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Frequency e�ects in linear
discriminative learning
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1Quantitative Linguistics, University of Tübingen, Tübingen, Germany, 2Cluster of Excellence Machine

Learning: New Perspectives for Science, University of Tübingen, Tübingen, Germany

Word frequency is a strong predictor in most lexical processing tasks. Thus, any

model of word recognition needs to account for howword frequency e�ects arise.

The Discriminative Lexicon Model (DLM) models lexical processing with mappings

between words’ forms and their meanings. Comprehension and production are

modeled via linear mappings between the two domains. So far, the mappings

within the model can either be obtained incrementally via error-driven learning,

a computationally expensive process able to capture frequency e�ects, or in

an e�cient, but frequency-agnostic solution modeling the theoretical endstate

of learning (EL) where all words are learned optimally. In the present study we

show how an e�cient, yet frequency-informed mapping between form and

meaning can be obtained (Frequency-informed learning; FIL). We find that FIL well

approximates an incremental solutionwhile being computationallymuch cheaper.

FIL shows a relatively low type- and high token-accuracy, demonstrating that the

model is able to process most word tokens encountered by speakers in daily life

correctly. We use FIL to model reaction times in the Dutch Lexicon Project by

means of a Gaussian Location Scale Model and find that FIL predicts well the

S-shaped relationship between frequency and the mean of reaction times but

underestimates the variance of reaction times for low frequency words. FIL is also

better able to account for priming e�ects in an auditory lexical decision task in

Mandarin Chinese, compared to EL. Finally, we used ordered data from CHILDES

to compare mappings obtained with FIL and incremental learning. We show that

themappings are highly correlated, but that with FIL some nuances based onword

ordering e�ects are lost. Our results show how frequency e�ects in a learning

model can be simulated e�ciently, and raise questions about how to best account

for low-frequency words in cognitive models.

KEYWORDS

linear discriminative learning,word frequency, incremental learning,weighted regression,

lexical decision, mental lexicon, distributional semantics

1 Introduction

Word frequency effects are ubiquitous in psycholinguistic research. In fact, word
frequency (i.e., the number of times a word occurs in some corpus) is one of the most
important predictors in a range of psycholinguistic experimental paradigms (Brysbaert et al.,
2011). In the lexical decision task, where participants are asked to decide whether a presented
letter string is a word or not, frequency explains by far the most variance in reaction times,
compared to other measures such as neighborhood density or word length (e.g. Baayen,
2010; Brysbaert et al., 2011): higher frequency words elicit faster reactions (e.g., Rubenstein
et al., 1970; Balota et al., 2004). In word naming, another popular experimental paradigm
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in psycholinguistics where participants have to read aloud
presented words, word frequency is less important, but still has
a reliable effect: higher frequency words are named faster (e.g.,
Balota et al., 2004). Even though the effect of frequency has long
been known and studied, to this day new studies are published
confirming the effect in ever larger datasets across different
languages (e.g., Balota et al., 2004; Ferrand et al., 2010; Keuleers
et al., 2010, 2012; Brysbaert et al., 2016). Some studies have also
proposed new frequency counts, explaining for example individual
differences when it comes to the frequency effect (e.g., Kuperman
and Van Dyke, 2013; Brysbaert et al., 2018).

A central challenge for models of word recognition is therefore
to explain word frequency effects. This challenge has been met in
various different ways by influential models of word recognition.
One of the earliest ideas proposed that words are stored in list-like
structures ordered by frequency, such that the most frequent words
are found earlier than lower frequency words (e.g., Rubenstein
et al., 1971). This idea was developed into the “Search Model
of Lexical Access” by Forster (1976, 1979). In this model there
are “peripheral access files” in which words are stored according
to their frequency of occurrence. These files hold “access keys”
to where information about each word is stored in a main
file. Words in the access files are grouped into bins based on
form characteristics. Thus, the model aims to explain both word
frequency effects (words are ordered according to their frequency
in the peripheral access files) as well as neighborhood effects (words
with similar form are stored in the same bin). Later iterations of the
model also suggested a hybrid model between serial and parallel
search, where each bin is searched serially, but all bins are searched
in parallel (Forster, 1994).

The Logogen model (Morton, 1969, 1979a,b) fully doubled
down on the idea of a parallel search. A logogen can be seen as a
detector for a set of input features. Every time one of its associated
input features is encountered, the logogen’s counter is increased.
If the counter surpasses a threshold, it elicits a response. Each
word/morpheme in a speaker’s lexicon is assumed to correspond
to a logogen. Additionally, there are logogens for lower level
visual and auditory input features such as letters or phonemes
whose outputs in turn serve as inputs to the word logogens.
The Logogen model accounts for frequency effects by assuming
that logogens corresponding to words with higher frequency have
a lower response threshold than those corresponding to lower
frequency words. After a logogen elicits a response, the threshold is
lowered, and it takes a long time for the threshold to increase again.
This explains trial-to-trial effects because just activated words will
be activated faster in subsequent trials, but it also explains the long-
term effect of word frequency because words occurring regularly
will always have a lower threshold for eliciting a response (Morton,
1969).

The interactive activation model (McClelland and Rumelhart,
1981; Rumelhart andMcClelland, 1982) is inmany ways a successor
of the Logogen model. It proposes three levels of representations:
one for letter features, one for letters and one for words. There are
excitatory and inhibitory connections from letter features to letters
and from letters to words. Additionally, there are excitatory and
inhibitory connections from words to letters. Finally, there are both
excitatory and inhibitory connections within each representational

level (note though that the feature-feature inhibition was set to
zero in the original implementation). The interactive activation
model was originally proposed to explain the word superiority
effect, i.e., the finding that letters are identified faster within a
word than within a random letter string (e.g., Reicher, 1969).
However, the model also proposes an account of frequency effects:
the resting activation level of the word units are set depending
on word frequency, such that high frequency words have a higher
resting activation than low frequency words. In this way, Jacobs and
Grainger (1994) were able to show that the interactive activation
model shows the same effect of frequency on reaction times in
various lexical decision experiments as human participants.

The interactive activation model was followed by the
triangle model (Seidenberg and McClelland, 1989; Harm and
Seidenberg, 2004), which consists of distributed representations for
orthography, phonology and semantics, each connected via a set
of hidden units. In contrast to the interactive activation model, the
weights between layers in this network are not set by the modeler
but learned using backpropagation (Rumelhart et al., 1986). Thus,
the error between the model’s prediction and the actual target
is reduced each time an input-target pair is encountered. For
example, to model reading, the triangle model takes as input a
word’s orthography and predicts its phonology. Then, the error
between the predicted phonology and the correct phonology of the
word is computed, and the model’s weights are updated such that
the next time the same phonology is to be produced from the same
orthography, it will be more accurate. The more often a word is
presented to the model, the more accurate its predicted phonology
becomes. This means that high frequency words will over time
produce the lowest prediction error and are thus recognized faster
and more accurately. Therefore, word frequency effects arise not as
a consequence of manually changing resting activation levels but
from the weights within the network changing according to the
input distribution.

A final model of word recognition reviewed here is the Bayesian
Reader Model (Norris, 2006). This model not only accounts for
the frequency effect but also aims to explain why frequency
effects should arise in the first place. The model is a simple
Bayesian model that integrates a word’s prior probability (for which
Norris, 2006, uses its frequency) with the incoming evidence.
Thus, high frequency words are recognized faster than low
frequency ones. According to Norris (2006, 2013) this constitutes
an “ideal observer” model, solving the task at hand as optimally
as possible. This explains not only why frequency effects should
arise in the first place but also why they play out differently in
different experiments.

To summarize, these five models offer three broad explanations
of frequency effects. Serial search models explain them in terms of
list ordering effects; the Logogen, interactive activation and triangle
model propose network models where frequency is reflected in
units’ thresholds/activation levels or in connection weights; and
finally, the Bayesian Reader proposes that word frequencies provide
lexical priors that contribute to an optimal decision process in
word recognition.

Interestingly, reaction times for example in lexical decision are
best predicted not by raw word frequencies but by log- or rank-
transformed frequencies. Again, the various models account for
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this in different ways. Since the serial search model incorporates
word lists, it directly predicts a rank transformation of word
frequencies (see also Murray and Forster, 2004). In the interactive
activation model, the resting activation levels of the word units
are set according to the words’ log frequency (McClelland and
Rumelhart, 1989, Chapter 7). In the triangle model, training items
are sampled such that they have a probability proportional to
log(frequency + 2). Note that Seidenberg and McClelland (1989)
do this for practical rather than principled reasons, as sampling
training items proportionally to full token frequencies would
require orders of magnitude more computation to achieve the same
coverage (this is a practice adopted also in other work, see for
instance Li et al., 2007). Finally, the Bayesian Reader utilizes raw
word frequencies.

Comparison of these models highlights a few key questions
about how to model the word frequency effect: first, how and
why does the frequency effect arise in the first place? Does it arise
naturally as a consequence of the input data? And what mechanism
does the model provide for how the frequency differences are
acquired? Secondly, how does the model keep track of word
frequencies? Are there “counters” for each individual word (see also
Baayen, 2010)? And finally, how does themodel account for the fact
that reaction times are best predicted by log- or rank-transformed
frequencies rather than raw frequency counts?

