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In recent years, more andmore researchers are devoting themselves to the studies

about authentication based on biomarkers. Among a wide variety of biomarkers,

code-modulated visual evoked potential (c-VEP) has attracted increasing attention

due to its significant role in the field of brain-computer interface. In this

study, we designed a mild-burdened cognitive task (MBCT), which can check

whether participants focus their attention on the visual stimuli that evoke c-VEP.

Furthermore, we investigated the authentication based on the c-VEP evoked in the

cognitive task by introducing a deep learningmethod. Seventeen participants were

recruited to take part in theMBCT experiments including two sessions, whichwere

carried out on two di�erent days. The c-VEP signals from the first session were

extracted to train the authentication deep models. The c-VEP data of the second

session were used to verify the models. It achieved a desirable performance, with

the average accuracy and F1 score, respectively, of 0.92 and 0.89. These results

show that c-VEP carries individual discriminative characteristics and it is feasible

to develop a practical authentication system based on c-VEP.
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1. Introduction

In this era of information and intelligence, authentication technology is becoming
more and more important. The challenges in authentication technology have certainly
attracted increasing attention. Traditional authentication techniques such as passwords and
tokens often cause substantial losses due to forgetfulness, spoofing, and circumvention
(Jain et al., 2016). Authentication systems based on face and fingerprint still face security
issues such as cyber attacks, forgery, and stealing (Jain et al., 2004; Kumar, 2020), although
they have achieved excellent performance. More reliable authentication technologies are
desirable. In recent years, numerous studies have suggested that Electroencephalogram
(EEG) carries individual discriminative characteristics (Bidgoly et al., 2020) and confirmed
the universality, collectability, and cancellability of EEG biomarker (Gui et al., 2019; Wang
et al., 2022a). Authentication based on EEG has emerged as an attractive option of future
authentication technologies.

Researchers have shown a keen interest in EEG-based biometric technologies. Maiorana
et al. (2015) collected resting-state EEG data from 30 subjects with both eyes-closed and
eyes-open in an individual identification system. Relying on a similarity-based algorithm,
they achieved an average recognition accuracy of 85.6%. Chen et al. (2016) proposed an
EEG-based login system that applied rapid serial visual presentation (RSVP) to acquire
EEG data. A method based on shrinkage discriminant analysis was introduced to process
16 subjects’ EEG data from this system. The average validation accuracy reached 87.8%. In
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an EEG-based authentication study, Seha and Hatzinakos (2020)
used steady-state auditory evoked potentials from 40 subjects. They
adopted canonical correlation analysis to match EEG samples and
achieved a reasonable validation accuracy.

The code-modulated visual evoked potential (c-VEP) is an
EEG response elicited by visual stimuli following pseudorandom
codes (Martínez-Cagigal et al., 2021). The studies in the field of
brain-computer interface (BCI) showed that c-VEP can improve
the information transfer rate of the online BCI system (Bin et al.,
2011). In recent years, the biometric technology based on c-VEP
has been explored. In an individual identification study, Zhao et al.
(2019) elicited c-VEP of 25 subjects by modulating time-shifted
binary pseudorandom sequences in target stimuli and employed
an individual-unique template to process c-VEP for individual
identification. The recognition result demonstrated that c-VEP
provides distinct individual variability. Afterwards, Zhao et al.
(2021) quantitatively compared the performance of flash VEP,
steady-state VEP, and c-VEP signals in person identification. The
comparison showed that c-VEP is significantly superior to other
VEP for individual identification.

The existing study (Wang et al., 2022b) revealed that cognitive
tasks can complement the brain biometric by further combining
“what we think, feel, and respond during cognitive tasks”.
Therefore, cognitive tasks have been extensively applied in EEG-
based biometric technologies. Min et al. (2017) designed an
individual identification system based on steady-state VEP with
a cognitive task of recognizing Korean characters. The EEG data
from 20 subjects were transformed into feature vectors by causal
connectivity analysis for individual identification. They achieved
a recognition accuracy of 98.6%. In an EEG-based authentication
study, Wu et al. (2018) proposed a combination of RSVP with
self-face or nonself-face (face-RSVP). Fifteen subjects participated
in the face-RSVP experiment. The EEG signals during the face-
RSVP stimuli were used for the authentication study. The average
validation accuracy reached 91.31%.

