our introduced approach

investigating defined EEG signal features in the time and frequency

domain, compared to focusing on potential changes in ERP-

located time windows alone, might create the necessary difference

in investigating cortical activities during an emotional task for
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modeling and predictions. Within this approach, the same single

EEG feature, the maximum of PSD was able to significantly classify

strong positive and negative emotional images and less emotional

in-vehicle preferences based on lighting variations. However, we

present the initial findings of this study. Further deeper research

is necessary to build upon this new target by counterbalancing

the impact of light itself and addressing the significant differences

of single EEG signal points, such as maximum and minimum,

and integrations of these such as band powers. This will also help

understand deeper neural mechanisms. Finally, we had several

limitations within our study. First, the investigated sample size of

eight study participants can be stated as relatively small. However,

since we primarily evaluated gaze data, recorded with 120 samples

per s, and emotionally evoked potentials with 400 repetitions per

study setting and subject, our statistical power was sufficient. This

was primarily displayed in identified significant correlations and

by following a recommendation for epoch trails within smaller

subject groups targeting a significance level of 0.05 in the field

of decoding color and orientation (Hajonides et al., 2021). The

identified best and worst luminaire settings should be carefully

judged because this was not our primary target within this study, as

stated before.

6. Conclusion and outlook

In part three of our mini-series, we extended our method

to define the best or worst in-vehicle lighting setting with

cortical activity. We first identified, based on gaze data, highly

correlated scene objects that are connected to subjective emotional

assessments. Second, in this controlled laboratory study, we

successfully applied the PSD maximum as the cortical EEG

feature for positive and negative emotions in different external

driving scenes with highly positively and negatively correlated

luminaire settings. Two more monotonous external driving scenes

congruently followed the emotional benchmarks. For the more

interesting external scenes, despite the highly negative emotional

rating, worse light settings were still able to create emotional

cortical activity, which followed a trendline for positive settings.

That means high-frequency stimulations of subjectively bad-rated

luminaire settings are still able to evoke more positive or interesting

associated cortical activity, which underlines the importance

of further research in this combination of psychophysiological

color science and neuroaesthetics. For our wider study target,

to determine the optimal in-vehicle lighting setting, we found

an objective measurable cortical body parameter connected to

subjective illumination preference. That means now we can

probably connect illumination and subjective scene preferences
objectively and measurably or perhaps also in a control-loop setup.
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