We now turn to a more recent model of word comprehension
and production, the Discriminative Lexicon Model (DLM;
Baayen et al., 2018b, 2019). This model provides a perspective
on the mental lexicon in which mappings between numeric
representations for form and meaning play a central role.
This model conceptualizes comprehension as involving mappings
from high-dimensional modality-specific form vectors to high-
dimensional representations of meaning. The initial stage of speech
production is modeled as involving a mapping in the opposite
direction, starting with a high-dimensional semantic vector (known
as embeddings in computational linguistics) and targeting a vector
specifying which phone combinations drive articulation. The DLM
has been successful in modeling a range of different morphological
systems (e.g., Chuang et al., 2020, 2022; Denistia and Baayen, 2021;
Heitmeier et al., 2021; Nieder et al., 2023) as well as behavioral data
such as acoustic durations (Schmitz et al., 2021; Stein and Plag,
2021; Chuang et al., 2022), (primed) lexical decision reaction times
(Gahl and Baayen, 2023; Heitmeier et al., 2023b), and data from
patients with aphasia (Heitmeier and Baayen, 2020).

The DLM’s mappings between form and meaning are
implemented by means of matrices. This general matrix-based
approach is referred to as linear discriminative learning (LDL).
LDL can be implemented in two ways: by means of the matrix
algebra underlyingmultivariate multiple regression (henceforth the
“endstate learning”, EL), or by means of incremental regression
using the error-driven learning rule of Widrow and Hoff (1960)
(henceforth WHL). EL is computationally efficient, WHL is
computationally demanding. Conversely, WHL is sensitive to the
frequencies with which words are presented for learning, whereas
EL is fully type-based (i.e., words’ token frequencies do not play a
role).

Thus, the DLM proposes that frequency effects arise due to
the distribution of the input data: higher frequency words occur
more often in the input data, and therefore, the prediction error

will be smallest for high frequency words (see Chuang et al.,
2021; Heitmeier et al., 2021, for studies utilizing WHL to obtain
frequency-informed mapping matrices). Word frequencies are not
stored explicitly; rather, they have effects on the weights in the
mappings. This account is similar to how frequency effects arise
in the triangle model. Similar to the triangle model, the DLM also
suffers from computational issues: training on the full frequency
distribution with WHL is computationally very demanding.

Recent modeling efforts with the DLM have been limited by
the disadvantages of EL and WHL: they either had to opt for
EL, which resulted in models that were not informed about word
frequencies (e.g., Heitmeier et al., 2023b), or for WHL, which
limited the amount of data the models could be trained on (e.g.,
Chuang et al., 2021; Heitmeier et al., 2021). The present paper aims
to solve this problem by introducing a new method for computing
themappingmatrices that takes frequency of use into account but is
computationally efficient by making use of a numerically efficiently
solvable solution: “Frequency-informed learning” (FIL). FIL can be
used instead of the already established WHL and EL to compute
mapping matrices in the DLM.

In the following we compare the three different methods of
estimating mapping matrices in the DLM.We show how the model
is able to account for frequency effects using WHL and the newly
introduced FIL. We demonstrate that FIL is equivalent to training
the model incrementally on full token frequencies and is superior
to utilizing log-transformed frequencies. We show how the DLM
is able to model reaction times linearly without the need of log- or
rank-transformations. Finally, we investigate what role the order in
which words are learned plays in word recognition.

This study is structured as follows: we first lay out the basic
concepts underlying linear discriminative learning in Section 2.
In Section 3, we discuss EL, and subsequently, WHL. Against this
background, we proceed with proposing a new method computing
non-incremental, yet frequency-informed learning (FIL). We then
present three case studies, one using FIL to model visual lexical
decision latencies from the Dutch Lexicon Project (Keuleers et al.,
2010) (Section 4.1), one where we use FIL to model spoken
word recognition in Mandarin (Section 4.2) and a third where we
compare WHL and FIL in modeling first word learning with data
from CHILDES (Brown, 1973; Demuth et al., 2006) (Section 5). A
discussion section brings this study to a close.

2 Linear discriminative learning: basic
concepts and notation

In the DLM, word forms are represented as binary vectors that
code the presence and absence of overlapping n-grams in the word
form (e.g., #a, aa, ap, p# for the Dutch word aap, “monkey”).
Form vectors are stored as row vectors in a “cue matrix” C. For
an overview of how form vectors can be constructed, see Heitmeier
et al. (2021), and for form vectors derived from audio signals, see
Shafaei-Bajestan et al. (2023). Semantics are represented as real-
valued vectors, following distributional semantics (Landauer et al.,
1998), which are stored as row vectors in a semantic matrix S.

To model comprehension, a mapping matrix F transforms the
form vectors in C into the semantic vectors in S. Conversely, a
production matrix G maps meanings onto forms. The matrices F
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and G are estimated by solving

CF = S

SG = C

where CF and SG refer to the matrix multiplication of C and F and
of S and G, respectively. Further information on this operation can
be found for instance in Beaumont (1965). Given F and G, we can
estimate the predicted semantic vectors

Ŝ = CF

and the predicted form vectors

Ĉ = SG,

with the hat on S and C indicating that the predicted matrices
are estimates (in the statistical sense) that approximate the gold
standard vectors but will usually not be identical to these vectors.
It is often convenient to focus on individual words, in which case
we have that

ŝ = cF

ĉ = sG.

To evaluate the accuracy of a comprehension mapping, the
predicted semantic row vectors ŝ of Ŝ are correlated with all the
corresponding semantic row vectors in the gold standard semantic
matrix S. If the predicted semantic vector of a word form is closest
to its target vector, it is counted as correct. This accuracy measure
is referred to as correlation accuracy in the following, and we will
sometimes denote it as accuracy@1.1 More lenient accuracy
measures accuracy@k accept model performance as satisfying
when s is among the top k nearest target semantic vectors of the
predicted semantic vector ŝ. For detailed introductions to the DLM,
see Baayen et al. (2018a, 2019) and Heitmeier et al. (2021, 2023a).

3 Three methods for computing
mappings in the DLM

This section introduces the two existing methods for
computing mappings in the DLM, Endstate Learning (EL) and
Widrow-Hoff learning (WHL), and explains their respective
disadvantages using a small Dutch dataset from Ernestus and
Baayen (2003). Finally, we present Frequency-informed learning
(FIL). Since it is much more computationally efficient than WHL,
we also demonstrate its usage on a larger dataset from Keuleers
et al. (2010). For expositional simplicity, we focus mainly on
comprehension. We note, however, that frequency-informed
mappings are equally important for modeling production.

1 As only 2.7% of the words in our Dutch dataset are homographs, for

simplicity we use “strict evaluation” throughout this study, i.e., we do not take

homographs into account while evaluating accuracy (further information on

the various methods to evaluate accuracy in Heitmeier et al., 2021).

3.1 Setup

3.1.1 Data
For the present section, we used two datasets:
Small dataset: A subset of 2,646 singular and plural Dutch

nouns and verbs (for which frequency was at least 1) taken from
a dataset originally extracted from the Dutch CELEX database
(Baayen et al., 1995) by Ernestus and Baayen (2003).2 These words
have monomorphemic stems ending in an obstruent that is realized
as voiceless when word-final but that in syllable onset appears with
voicing in some words and without voicing in others. We used
300-dimensional Dutch fasttext embeddings (Grave et al., 2018)
to represent semantics.3 Since we were unable to obtain word
embeddings for all words in our dataset, this left us with 2,638 word
forms (i.e., excluding eight word forms).

Large dataset: We also present results with a larger dataset
extracted from the Dutch Lexicon Project (DLP, Keuleers et al.,
2010) in later sections. We used all 13,669 words from the DLP for
which we were able to obtain fasttext embeddings.

The frequencies of use that we use in this study when working
both with the small and the large datasets are taken from CELEX.

3.1.2 Modeling choices
In what follows, we present results with two different form

vector setups:
Low-dimensional form vectors: We make use of bi-

grams for representing word forms (used in their orthographic
representation), resulting in a dimensionality of 360. The use
of bigrams is motivated by the choice to minimize the carbon
footprint and duration of our simulations, especially when
using WHL.

High-dimensional form vectors: For the new, computationally
highly efficient frequency-sensitive model that is at the heart of
this study, we made use of trigrams. For the small dataset this
resulted in a form vector dimensionality of 1,776, and 4,678 for the
large dataset.

3.2 Endstate learning

The first implementation of the DLM in the R (R Core Team,
2020) package WpmWithLdl (Baayen et al., 2018b) estimates the
“endstate” of learning. This implementation constructs a mapping
F between the cue matrix C and the semantic matrix S using the
pseudo-inverse by solving the following set of equations:

CF = S

CTCF = CTS

(CTC)−1CTCF = (CTC)−1CTS

IF = (CTC)−1CTS

F = (CTC)−1CTS (1)

2 Data, code and statistical models presented in this study are available at

https://osf.io/h2szj/.

3 https://fasttext.cc/docs/en/crawl-vectors.html#models
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where I denotes the identity matrix and CT the transpose of C.
Details on these equations (known as the normal equations in
statistics) can be found in Faraway (2005).