The methods of processing the EEG in authentication involve
multiple aspects. Averaging time-locked EEG epochs can elevate
the signal noise ratio of event-related potentials (ERP) (Gui et al.,
2019). Several studies (Zhao et al., 2019; Seha and Hatzinakos,
2020) showed that averaging EEG epochs can also improve
the performance of EEG-based biometric. As a widely studied
approach, deep learning has been introduced into the research
of EEG-based biometric. Maiorana (2020) adopted a kind of
convolutional neural network (CNN) to handle the problem of
matching EEG samples in an EEG-based biometric technology.
In an EEG-based authentication study, Bidgoly et al. (2022) used
a CNN to extract features from motor imagery EEG data of 109
subjects. Lawhern et al. (2018) proposed a specific CNN, EEGNet,
for the purpose of processing EEG signals. Several EEG-based
authentication studies (Kumar et al., 2021; Seha and Hatzinakos,
2022) have applied EEGNet.

To our knowledge, EEG-based authentication studies suffer
from several limitations such as a large number of required
electrodes, lengthy authentication time, lack of protocols for
evoking c-VEP, and uncertain stability across time. Based on the
advantages of c-VEP BCI and deep learning, we hypothesize that
a new c-VEP protocol and a special deep learning model can

help overcome some limitations of EEG-based authentication. In
this study, we proposed a mild cognitive task to evoke c-VEP
and designed a new version of EEGNet to process c-VEP for
authentication purpose. Our research investigated the performance
and stability of the proposedmethod and the influences of electrode
selection and authentication time on its performance.

2. Materials and methods

2.1. Main framework

The study on authentication using c-VEP comprises the
enrollment and authentication phases. The enrollment phase aims
to enroll c-VEP identity models. The purpose of the authentication
phase is to verify identities using c-VEP. To simulate the actual
authentication scenario, the two phases are always scheduled on
different days for each participant. The study framework is shown
in Figure 1. In the enrollment phase, we record EEG signals of
participants under the condition of code-modulated visual stimuli
and train combined EEGNet (c-EEGNet)models for authentication
using the EEG signals. In the authentication phase, EEG signals
under the same condition are collected again and processed by the
c-EEGNet models to verify the identities of the participants.

2.2. Experimental protocol

In order to know whether the participants focused their
attention on the visual stimuli, we proposed a mild-burdened
cognitive task (MBCT). The human visual system is very sensitive
to topological distinctions between a ring (with hole) and a disk
(without hole) (Chen, 1982). For a normal person, it is very easy
to identify the ring from the two shapes. Every time, the MBCT
presents a flickering ring and a flickering disk on the screen. The
participants are instructed to gaze at the flickering ring and give a
response to the position of the ring after the presentation. If the
response is right, the visual evoked potentials of the presentation
are considered to be reliable. Otherwise, the EEG signals of this
presentation would be excluded in the subsequent processing.

As illustrated in Figure 2, a MBCT trial consists of four stages.
In the cue stage, a fixation cross is presented for 1 s to indicate the
start of a new trial. Then, the visual stimuli including a flickering
ring and a flickering disk are presented for 1.05 s during the gaze
stage. Next, a question mark shown in the screen center prompts
participants to click a key to respond to the position of the just
presented ring at the inquiry stage, which lasts up to 0.6 s and ends
as soon as the participant gives feedback. Finally, the break stage
presents a black screen for 1 s.

Especially, the gaze stage presents the visual stimuli in twoways:
left vs right (L-R) and top vs bottom (T-B). As shown in Figure 2,
the L-R presents the two round objects on the left or right side of
the fixation cross, the T-B presents the two round objects on the top
or bottom side of the fixation cross. The ring appears randomly on
the left or right in the L-R trial, or randomly on the top or bottom
in the T-B trial. In a L-R run, the number of left trials is equal to
that of right trials. In a T-B run, the number of top trials is also
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FIGURE 1

Framework of authentication using c-VEP.

equal to that of bottom trials. Regardless of the presentations, the
objects both lie within participants’ field of view when they sit at
70 cm in front of the screen. The participants can gaze at the ring
without having to turn their heads. The flashes at the left, right,
top, or bottom aremodulated by four different 63 bits m-sequences.
Each bit corresponds to one frame of the flash. “1” means on and
“0” represents off. Visual stimuli were presented on the Lenovo
LT1913pA monitor with a 60 Hz refresh rate. The flashes of 63 bits
last 1.05 s.