Computing the pseudo-inverse as implemented in
WpmWithLdl is expensive and prohibitively so for larger
datasets. Fortunately, there now exists a very efficient method
implemented in the Julia (Bezanson et al., 2017) package JudiLing4

that makes use of the Cholesky decomposition (Luo, 2021;
Heitmeier et al., 2023a). This, together with additional speed-ups
due to Julia being in general faster than R and the use of sparse
matrices means that JudiLing can handle much larger datasets
compared toWpmWithLdl (Luo, 2021).

The endstate learning (EL) results in optimal mapping matrices
that reduce the error between the predicted and the target
vectors as much as possible, for all word forms. It is optimal
in the least-squares sense, and the underlying mathematics are
identical to that of multivariate multiple regression. This method
is characterized as estimating the “endstate” of learning, because
the mappings it estimates can also be approximated by using
incremental learning (WHL) applied to an infinite number of
passes through one’s dataset (assuming that each word occurs a
single time in the dataset). With infinite experience, every word has
been experienced an equal and infinite amount of times. Any effects
of frequency of occurrence in this model are an epiphenomenon of
lexical properties such as word length and neighborhood density
(Nusbaum, 1985; Baayen, 2001).

Figure 1 illustrates the frequency-free property of EL. It
presents the results obtained with an EL model with low-
dimensional form vectors for the small dataset introduced in the
preceding section, modeling comprehension with the matrix F.
The average correlation accuracy for this model is low, at 40.8%;
below, we will show how this accuracy can be improved to 83% by
increasing the dimensionality of the form vectors.

To illustrate the absence of a relationship between word
frequency and correlation accuracy, we used a binomial generalized
linear model5 with a logit link function, modeling the probability
of correct recognition as a function of log frequency (here and in
all later analyses, before log-transformation, a backoff value of 1
was added to word frequencies). Log frequency was not a good
predictor of accuracy (p = 0.9772).

In summary, one important advantage of endstate learning is
that it is can be computed very quickly: on a MacBook Pro (2017)
with a 3.1 GHz Quad-Core Intel Core i7 processor and for the
small dataset with low-dimensional form vectors it takes about 20
milliseconds. A second important advantage of this method is that
it is frequency-free: it shows what can be learned when frequency of
use is not allowed to play a role. In other words, the EL probes the
quantitative structure of a dataset, under the assumption that usage
can be ignored. Thus, the EL method dovetails well with generative
approaches to morphology that deny any role to usage in grammar
and work with types only.

However, this is also the achilles heel of the EL method: EL
is purely type-based and is blind to the consequences of token
frequency for learning. Well-established effects of frequency of use

4 https://github.com/MegamindHenry/JudiLing.jl

5 https://github.com/JuliaStats/GLM.jl

(see, e.g., Baayen et al., 1997; Bybee and Hopper, 2001) are not
captured. This is why an alternative way of estimating mappings
between form and meaning is implemented in the JudiLing

package: incremental learning.

3.3 Incremental learning

Instead of making use of the efficient method estimating the
endstate of learning, we can also learn the mappings incrementally
using the Widrow-Hoff learning rule (Widrow and Hoff, 1960),
a form of error-driven learning closely related to the Rescorla-
Wagner learning rule (Rescorla and Wagner, 1972; for a discussion
of the Widrow-Hoff learning rule in language research see also
Milin et al., 2020). Here, the idea is that each time a word is
encountered, a learning event occurs, and the mappings between
form and meaning are updated in such a way that next time the
same word is encountered (if no unlearning occurs intermittently)
the mappings will be more accurate. To be precise, instead of
obtaining the mapping matrix F via Equation (1), it is learned
gradually via the following equation:

Ft+1 = Ft + cTt · (st − ŝt) · η

where Ft is the state of the matrix F at learning step t, ct and st are
the form and semantic vectors of the wordform encountered at t,
and ŝt = ct · Ft . How fast learning takes place is controlled via the
learning rate parameter η. High learning rates lead to fast learning
and unlearning, whereas low learning rates result in slower learning
and less unlearning.

Incremental learning has the advantage that we can model
learning in a frequency-informed way by translating frequencies
into learning events. For example, if a word has a frequency of
100, it is presented for learning 100 times. We used the Widrow-
Hoff learning rule as implemented in JudiLing to incrementally
learn the mapping matrix F. This mapping is now frequency-
informed. We experimented with low-dimensional form vectors
and three different learning rates: 0.01, 0.001, and 0.0001, modeling
words in the small dataset. The average correlation accuracy for the
three simulations was 15.5, 14.0, and 10.1%, respectively. As can
be seen in the left panel of Figure 2, when learning the mappings
incrementally according to their frequency, a clear relationship
between frequency and accuracy is obtained for all learning rates:
the more frequent a word is, the more accurately it is learned. A
binomial GLM indicated a highly significant relationship between
frequency and accuracy (p < 0.001 for all learning rates). The lower
the learning rate, the steeper the increase in accuracy: accuracy is
lower for low-frequency words and higher for high-frequency ones.

There are two disadvantages to this approach, one practical,
and the other theoretical. The theoretical problem is that for many
datasets, there is no intrinsic order in which words are learned. For
the present dataset, which is basically a word frequency list, we do
not have available any information about the order in which Dutch
speakers encounter these words over their lifetime. It is only for
intrinsically ordered data, such as child directed speech in corpora
such as CHILDES (MacWhinney, 2014), that incremental learning
comes into its own (see Section 5). The practical problem is that
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FIGURE 1

Endstate learning. The green filled dots on the horizontal lines at 0 and 1 represent the correlation accuracies@1 for the individual words (counted as

correct if the semantic vector most correlated with the predicted semantic vector is the target), and the light pink circles represent the correlation

values of words’ predicted semantic vectors with their target vectors. The dark blue dotted line presents the estimated kernel density for log

frequency. There is no discernible relationship between Log Frequency and correlation/accuracy for endstate learning.

FIGURE 2

Relationship between accuracy and frequency for incremental learning. Left: Mapping trained using full frequencies. Predicted accuracy is depicted

for three di�erent learning rates [η ∈ {0.01, 0.001, 0.0001}], and the light pink circles present target correlations for η = 0.01. Center: Mapping trained

using log-transformed frequencies. Right: Mapping trained using frequencies divided by a factor of 100. While there is a strong relationship between

log frequency and accuracy/correlation when training on full frequencies and scaled frequencies, this relationship is attenuated when training on

log-transformed frequencies.

updates with the Widrow-Hoff learning rule are computationally
expensive. For the present dataset, estimating the mapping matrix
F took ≈25 minutes on a MacBook Pro (2017) with a 3.1 GHz
Quad-Core Intel Core i7 processor, even though the use of bi-
grams resulted in a form dimensionality that was already too
small to obtain good accuracy. If we would use the better-suited
tri-grams (i.e., the high-dimensional form vectors described in
Section 3.1.2), the estimated time for computing the mapping
matrix F increases strongly even in an optimized language such
as Julia.

The computational cost of WHL may be alleviated in (at
least) two ways. One option is to transform frequencies by taking
logarithms (see, e.g., Seidenberg and McClelland, 1989). The
resulting average correlation accuracy is 26.8%. The relationship

between frequency and accuracy can be seen in the center
panel of Figure 2. While the log transformation does indeed
reduce computational costs, it is questionable whether such a
transformation is justified and realistic. Low frequency words
become proportionally more accurate, while high frequency ones
become less so. If WHL with empirical frequencies for time-
ordered learning events is taken as a gold standard, then a log-
transformation distorts our estimates considerably.

A second option is to simply scale down frequencies by
dividing them by a fixed number. By applying a ceiling function
to the result, we avoid introducing zero frequencies. Training the
model using frequencies divided by 100 speeds up the learning
to ≈12 s and does not distort the learning curve (see right
panel of Figure 2). The disadvantage of this method is that
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FIGURE 3

Frequency-informed learning. The red solid line presents the predictions of a GLM when a success is defined as the predicted vector being the

closest to its gold standard target vector in terms of correlation (accuracy@1). The light blue dashed line represents predictions of a GLM when a

success is defined as the correlation being among the top 10 (accuracy@10). The dark blue dotted line visualizes the estimated density of the

log-transformed frequencies. The green filled dots represent the successes and failures for accuracy@1. The light pink circles represent for each

word the correlation of the predicted and gold-standard semantic vectors. There is a strong relationship between log frequency and

correlation/accuracy, and the GLM-predicted accuracy@10 is shifted to the left, i.e., accuracy@10 rises for lower frequencies.

FIGURE 4

Accuracy@1 as a function of log frequency, using frequency-informed learning with log-transformed frequencies. When FIL is trained with

log-transformed frequencies, lower-frequency words are recognized more accurately, but higher-frequency words less accurately.

there are far fewer learning events. As a consequence, words are
learned less well. Accordingly, the average correlation accuracy
drops to 10.3%.

In summary, it is in principle possible to estimate mapping
matrices with incremental learning. This is theoretically highly
attractive for data that are intrinsically ordered in learning time
(see, e.g., Heitmeier et al., 2023b, for the modeling of within-
experiment learning). For unordered data, some random order
can be chosen, but for larger datasets, it would be preferable
to have a method that is agnostic about order but nevertheless
accounts in a principled way for the consequences of experience
for discriminative learning.