2.3. Data acquisition

In this study, each run comprised 100 correctly responded
trials and each session included four runs, which were separated
by short breaks. In each session, the first two runs used the L-R
way and the last two runs adopted the T-B way. EEG signals were
recorded by a 64-channel neuroscan system while the participants
were conducting the MBCT. The electrodes were placed according
to the 10-10 standard, with AFz as the ground and the vertex as the

reference. The impedances were kept below 10 k�. The sampling
rate was set to 1,000 Hz. A 50 Hz notch filter was used to eliminate
power-line noise.

Seventeen participants (six females) were recruited to take part
in the MBCT experiment. Their ages ranged from 20 to 25 years,
with the mean of 23. Visual or neurological disorders, head trauma,
and any drug use that would affect nervous system function were
excluded. In accordance with the Helsinki Declaration of Human
Rights, informed consent was obtained from each participant. Each
participant performed two sessions on different days separated by
intervals ranging from 1 to 337 days.

2.4. Pre-processing

Raw EEG signals were pre-processed as follows. Firstly, a band-
pass filter of 5–86 Hz was applied to the raw EEG signals (64
channels). Secondly, independent component analysis (ICA) was
used to remove the ocular and muscular artifacts. Thirdly, the EEG
signals from the nine electrodes over the parietal and occipital areas
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FIGURE 2

Illustration of the mild-burdened cognitive task experiment.

(Pz, PO5, PO3, POz, PO4, PO6, O1, Oz, and O2) were extracted
into EEG epochs. Considering the delay of the visual pathway
(Di Russo and Spinelli, 1999), the epochs were defined as the EEG
signals from 0.14 to 1.19 s (the stimuli lasted 1.05 s), where 0
referred to the stimulus onset. The epochs in which EEG amplitudes
exceeded a threshold of ±100µV were excluded. Fourthly, the
baseline correction and downsampling were conducted respectively
by subtracting the mean of the channel and averaging every four
sampling points. Finally, every epoch was annotated with left, right,
top, or bottom according to the position of the ring and labelled
with the identities of the participants. The epochs from the first
session and the second session were added into the training set and
test set, respectively.

2.5. Authentication model

Inspired by the work in Lawhern et al. (2018), we designed
a special neural network, called c-EEGNet, to learn the
authentication models from the c-VEP signals of participants. The
c-EEGNet, shown in Figure 1, consists of branch block (b-Block)
and combined block (c-Block).

The b-Block includes four structurally identical branches,
which respectively receive the left, right, top, and bottom
epochs. Every branch is formed by sequentially connecting time
convolution layer, channel convolution layer, average pooling
layer, and second time convolution layer. Here, we refer to the
intermediate results of the layers as virtual epoch or channel. The
time convolution layer provides N1 time convolution kernels, each
of which applies convolution operation in time dimension and
produces a virtual epoch. The channel convolution layer has N2

channel convolution kernels for each virtual epoch. Each channel
convolution kernel transforms the corresponding virtual epoch to
a virtual channel by a linear combination. The channel convolution
layer further processes all virtual channels by exponential linear
unit (ELU). The average pooling layer reduces the length of the
virtual channels by averaging everyN3 data points. The second time
convolution layer applies convolution operation in time dimension
again, with a kernel for a virtual channel. The successive operations
of the four layers transform the input epoch of the branch to a
horizontal data slice.

The c-Block comprises concatenate layer, point convolution
layer, average pooling layer, flatten layer, and dense layer. The
concatenate layer piles the four horizontal data slices to a data
cube. The point convolution layer provides N4 point convolution
kernels. Each point convolution kernel transforms the data cube to
a vertical data slice by combining each of the four horizontal data
slices to a virtual channel. Furthermore, the point convolution layer
applies ELU operation to all points of the data cube. The average
pooling layer reduces the size of the data cube by averaging every
N5 data points in time dimension. The flatten layer unrolls the
data cube into a vector. The dense layer transforms the vector to a
binary classification result using a softmax function. Additionally,
it should be pointed out that each convolutional layer is followed
by a batch normalization layer, which is conducive to network
convergence.

To build authentication models, we extracted a training data
packet for each participant from the training set. A sample was
composed of a left epoch, a right epoch, a top epoch, and a bottom
epoch from a participant. When all numbers of left, right, top, and
bottom epochs are 100, the number of the composed samples is
108 for a participant. In order to understand the effect of signal-
to-noise ratio (SNR), the epochs used to establish the samples were
randomly obtained by averaging (N = 1, · · · , 20) original epochs
of the same class (left, right, top, and bottom) in a sliding window
with the length of N and the sliding step of 1. For a participant,
his/her samples were labelled as positive samples and those of
other participants were labelled as negative samples. A training data
packet contained 1,600 randomly-selected positive samples and
negative ones, where 1,600 negative samples were from the other
16 participants, 100 samples per one. Each training data packet was
used to train a c-EEGNet model. During the actual calculation, we
setN1 = 32,N2 = 2,N3 = 4,N4 = 64,N5 = 8, the sizes of the time
convolution kernels and the second time convolution kernels were
respectively 1 × 60 and 1 × 16, the dropout rate after the average
pooling layers was 0.5. After the model construction, the samples
extracted in the same way from the test set were used to verify our
approach.