3.4 Non-incremental, yet
frequency-informed mappings

A solution to this conundrum is to construct frequency-
informed mappings between form and meaning. Thinking back to
incremental learning, learning a word wi with frequency count fi
involved learning the mapping from a cue vector ci to the word’s
meaning si fi times. We could thus construct matrices Cf and Sf
reflecting the entire learning history: Cf and Sf are C and S with
word forms wi and semantic vectors si repeated according to their
frequency count fi. We are looking for the mapping Ff and Gf

such that
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Sf = Cf Ff

Cf = SfGf

Formally, let C =
(

c1 c2 ... cm
)T

∈ R
m×r and S =

(

s1 s2 ... sm
)T

∈ R
m×q where each word wi of the m wordforms

corresponds to a row in the two matrices with cue vector ci and
semantic vector si. Each word form wi has a frequency count fi.

We can create two new matrices Cf and Sf where the cue
and semantic vectors of the wordforms are repeated according to
their frequency count fi. We want to find the mapping matrix
Ff mapping from Cf to Sf . We use the following solution for
computing the mapping matrix (see also Baayen et al., 2018a):

Ff =(CT
f Cf )

−1CT
f Sf (2)

see Supplementary=
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with a constant k ∈ R>0. Since k does not change the solution, we
can set it such that the algorithm is numerically more stable, for
example to k = maxj∈1 :m fj so that we have pi = fi

maxj∈1 :m fj
and

therefore

Ff =
(

m
∑

i=1

√
pici

(√
pici

)T

)−1 ( m
∑

i=1

√
pici

(√
pisi

)T

)

. (6)

Now let P ∈ R
m×m be a diagonal matrix with pii = pi for

i ∈ 1, ...,m. Then we can define C̃ =
√
PC and S̃ =

√
PS so that

c̃i =
√
pici and s̃i =

√
pisi. Then we have

Ff =
(

m
∑

i=1

c̃ic̃
T
i

)−1 ( m
∑

i=1

c̃is̃
T
i

)

=(C̃TC̃)−1C̃T S̃

Therefore, the pair (C̃, S̃) has the same mapping matrices as
(Cf , Sf ).

Practically, this means that we can first weigh C and S with
the pertinent frequencies to obtain C̃ and S̃. We can then use
the solution in Equation (1) (making use of algorithms such as
Cholesky decomposition) to obtain frequency-informed mappings
between these two matrices.6

6 Note that while we here work with a learning rule for continuous vectors,

FIL is also applicable to mappings between discrete vectors, as in Rescorla-

Wagner learning (Rescorla, 1967) which is used in Naive Discriminative

Learning (NDL, Baayen et al., 2011): instead of having to impose some

randomorder on the learning events, the expected value irrespective of order

can be estimated using FIL.

In what follows, we sketch the new possibilities enabled by this
method, to which we will refer as frequency-informed learning
(FIL). A first, practical, advantage of FIL is that it is efficient and fast.
A second, theoretical, advantage is that predictions are available
for datasets for which no information about the order of learning
is available.

3.4.1 Low-dimensional modeling
We first consider modeling studies using the low-dimensional

vectors that we used in the preceding sections together with the
small dataset. We chose this low dimensionality in order to avoid
long computation times for WHL for these exploratory studies.

Figure 3 shows the relationship between log-transformed
frequency and accuracy predicted by a logistic GLM regressing the
correctness of FIL responses on log frequency. Accuracy@k is set
to 1 if a word’s target semantic vector is among the k target vectors
that are most correlated with the predicted semantic vector, and to
0 otherwise.

Correlation and accuracy@1 increase for higher frequency,
as required. When comparing accuracies with the frequency
distribution depicted in the same plot, we can also see that there
is a large number of low frequency words with very low (predicted)
accuracy. Although for most words, the correlations are relatively
high, the overall accuracy@1 is low, at 9.9%. When we relax our
criterion for accuracy, using accuracy@10, counting a predicted
vector as correct if the target vector is among the 10 closest semantic
vectors, we see that the accuracy starts to rise earlier, but there is
still a significant portion of words for which even accuracy@10
is zero.

The relatively large number of words with very low accuracy
raises the question of whether accuracy can be improved by
using log-transformed frequencies for FIL. Figure 4 clarifies that
accuracies increase for lower-frequency words, but decrease
somewhat for higher-frequency words. The average accuracy@1
is accordingly higher at 34.6%.

The upper half of Table 1 provides an overview of the
accuracies@1 for different combinations of learning
(incremental/frequency-informed) and kind of frequency used
(untransformed, scaled, or log-transformed). Here, we observe first
of all that endstate learning offers the highest accuracy (40.8%),
followed by log-frequency informed learning (34.6%).

Figure 5 highlights the differences between the model set-
ups, comparing with FIL the effect of a log-transformation (left
panel), of scaling (center panel), and of the learning rate (right
panel). It is noteworthy that frequency-informed learning with
log-transformed frequencies departs the most from both FIL and
incremental learning, which suggests that training on log frequency
may artifactually increase learning performance.

Secondly, it can be observed that the incremental learning
based on scaled frequencies is closest to frequency-informed
learning in terms of average accuracy@1, as well as to
incremental learning with the lowest learning rate. This suggests
(a) that scaling frequencies has a similar effect as lowering the
learning rate in incremental learning and (b) that frequency-
informed learning approximates incremental learning for very low
learning rates.
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TABLE 1 Comparison of average and frequency-weighted accuracy@1
(the term “frequency-weighted accuracy” is introduced in Section 3.4.4)

across simulation studies.

Low-dimensional form vectors

Model Average
accuracy@1

Frequency-
weighted

accuracy@1

Endstate learning (EL) 40.8% 32.2%

Incremental learning
(η = 0.01)

15.5% 78.1%

Incremental learning
(η = 0.001)

14.0% 79.1%

Incremental learning
(η = 0.0001)

10.1% 75.6%

Incremental learning
log-frequencies

26.8% 65.4%

Incremental learning scaled
frequencies

10.3% 75.3%

Frequency-informed learning
(FIL)

9.9% 74.9%

Log-frequency-informed
learning

34.6% 71.3%

High-dimensional form vectors

Model/Dataset size Average
accuracy@1

Frequency-
weighted

accuracy@1

Endstate learning (EL)/Small 83.0% 79.8%

Frequency-informed learning
(FIL)/Small

22.3% 89.4%

Endstate learning (EL)/Large 67.8% 43.7%

Frequency-informed learning
(FIL)/Large

5.1% 79.8%

The small dataset contained 2,638 word forms, the large dataset 13,669. When working with

low-dimensional form vectors, the small dataset was used throughout.

3.4.2 High-dimensional modeling
Importantly, the mappings that we used thus far are

suboptimal: the dimensionality of the semantic vectors was small
and the use of bi-grams for the form vectors often shows
underwhelming performance (see Heitmeier et al., 2021, for further
discussion of the underlying reasons). While opting for low
dimensionality decreased the computational costs for incremental
learning immensely and was therefore necessary for comparing
methods, we now proceed to investigate the accuracy of frequency-
informed learning for larger, more discriminative cue matrices. To
this end, we next experimented with the high-dimensional form
vectors, still making use of the small dataset.

The model for the endstate of learning now performs much
better, at anaccuracy@1 of 83% instead of 40.8%. In other words,
with infinite experience of just the words in this dataset, and with
all token frequencies going to infinity, this is the best our simple
multivariate multiple regression approach can achieve (conditional
on the way in which we encoded form and meaning).

A model using FIL obtained an average accuracy@1 of
22.3%, which is clearly superior to the 9.9% obtained for
the lower-dimensional model. The upper panel of Figure 6

presents the predicted accuracy curves for the high-dimensional
FIL model in red (solid line), and the low-dimensional FIL
model in blue (dashed line). We see a rise in accuracy for
lower frequencies.

3.4.3 Increasing the dataset size
Having established the relationship between EL, WHL and

FIL, we can also investigate how EL and FIL fare when the
modeled dataset is significantly larger. To this end we used the large
dataset introduced above. We found that accuracies in general were
clearly lower: For EL, the accuracy@1 was 67.8% and for FIL
it was 5.1%. Qualitatively, the differences between EL and FIL are
therefore similar (see also Figure 6), but our simple linearmappings
clearly perform less well with very large datasets, especially when
taking into account frequency.

3.4.4 Frequency-weighted accuracy
A final question is whether the way we have been evaluating

accuracy so far is reasonable. In the average accuracy@1 each
word’s accuracy contributes the same, that is, we have effectively
calculated accuracy across all word types in our corpus. However,
from a usage-based perspective, comprehending high frequency
words is muchmore important than comprehending low frequency
words —this is why, for instance, second language learners are
generally taught the most frequent words of a language first.
In a usage-based analysis of our model we should therefore
be calculating accuracy across word tokens instead. Practically
this means that if we go through a corpus of written English,
instead of counting how many unique words our model is able to
comprehend, we count how many of all of the encountered word
tokens are understood correctly.7

Following this line of argumentation we also provide
frequency-weighted accuracies in Table 1. For instance, the word
with the highest frequency in the Dutch Lexicon Project (large
dataset) is de (eng. the). Since this word accounts for 7% of all word
tokens in the Dutch Lexicon Project (calculated by summing up
the frequencies of all word types), it also contributes 7% to our
frequency-weighted accuracy measure. There are also 349 words
with a frequency of 0 in CELEX (2.6% of all word types) which
accordingly do not contribute to the frequency-weighted accuracy
at all. We find that with this method, the results flip in comparison
with average accuracy@1: Generally, FIL and WHL based on

7 As pointed out by a reviewer, this accuracy metric puts a lot of emphasis

on high frequency closed class words which are often considered stopwords

in computational linguistics [examples in English are the, of, and, at, by, of,...;

see for instance the English stopword list in NLTK (Bird, 2006)]. However,

stopwords have to be learned just as other words, so excluding them a-priori

seems unprincipled. We also do not see a plausible cognitivemechanism that

would filter out stopwords but not other high frequency open class words.

Another issue is that what are considered stopwords in English or Dutch,

are often incorporated inside word forms in other languages (e.g., what

is expressed with prepositions in English is expressed with case inflection

in Finnish). Excluding stopwords for English but including case inflections

in Finnish would make modeling incomparable and incompatible across

languages.
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FIGURE 5

Comparison of methods. GLM-predicted Accuracy@1 with frequency-informed learning is plotted as a black line: The left panel compares methods

based on log-frequencies, the center panel compares methods based on scaled frequencies and the right panel compares incremental learning

with di�erent learning rates. Incremental learning with scaled frequencies or with a very low learning rate (η = 0.0001) is closest to

frequency-informed learning.

FIGURE 6

Predicted accuracy@1 as a function of log frequency for high-dimensional representations of form and meaning (red solid line). The light blue

dashed line shows the predicted accuracy based on the low-dimensional model, for comparison. The light pink circles represent the target

correlations in the high-dimensional model. The small dataset refers to the dataset with 2,638 word forms based on Ernestus and Baayen (2003), the

large dataset to the dataset created from the DLP (Brysbaert and New, 2009) including 13,669 word forms. For the small and large datasets, a clear

relationship between log frequency and correlation/accuracy is visible.
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untransformed frequencies perform the best, followed by methods
based on log-transformed frequencies, while EL clearly performs
the worst. For example, for the high-dimensional simulations on
the large dataset, EL has a frequency-weighted accuracy@1 of
43.7%, while FIL achieves 79.8%. This means that EL understands
less than half of the word tokens it encounters in a corpus, while
FIL comprehends about eight out of 10 word tokens.

Whether type or token accuracy should be used to evaluate a
model depends on the type of analysis conducted by the modeler.
For a usage-based perspective as we haven taken here, a token-
based measure is more appropriate. For other types of analysis, a
type-based measure may be more suited. For instance, in the case
of morphologically more complex languages such as Estonian or
Russian, the modeler may well be interested in how well the model
is able to understand and produce even low-frequency inflected
forms of well-known lemmas. A token-based accuracy measure is
not helpful in such cases.

To summarize, FIL provides an efficient way of estimating
mappings between frequency-informed representations of form
and meaning. FIL does not reach the average accuracy across types
of EL, but, importantly, unlike for EL, accuracy varies systematically
with frequency in a way similar to how human accuracy is expected
to vary with frequency. Moreover, FIL clearly outperforms EL when
accuracy is calculated across tokens rather than types. The question
addressed in the next section is whether FIL indeed provides
predictions that match well with a particular behavioral measure:
reaction times in a visual and an auditory lexical decision task.

4 FIL-based modeling of reaction
times

4.1 Visual word recognition in Dutch

In order to assess the possibilities offered by FIL-based
modeling (using untransformed frequencies and the high-
dimensional form and meaning vectors) for predicting behavioral
measures of lexical processing, we return to the large dataset of
reaction times to Dutch words described in Section 3.1.1 (13,669
words represented as trigrams with a form dimensionality of 4,678,
and semantics represented using 300-dimensional fasttext vectors).

Figure 7 presents the partial effects according to three Gaussian
Location-Scale GAMs fitted to the response latencies in the Dutch
Lexicon Project. Response latencies were inverse transformed
(−1,000/RT) in order to avoid marked non-normality in the
residuals (effects for the untransformed RTs are very similar in
shape, but confidence intervals are not reliable due to the marked
departure from normality of the residuals). The left-hand panels
present the partial effects for the mean (in blue), the right panels
the partial effects for the variance [in green, on the log(σ −
0.01) scale; for further information on how partial effects are
calculated in GAMs see Wood, 2017]. The upper panels pertain
to a GAM predicting RT from log frequency (AIC −16,384.8; a
backoff value of 1 was again added before log-transformation of
word frequencies). Mean and variance decrease non-linearly with
increasing frequency. The smooth for the mean shows the kind
of non-linearity that is typically observed for reaction time data
(see, e.g., Baayen, 2005; Miwa and Baayen, 2021): the effect of log

frequency levels off strongly for high-frequency words and to a
lesser extent also for low-frequency words. The partial effect of
the variance is less wiggly and decreases as frequency increases.
This decrease in variability for increasing frequency has at least
two possible sources. First, high-frequency words are known to
all speakers, whereas low-frequency words tend to be specialized
and known to smaller subsets of speakers. Second, more practice,
as in the case of high-frequency words, typically affords reduced
variability (see, e.g., Tomaschek et al., 2018).

A model-based measure that we expected to correlate with
reaction time is the proximity of a word’s predicted semantic
vector to its corresponding gold standard vector (i.e., the target
correlation). The more similar the two vectors are, the better a
word’s meaning is reconstructed from its form. In other words,
the more effective a word form is in approximating its meaning,
the more word-like it is and the faster a lexicality decision can
be executed. We used the correlation r of ŝ and s as a measure
of semantic proximity. Since for large r, lexical decision times are
expected to be short, whereas for small r long decision times are
more likely, we took 1− r as a measure that we expect to enter into
a positive correlation with RT. This measure, when based on FIL,
has a density that is roughly symmetrical, and that does not require
further transformations to avoid adverse affects of outliers.

The panels in the middle row present the partial effect of
1 − r as predictor of RT using FIL (AIC −12,900.75), and the
bottom panels present the corresponding partial effects using EL
(AIC −10,896.19). The GAM with the FIL-based predictor clearly
provides the superior fit to the observed response latencies. The
effect of 1− r on the mean is fairly linear for FIL but U-shaped for
EL. A strong effect on the variance is present for FIL, but absent for
EL. Effects are opposite to those of frequency, as expected, as 1 − r

is constructed to be positively correlated with RT. The absence of a
highly significant effect on the variance in RT for EL (p = 0.0356)
is perhaps unsurprising given that EL learns the mapping from
form to meaning to perfection (within the constraints of a linear
mapping and the type distributions of forms and meanings), and
hence little predictivity for human processing variance is to be
expected. The question of why 1 − r has a U-shaped effect on RT
for EL will be addressed below.

In summary, FIL generates a predictor (1 − r) that is better
aligned with observed RTs. However, log frequency provides a
better fit (AIC −16,384.8). Here, it should be kept in mind that
word frequency is correlated with many other lexical properties
(Baayen, 2010), including word length and number of senses.
Longer, typically less frequent, words require more fixations, and
hence are expected to have longer reaction times. The greater
number of senses for higher-frequency words are not directly
reflected in the embeddings, which typically consist of a single
embedding per unique word form, rendering the mapping less
precise. As a consequence, there is necessarily imprecision in
measures derived from our learning models. Furthermore, 1 − r is
only one of the many learning-based measures that predict lexical
decision times, see Heitmeier et al. (2023b) for detailed discussion.

What we have not considered thus far is how 1 − r is affected
by frequency when learning is based on FIL and on EL, and how
the effect of frequency on these measures compares to the effect
of frequency on reaction times. Figure 8 presents the partial effects
of Gaussian Location-Scale GAMs for FIL (upper panels) and EL
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FIGURE 7

Partial e�ects for mean (left, confidence intervals in blue) and variance [right, confidence intervals in green, the y-axis is on the log(σ − 0.01) scale],

for Gaussian Location-Scale GAMs predicting reaction times from log frequency (upper panels), from 1− r based on FIL (center panels), and from

1− r based on EL (bottom panels). The vertical red lines represent the 0, 25, 50, 75, and 100% percentiles. FIL 1-r is a solid predictor for mean and

variance in RTs.

(lower panels). The leftmost panels present effects for the mean,
and the center panels effects for the variance. For FIL, the highest-
frequency words are learned to perfection, and hence the variance
in 1 − r is extremely small. To highlight the variance function for
most of the datapoints, the upper right panel restricts the y-axis to a
smaller range. For all points in the interquartile range of frequency,
the variance increases with frequency.

Comparing the partial effects for the means, FIL presents
a curve that is similar to the partial effect of log frequency
on reaction time (see Figure 7, upper left panel), whereas the
curve for EL is an increasing function of frequency, rather than
a decreasing function. The reason for this is straightforward:
higher-frequency words share more segments and substrings with
other words than lower frequency words, they are shorter, and
tend to have more form neighbors (Nusbaum, 1985; Baayen,

2001). As a consequence, they provide less information for
the mapping from form to meaning, resulting in less accurate
predicted semantic vectors, and hence higher values of 1 − r.
This disadvantage of being shorter and easier to pronounce is
overcome in FIL. FIL, and also incremental learning, provide higher
frequency words with more learning opportunities compared to
lower-frequency words.