3. Results

To evaluate the proposed approach, we conducted the test of
c-VEP authentication on the EEG dataset of 17 participants using
c-EEGNet. For comparison, the same examination was also carried
out with task-related component analysis (TRCA) (Zhao et al.,
2019). TRCA builds a set of spatial filters by solving the inter-trial
covariance maximization problem. Zhao et al. (2019) constructed
a template-matching framework using the spatial filters to serve
individual identification based on c-VEP. Their work shows that
TRCA is well suited for extracting c-VEP individual traits. Given
the similarity between identification and authentication, we choose
TRCA as the object of comparison with c-EEGNet.

We calculated accuracy, precision, recall, and F1 score (Fawcett,
2006) for testing results. In Table 1, each row exhibits the
accuracies, precisions, recalls, and F1 scores of the two methods for
one participant. Figure 3 demonstrates that the accuracy, precision,
recall, and F1 scores of c-EEGNet (with the means of 0.92, 0.99,
0.85, and 0.89 respectively) are significantly higher than those of
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TABLE 1 The c-VEP authentication performance of TRCA and c-EEGNet on 17 participants when the number of averaged original epochs is 20.

Participant
TRCA c-EEGNet

Accuracy Precision Recall F1 Accuracy Precision Recall F1

1 0.8 1 0.6 0.75 0.98 1 0.97 0.98

2 0.81 1 0.62 0.77 0.98 1 0.97 0.98

3 0.85 1 0.71 0.83 0.97 1 0.94 0.97

4 0.81 1 0.62 0.76 0.99 0.99 0.98 0.99

5 0.88 0.99 0.77 0.87 0.99 0.99 1 0.99

6 0.44 0.46 0.75 0.57 0.93 1 0.86 0.92

7 0.88 1 0.76 0.86 0.99 0.99 0.99 0.99

8 0.76 0.77 0.76 0.76 0.9 1 0.8 0.89

9 0.83 1 0.67 0.80 0.75 0.99 0.51 0.67

10 0.58 0.57 0.66 0.61 0.74 0.97 0.49 0.65

11 0.9 0.98 0.81 0.89 0.99 0.99 1 0.99

12 0.71 0.72 0.70 0.71 0.78 1 0.57 0.73

13 0.83 1 0.66 0.79 0.99 0.99 1 0.99

14 0.61 0.6 0.67 0.63 0.96 0.93 1 0.96

15 0.88 0.98 0.78 0.87 0.99 0.99 0.99 0.99

16 0.78 0.8 0.76 0.78 0.67 1 0.34 0.51

17 0.83 1 0.66 0.79 0.99 1 0.98 0.98

FIGURE 3

The performance comparisons between c-EEGNet and TRCA. The

histograms represent the means and the error bars indicate the

standard deviations. We used Wilcoxon signed-rank test in the

comparisons. “*” and “***” mean p <0.05 and p <0.001, respectively.

TRCA (with the means of 0.77, 0.87, 0.7, and 0.76 respectively).
The Wilcoxon signed rank test results in accuracy (Z value: –3.27,
p value: 0.001), precision (Z value: –1.98, p value: 0.04), recall (Z
value: –2.25, p value: 0.02), and F1 (Z value: –2.58, p value: 0.01)
also reveal the significant advantage of c-EEGNet over TRCA.

Averaging several original epochs can enhance the SNR of
c-VEP (Gui et al., 2019). To understand the effect of SNR on
c-VEP authentication, we performed the c-VEP authentication
experiment in the cases where N original epochs of the same class

FIGURE 4

The average accuracy, precision, recall, and F1 score of 17

participants in c-VEP authentication change over the increasing

number of averaged original epochs.

were averaged (N = 1, · · · , 20). Figure 4 shows the changes of the
average accuracy, precision, recall, and F1 score of 17 participants
over the increasing number of averaged original epochs. In the case
N = 1, the accuracy, precision, recall, and F1 score are 0.67, 0.86,
0.38, and 0.64, respectively. In the view of general trend, all the four
metrics are improving as the number of averaged original epochs
increases. The precision reaches the level of 0.95 in the case N = 4
and keeps the level of 0.99 in the cases N ≥ 11. The accuracy,
recall, and F1 score are 0.73, 0.46, and 0.57 in the case N = 4
after a fluctuation, then maintain a growing trend and reach the
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TABLE 2 The c-VEP authentication performance of di�erent brain areas when the number of averaged original epochs is 20.