The U-shaped curve of 1 − r using EL as predictor of reaction
time (see the lower left panel of Figure 7) can now be understood.
For EL, median 1 − r is 0.32, which is where the curve reaches
its minimum. As we move to the left of the median, word
frequency goes down, and as a consequence, salient segments
and segment combinations (cf. English qaid, “tribal chieftain”,
which has the highly infrequent bigram qa) are more common.
These salient segments and n-grams allow these words to map
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FIGURE 8

Partial e�ects for mean (left, confidence intervals in blue) and variance [center and right, confidence intervals in green, the y-axis is on the

log(σ − 0.01) scale], for Gaussian Location-Scale GAMs predicting 1− r from log frequency for FIL (upper panels), and for EL (bottom panels). The

panel in the upper right zooms in on the partial e�ect of variance shown to its left. The vertical red lines represent the quartiles of log frequency. FIL

1-r shows a similar S-shaped curve as a function of frequency as observed for reaction times, but does not have a similar e�ect as frequency on the

variance in the reaction times.

precisely onto their meanings, much more so than is warranted
by their very low frequencies of use. Although EL provides
estimates of 1 − r that are low, EL underestimates the difficulty
of learning these words in actual usage. As a consequence, actual
reaction times are higher than expected given the computed 1 − r.
Conversely, when we move from the median to the right, we see
the expected slowing due to being further away from the semantic
target. Apparently, the greater form similarity and denser form
neighborhoods that characterize higher-frequency words results
in estimates of 1 − r that are reasonably aligned with reaction
times, albeit by far not as well as when FIL is used to estimate
1− r.

We have seen that the variance in RTs goes down as word
frequency is increased, which we attributed to higher frequency
words being known and used by more speakers than is the case for
lower-frequency words, and the general reduction in variability that
comes with increased practice. These kinds of factors are not taken
into account in the current FIL mapping. It is therefore interesting
to see that without these factors, FIL suggests that, at least for
the interquartile range of frequency, the variance increases with
frequency. But why this might be so is unclear to us.

Considered jointly, these results provide good evidence that
FIL adequately integrates frequency into linear discriminative
learning, outperforming endstate learning by a wide margin, both
qualitatively and quantitatively.

4.2 Spoken word recognition in Mandarin

Mandarin, as a tone language, alters pitch patterns to
distinguish word meanings. There are four lexical tones in
Mandarin: high level, rising, dipping, and falling, which will, for
convenience, henceforth be referred to as T1, T2, T3, and T4,
respectively. Take the syllable ma for example. It could mean
“mother,” “hemp,” “horse,” or “scorn,” depending on which lexical
tone it is associated with.

The role that tone plays inMandarin word recognition has been
widely discussed. Specifically, researchers are interested in whether
native listeners exploit tonal information similarly as they do for
segmental information. In other words, will a mismatch in tone
(e.g., ma3 and ma1) reduce the activation of a given word, to the
same extent as a mismatch in segments (e.g., ba1 and ma1)? Lee
(2007) addresses this issue with an auditory priming experiment.
In his study, four priming conditions were designed, as shown in
Table 2. Among them, ST is an identity priming condition, and
UR is a control priming condition. The experimentally critical
conditions are S and T, where only either syllable or tone is shared
between primes and targets. If tonal information is as important
as segmental information in Mandarin, then the degree of priming
should be similar for both conditions. On the contrary, differences
should be observed if the two sources of information are treated
differently by native listeners.
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TABLE 2 The design of priming conditions for Experiments 1 and 2 of Lee

(2007).

Prime Target Condition

chun1 chun1 ST

chun3 chun1 S

tong1 chun1 T

liao2 chun1 UR

For the target word chun1 “spring”, the prime either shares both syllable and tone with it (ST),

or only syllable (S) or only tone (T). In the UR condition, neither syllable nor tone is the same.

The parts shared between primes and targets are marked in bold.

It was found that reaction times to the target words are shortest
in the ST condition, hence most priming, as expected. Interestingly,
mere tone sharing or syllable sharing is not sufficient to induce a
reliable priming effect: the T condition does not differ significantly
from the UR condition, whereas the S condition differs from UR
only in item analysis, but not in subject analysis. But importantly,
there is still a significant difference between the S and T conditions,
where syllable sharing induces faster responses than tone sharing.
In other words, more priming is found for syllable sharing than
tone sharing. It is noteworthy that this pattern of results holds
regardless of whether a long (250ms, experiment 1) or short (50ms,
experiment 2) inter-stimulus interval is adopted in the experiment.

To model this priming experiment, we made use of the Chinese
Lexical Database (Sun et al., 2018). In total 48,274 one- to four-
character Mandarin words were selected, which include all the
stimuli of the experiment, and for which fasttext word embeddings
(Grave et al., 2018) are available. For cue representations, following
Chuang et al. (2021), we created segmental and suprasegmental
(tonal) cues separately. Thus, for a bisyllabic word such as wen4ti2
“question”, the segmental cues will be triphones of #we, wen, ent,
nti, ti#, and there will also be tritone cues of #42 and 42#. The
separation of segmental and suprasegmental information, however,
does not do justice to the fact that segments do have influence
on tonal realizations and vice versa (e.g., Howie, 1974; Ho, 1976;
Xu and Wang, 2001; Fon and Hsu, 2007). We therefore also
made cues out of tone-segment combinations. To operationalize
this, we marked tones on vowels, so that vowels with different
tones are treated as separate phones. For the word wen4ti2, we
then have additional tone-segment triphone cues of #we4, we4n,
e4nt, nti2, ti2#. This resulted in an overall form vector
dimensionality of 47,791.

We ran two LDL models, one with EL and the other with FIL.
With EL, comprehension accuracy is at 83.71%. The accuracy is
substantially worse with FIL; accuracy@1 is 8.98%. As discussed
previously, this is largely due to the low accuracy for especially low
frequency words. After taking token frequency into account, the
frequency-weighted accuracy is at 86.89%.

To model the RTs of the auditory priming experiment of
Lee (2007), we calculated the correlation between the predicted
semantic vector of the prime word (ŝprime) and the gold standard
semantic vector of the target word (starget), and again took 1 −
r to predict RTs (see Baayen and Smolka, 2020, for the same
implementation to simulate RTs for visual priming experiments).
Results of simulated RTs with EL and FIL are presented in Figure 9.

For EL (left panel), the simulated RTs of the ST condition is the
shortest, unsurprisingly. For both the S and T conditions, the
simulated RTs are similar to those of the UR condition, indicative
of no priming. Tukey’s HSD test reported no significant difference
for any pairwise comparison among the S, T, and UR conditions.
Although the general pattern of results is in line with the behavioral
data, we however missed the crucial difference between the S
and T conditions.

A different picture emerges with the FILmodeling. As shown in
the right panel of Figure 9, not only does the ST condition induce
faster responses than the other three conditions, but the simulated
RTs of the S condition are also significantly shorter than those of
the T condition (p < 0.0001, according to a Tukey’s HSD test),
as was found in the behavioral data. We note that when compared
to the UR condition, the S condition induces significantly shorter
simulated RTs, but not the T condition. This pattern of results also
to a large extent replicates the empirical findings of Lee (2007),
as the S-UR difference is significant in item analysis but not in
subject analysis. As both the S-T and S-UR differences are absent
in EL modeling, we conclude that FIL provides an estimate that
better approximates the actual auditory comprehension of native
Mandarin listeners.

5 But what about order?

Arguably, there is a piece of information missing when using
FIL: order information. If a word is highly frequent early in a
learning history and never occurs later, would it be forgotten
by a WHL model but learned fairly well by a FIL model? To
investigate how much of a problem this loss of order is in real-
world longitudinal data, we used data of “Sarah” in the CHILDES
Brown corpus (Brown, 1973) and of “Lily” in the PhonBank
English Providence corpus (Demuth et al., 2006). To access all
child-directed speech, we utilized the childesr package (Sanchez
et al., 2019) to extract the data of all utterances not made by
the target children themselves, resulting in 189,772 and 373,606
tokens, respectively.8 Of these, we kept all tokens for which
pronunciations were available in CELEX (Baayen et al., 1995) and
for which we could obtain word embeddings in 300-dimensional
Wikipedia2Vec word embeddings (Yamada et al., 2020). This
resulted in 162,443 learning events (3,865 unique word tokens) for
Sarah and 326,518 learning events (7,433 unique words tokens)
for Lily. The cue matrix was created based on bigrams of CELEX
DISC notation symbols, so for example, thing was represented
as #T, TI, IN, N#, in order to model auditory comprehension
(thus, the form vector dimensionality was 943 and 1,087 for Sarah
and Lily, respectively). We then trained the comprehension matrix
F incrementally, evaluating after every 5,000 learning events the
correlation of the predicted semantics of all word tokens with their
target semantics, as well as keeping track of the frequency of each

8 We ordered the data by age, followed by utterance id, followed by the

token sequencewithin the utterance. Unfortunately, this part of childesr is not

very well documented, so though sampling suggests that this corresponds

to the original order of the data, we cannot be absolutely sure. However, the

overall ordering by age should ensure that our results are valid even if some

of the utterances might be in the wrong order.
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FIGURE 9

Boxplots of LDL simulated RTs for the four priming conditions in Lee (2007) with EL (left) and FIL (right). FIL correctly predicts the experimental

results of Lee (2007).

TABLE 3 Correlation accuracies@1 for FIL and WHL with di�erent

learning rates (η).

Method η Correlation
accuracy@1

r(WHL, FIL)

Sarah Lily Sarah Lily

FIL — 12.9% 8.1% — —

WHL 0.1 22.3% 13.8% 0.79 0.73

0.01 15.7% 10.9% 0.97 0.94

0.001 6.9% 5.4% 0.95 0.97

0.0001 2.1% 1.5% 0.78 0.80

r(WHL, FIL) indicates the correlation between the target correlations obtained withWHL and

the target correlations obtained with FIL (see Figure 10 for scatter plots). “Sarah” and “Lily”

correspond to the child-directed speech in the Brown corpus (Brown, 1973) and Providence

corpus (Demuth et al., 2006), respectively. The highest number in each column is highlighted

in bold.

word token within the last 5,000 learning events. To gauge the
effect of different learning rates we ran this simulation for η ∈
{0.1, 0.01, 0.001, 0.0001}.

In order to investigate the consequences of neglecting order
during learning, we also trained a model with the same form and
semantic matrix but using the FIL method. The FIL method results
in a correlation accuracy of 12.9% for Sarah and 8.1% for Lily. For
WHL the correlation accuracies vary across learning rates (Table 3),
with accuracy decreasing for lower learning rates. FIL correlation
accuracies are somewhat better than WHL accuracies for η =
0.001 and somewhat worse than for η = 0.01. Target correlations
obtained with FIL and WHL are in general remarkably similar,
correlated the highest for learning rates of 0.001 and 0.01 for “Lily”
and “Sarah”, respectively. This can also be observed visually in
Figure 10: WHL and FIL target correlations are the least similar for
η = 0.1 and η = 0.0001. Interestingly, for higher learning rates, low
WHL correlations tend to be higher in FIL and vice versa, whereas
for lower learning rates an advantage of FIL over WHL is more
visible for higher accuracies, while low accuracies in WHL tend to
be even lower in FIL.

Striking a balance between WHL accuracy and correlation
between WHL and FIL accuracies, we now focus on η = 0.01. As
can be seen in Figure 10 there are a few outliers where either FIL

clearly outperforms WHL or vice versa. For the former case, the
most apparent cases for Sarah are no, mummy, cold, later, michael,
and told. Except no which suffers due to its homophone know, all
show a relatively higher frequency at the beginning of the learning
trajectory compared to the end (see upper panel of Figure 11).
Moreover, they tend to have overlapping di-phones: for example,
told has overlap with old with which they are confused in the WHL
model. Lily’s data shows a similar pattern. WHL therefore unlearns
when two conditions apply: a word occurs very infrequently in the
later stages of the learning sequence and it has overlaps with cues
in other words. WHL has an advantage over FIL when words have
a higher frequency later in the sequence: for Sarah’s data this is the
case for idea, old, mister, giraffe, and alligator (see lower panel of
Figure 11).

To confirm this qualitative analysis quantitatively, we
computed the mean, mode, skewness and kurtosis of the frequency
distribution across time for each word. We then used these
as predictors in individual (due to collinearity) Generalized
Additive Models (GAMs; Wood, 2011) to predict the difference
in target correlation in WHL and FIL for η = 0.01, i.e.,
predicting whether WHL or FIL perform better depending on the
frequency distribution of a word across time (details on method
in Supplementary material). We found that the higher the mean
and mode, and the more negative the skew of the frequency
distribution (all indicating that frequencies are higher at later
timesteps; compare e.g., “giraffe” and “alligator” in Figure 11
for examples of high mean and mode and low skewness, with
“mummy” and “michael” in Figure 11 for examples of low mean
and mode and high skewness), the better WHL performed than
FIL. To illustrate, we show the effect of the mean on performance
in the upper row of Figure 12. Additionally, when kurtosis was
entered (differentiated by whether skewness was positive or
negative), an interesting effect emerged: for negative skewness
values (high frequency at later time steps), more positive kurtosis
(peakier distribution) yielded an advantage of WHL, while a
peakier distribution of positive skewness values led to an advantage
of FIL (see bottom row of Figure 12). All these results confirmed
our qualitative analysis above.

To summarize, some interesting phenomena related to order
information get lost when using FIL. For higher learning rates,
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FIGURE 10

Correlation of WHL learned predicted semantics with their targets against correlations of FIL learned predicted semantics with their targets (blue

dots), for di�erent learning rates, and for Sarah (A) and Lily (B). The diagonal red lines denote the x = y line. WHL target correlations and FIL target

correlations are highly correlated, with the tightest relationship visible for η = 0.01 for Sarah and η = 0.001 for Lily (see also Table 3).

WHL overall yields higher accuracies, possibly because it is
sensitive to the burstiness of frequency during the course of
learning. On the other hand, for words that are equally distributed
across learning events, the predictions of WHL and FIL are
very similar, and the two methods thus result in highly similar
correlations with their respective target semantics (see also Milin
et al., 2020).

6 Discussion

We have introduced a new way for estimating mappings
between form and meaning in the Discriminative Lexicon Model
(DLM; Baayen et al., 2018a, 2019) that takes frequency of use
into account, Frequency-Informed Learning (FIL), complementing
incremental learning with the learning rule ofWidrow-Hoff (WHL)
and endstate learning using multivariate multiple regression (EL).
Each of these methods has advantages as well as disadvantages.

6.1 Three methods for computing
mappings in the DLM

WHL enables trial to trial learning and hence is, in principle, an
excellent choice for datasets with learning events that are ordered

in time. Examples of such datasets are child-directed speech in
the CHILDES database ordered by the age of the addressee and
the time-series of reaction times in mega-experiments (Heitmeier
et al., 2023b). The disadvantage ofWHL is that it is computationally
demanding, and prohibitively so for large datasets.

FIL offers a computationally lean way of taking frequency of use
into account, but it is insensitive to the order of learning events. It is
therefore an excellent choice for datasets with learning events that
are unordered, which is typically the case for data compiled from
corpora or databases. For large datasets with temporally ordered
learning events, FIL can be applied to a sequence of datasets with
increasing sample sizes to probe how learning develops over time.
How exactly such sequential modeling compares with WHL is a
topic for further research.

Models using EL are not computationally demanding, but
they are also not sensitive to the frequencies with which learning
events occur. For usage-based approaches to language (see, e.g.,
Bybee, 2010), this is a serious drawback. Nevertheless, EL has an
important advantage of its own: it provides a window on what can
be learned in principle, with infinite experience. In other words,
EL is a good analytical tool for any datasets for which a type-
based analysis is appropriate or insightful. For instance, if one’s
interest is in how well Dutch final devoicing can be mastered on
the basis of subliminal learning only, the EL model informs us
that a comprehension accuracy of 83% can be reached (see also
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FIGURE 11

Individual tokens where FIL and WHL correlations to target di�er clearly, taken from “Sarah”, trained with WHL and η = 0.01. (A) Shows cases where

FIL outperforms WHL, (B) where WHL outperforms FIL. Frequencies are normalized by their maximal frequency inside a learning batch of 5,000

learning events. In (A), frequency tends to decrease over time. Thus, the item is learned well in the beginning, and the correlation with target goes

down over time. In (B) the opposite is the case.

Frontiers inHumanNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1242720
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Heitmeier et al. 10.3389/fnhum.2023.1242720

FIGURE 12

Predicting the di�erence between target correlations in WHL and in FIL from frequency distribution of words across time. The y-axes show partial

e�ects. Top row: The higher the mean (i.e., higher frequencies at later time steps, see “gira�e” and “alligator” in the lower row of Figure 11 for

examples of words with a high mean), the better WHL performs than FIL. The vertical red lines represent the 0, 25, 50, 75, and 100% percentiles.

Bottom row: For negative skew (higher frequencies at later time steps), the peakier the distribution (higher kurtosis), the larger the advantage of WHL

over FIL, and vice versa for positive skew. Kurtosis was transformed to reduce outlier e�ects, details in Supplementary material. WHL outperforms FIL

for words with higher frequencies at later learning steps.

Heitmeier et al., 2023a). When measures are gleaned from an EL
model and used as predictors for aspects of lexical processing, it
will typically be necessary to include a measure of frequency of use
as a covariate.

With FIL, however, we have an analytical instrument
that integrates experience into mappings between form and
meaning. It obviates the practical necessity, when using WHL,
of scaling frequencies down, nor is a log-transform of usage
required. The latter is particularly undesirable as it artifactually
boosts performance for low-frequency words while degrading
performance for high-frequency words.

An open question when it comes to comparing the three
methods is whether measures of the models’ accuracy should be
type-based, i.e., all words contribute equally to the overall accuracy
measure, or whether it should be token-based. Previous models
have usually been evaluated based on type-accuracy, but a high
token-accuracy in word recognition might be of more practical
use in every day life than a high type- but low token-accuracy,
where a model is able to recognize many low frequency words
but struggles with many of the high frequency words with which

speakers are constantly confronted. In this context, it is worth
keeping in mind the forgetting curve of Ebbinghaus (1885) and
recent advanced methods for repeating words at exactly the right
moment in time to optimize fact learning, including vocabulary
learning (van der Velde et al., 2022). From this literature, it is crystal
clear that words encountered only once, which in corpora typically
constitute roughly 50% of word types, cannot be learned with a
single exposure. Whereas EL does not capture effects of frequency,
FIL clarifies that once we start taking frequency into account, it is
practice that makes perfect.

6.2 The relationship between word
frequency and lexical decision reaction
times

A surprising property of FIL is that the correlation r of the
predicted semantic vector with its gold standard target semantic
vector emerges as a key to understanding two findings in lexical
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decision tasks. We found that FIL is crucial for modeling a
stronger priming effect of segmental information compared to
tone information in an auditory lexical decision task in Mandarin
Chinese. For unprimed lexical decisions as available in the Dutch
Lexicon Project, reasoning that greater correlation should afford
shorter decision times, we used 1 − r as an approximation of
simulated decision times. We found that 1 − r based on FIL
provided much improved prediction accuracy compared to 1 −
r based on EL. Moreover, FIL also provides insights into the
non-linear nature of the word frequency effect in the lexical
decision task. We showed that the mirror-sigmoid relation between
empirical decision times and log frequency emerging from a
GAM analysis also characterizes the functional relation between
“simulated decision times” 1 − r and log frequency. This suggests
that FIL successfully filters usage through discriminative learning to
obtain estimates of howwell themeanings of words are understood.

This finding fits in well with a recent debate that was re-sparked
by Murray and Forster (2004) arguing that rank-transformed
frequencies account for lexical decision reaction times better than
log-transformed ones and that, therefore, serial-search models
should not be discounted as models of word recognition.9 Recently,
Kapatsinski (2022) showed that log frequencies transformed by
the logistic function (a function frequently used in deep learning
models) predict reaction times in the same way as a rank-
transformation, implying that the linear relationship between rank
frequency and reaction times is not necessarily evidence in favor
of the serial search model. Since the DLM is not a classification
model, we do not make use of the logistic function but use
correlation to compute how close a word’s predicted meaning is
to its true meaning. The estimated functional relation between
−1,000/RT and 1 − r estimated with FIL is close to linear [see
Figure 7, panel (2,1)], and a very similar partial effect emerges
when the untransformed RTs are regressed on 1− r. Thus, a linear
relationship between a FIL-based predictor, 1 − r (or equivalently,
r) and reaction times falls out directly of the DLM, without
requiring further transformations. This provides further evidence
in favor of theories suggesting that frequency effects arise due to
the distributional properties of words’ forms and meanings during
learning. 10

A question that we leave to future research is whether measures
derived from FIL mappings will obviate the need to include
frequency of use as a covariate, reduce the variable importance
of this predictor, or complement it. One possible complication
here is that while frequency-informed mappings make the DLM
predictions more realistic, they naturally also create a confound
with word frequency, which needs to be teased apart from other

9 However, note that the variance of word frequencies is similar in

magnitude to the frequency itself (under the assumption that word

frequencies are Poisson-distributed). By moving from frequencies to ranks,

di�erences in frequency that seem large but that will vary substantially across

samples are reduced tomuch smaller di�erences in ranks. In the light of these

considerations, the excellent predictivity of rank for reaction times is due to

distributional properties of the language in combination with sampling error,

rather than due to serial searches in frequency ordered mental word lists.

10 See Norris (2006) for a similar argument in the context of a Bayesian

approach to the role of word frequency in lexical processing.

(e.g., semantic) effects captured by the DLM (see Gahl and Baayen,
2023, for further discussion). Furthermore, in the present study we
did not take into account (any measure of) a word’s context (e.g.,
Adelman and Brown, 2008; Hollis, 2020). Gahl and Baayen (2023)
explore an additional measure of frequency which is informed by a
word’s context by measuring how strongly a word predicts itself in
any utterances it occurs in. This measure outperforms frequency
for predicting acoustic durations of English homophones, and
it also outperforms frequency as a predictor of visual lexical
decision latencies. This measure may complement the measures
from the DLM.

What complicates such comparisons is that frequencies based
on corpora typically concern lexical use in a language community,
whereas individual speakers have very different experiences with
lower-frequency words, depending on their interests, professions,
education, and reading/speaking habits (e.g., Kuperman and
Van Dyke, 2013; Baayen et al., 2016). For instance, about 5% of
the Dutch words in the present dataset are unknown to the fourth
author. These are low-frequency words that the EL gets correct in
30 out of 35 cases. By contrast, the FIL gets only two out of these
35 cases correct. In a similar vein, Diependaele et al. (2012) showed
that in the DLP, when reacting twice to the same lowest-frequency
word stimuli in the DLP participants only agree in about 50% of
cases, bringing their accuracy to chance level.

The inter- and intra-variability of subjects’ word knowledge
might also be a reason why FIL underestimates the variance of
reaction times in the Dutch Lexicon Project for low-frequency
words. Naturally, FIL, being based on “community” frequencies,
is not able to account for this effect. Our results, however,
highlight the importance of modeling not only the mean but
also the variance of reaction times, as it might provide a further
window into speakers’ word recognition process and differentiating
between different models attempting to account for the observed
behavioral data. To our knowledge, previous models of word
recognition have not attempted to account for both the mean
and variance of reaction times (but see Ratcliff et al., 2004, for
a model attempting to also predict the distribution of reaction
times).

When evaluating the accuracy of a FILmodel, having the closest
proximity to the semantic vector of the target word is probably too
stringent a criterion. Especially for lower-frequency words, having
a rank among the top k (for low k) nearest neighbors may be a
more reasonable criterion. The reason is that for lower frequency
words, knowledge of what words may mean is only approximate.
For instance, although the names of gemstones such as jasper, ruby,
tourmaline, and beryl will be known to many readers, picking out
the ruby from four reddish pieces of rock requires more precise
knowledge than is available to the authors. Especially for lexical
decision making, being “close enough” may be good enough for a
yes-response (see Heitmeier et al., 2023b, for detailed discussion of
lexical decision making).

An additional complication is that low-frequency words often
have multiple, equally rare, meanings (by contrast, for high-
frequency words, one often finds that of a set of possible meanings,
one is dominant). By way of example, the low-frequency Dutch
word bras in our dataset can denote “uncooked but peeled rice,”
“junk,” and “a specific set of ropes used on sailing ships.” This
may provide further explanation of why the correlation measure
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(1− r) underestimates the variance in decision latencies for lower-
frequency words as compared to higher-frequency words.

6.3 Computational modeling of word
frequency e�ects

Our findings are particularly enlightening when comparing
them to accounts of word frequency effects in previous models
of word recognition. To answer the three key questions regarding
the word frequency effects identified in the introduction, in
the DLM, frequency effects arise as a consequence of the
input distribution it is trained on. Similarly to other network
models, the effect of word frequency is stored in the model’s
mapping weights. The DLM is an extremely simple computational
model involving only linear mappings, which can be efficiently
numerically computed. As demonstrated, the resulting mappings
are very similar to those obtained by training the model
incrementally on unordered data (as is done in all deep
learning models utilizing backpropagation, such as the triangle
model, Seidenberg and McClelland, 1989). As such, it enables
the modeler to answer many questions related to the word
frequency effect, such as that of individual differences, in a
computationally lean way. Finally, we demonstrate that the DLM is
able to account for the non-linear relationship between frequency
and reaction times in lexical decision without requiring to
use a log-transformation (cf. McClelland and Rumelhart, 1981;
Rumelhart and McClelland, 1982; Seidenberg and McClelland,
1989). Moreover, the DLM can not only account for frequency
effects but also enables investigation of the influence of words’
more finegrained characteristics on reaction times. Crucially, these
are not independent. The DLM’s predicted reaction times also
depend on words’ form and meaning properties, not only their
frequency distribution.

Therefore, it is important to note that the DLM’s performance
also depends on many modeling choices, such as the chosen
form granularity, semantic vectors etc. Ideal modeling choices can
often vary across languages—for instance, while for English, Dutch
and German, trigrams are often the unit of choice (Heitmeier
et al., 2021, 2023b), previous work has found that for Vietnamese,
bigrams are preferable (Pham and Baayen, 2015), while for
Maltese, Kinyarwanda and Korean, form representations based
on syllables perform well (Nieder et al., 2023; van de Vijver
et al., 2023, Chuang et al., 2022; an in-depth discussion of the
various considerations when modeling a language with the DLM
can be found in Heitmeier et al., 2021). While the present
study is limited to Dutch, Mandarin and English, future work
should further verify the efficacy of FIL on morphologically more
diverse languages.

To put the present results in a broader perspective, consider

the characterization given by Breiman (2001) of machine learning
on the one hand and statistics on the other hand. They argue

that machine learning aims at obtaining accurate predictions. How

these predictions are obtained and why a technique works is

not of interest. By contrast, statistics aims to formulate a model

that could have generated the data. Within this characterization—
which may be too extreme (e.g., Shmueli, 2010)—FIL is much

closer to statistical modeling than to machine learning, and it is
surprising to us how much can be achieved simply with a form
of weighted multivariate multiple regression. We hope that FIL
will prove to be a useful tool not only for modeling data with
“community” frequencies but also for exploring, by means of
simulation, what the consequences are of individual differences in
usage for lexical processing.
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