Participant
Accuracy Precision Recall F1

F P O F P O F P O F P O

1 0.52 0.53 0.97 0.86 0.99 1 0.05 0.06 0.95 0.1 0.11 0.97

2 0.88 0.98 0.57 0.99 0.98 1 0.78 0.98 0.14 0.87 0.98 0.25

3 0.66 1 0.99 1 1 1 0.32 1 0.99 0.48 1 0.99

4 0.81 0.97 0.99 0.87 0.99 1 0.74 0.96 0.99 0.8 0.97 0.99

5 1 0.59 1 1 0.95 1 1 0.2 1 1 0.33 1

6 0.54 0.5 0.98 0.79 0.62 1 0.1 0.04 0.96 0.19 0.09 0.98

7 0.67 0.63 0.98 0.98 1 0.98 0.36 0.26 0.98 0.52 0.41 0.98

8 0.91 0.87 0.96 0.97 0.94 0.98 0.84 0.79 0.94 0.9 0.86 0.96

9 0.5 0.79 0.76 0.62 0.99 0.99 0.04 0.6 0.53 0.09 0.75 0.69

10 0.75 0.55 0.56 0.99 0.97 0.71 0.52 0.12 0.22 0.68 0.21 0.34

11 0.57 0.98 0.99 0.92 0.98 1 0.15 0.99 0.99 0.26 0.98 0.99

12 0.66 0.56 0.58 0.98 0.93 1 0.34 0.13 0.16 0.5 0.23 0.28

13 0.52 0.99 0.94 0.82 0.99 1 0.07 1 0.88 0.13 0.99 0.93

14 0.5 0.72 0.97 0.7 0.9 0.96 0.02 0.51 0.98 0.04 0.65 0.97

15 0.91 0.96 0.99 0.99 0.99 1 0.83 0.94 0.99 0.9 0.96 0.99

16 0.68 0.72 0.52 0.95 1 0.82 0.38 0.44 0.07 0.54 0.61 0.13

17 0.98 0.99 0.98 0.98 0.99 0.97 0.99 1 1 0.98 0.99 0.98

The largest values of the three brain areas are presented in bold font.

level of 0.87, 0.75, and 0.8 in the case N = 11, next show slow
growth amidst minor shocks, and are 0.92, 0.85, and 0.89 in the
case N = 20. The result demonstrates that the case N = 20 results
in higher accuracy, recall, and F1 scores than the case N = 11.
However, no significant difference exists between the two cases in
terms of precision only. The precision means of the two cases both
are 0.99. In the case N = 11, there exist eight participants whose
precisions are 1. In the caseN = 20, there are also eight participants
whose precisions are 1.

In order to explore the influence of different brain areas on
c-VEP authentication, we selected frontal, parietal, and occipital
areas according to the previous work (Huang et al., 2020) and
performed the c-VEP authentication experiment in the case N =

20 respectively on the frontal (the F1, Fz, and F2 channels), parietal
(the P1, Pz, and P2 channels), and occipital (the O1, Oz, and O2
channels) areas. For each brain area, only the signals from the three
channels were retained in the EEG epochs during pre-processing.
The other operations of the c-VEP authentication experiment are
exactly the same. Table 2 exhibits the c-VEP authentication results
of the three brain areas. In Table 2, the column headers F, P,
and O respectively represent the frontal, parietal, and occipital
areas, each row lists the accuracies, precisions, recalls, F1 scores
of one participant on the frontal, parietal, and occipital areas.
The largest values of the three brain areas are presented in bold
font. In Table 2, most bold fonts lie in the O columns and the
means of accuracy, precision, recall, and F1 score of the occipital
area are higher than the corresponding ones of other brain
areas.

4. Discussion

For authentication, precision is a very important performance
indicator (Hernández-Álvarez et al., 2022). In the view of precision,
the authentication using c-VEP evoked in the MBCT performed
very well. Under the condition of extremely low SNR (the case
N = 1), the average precision is 0.86. A small improvement
in SNR leads to a significant increase in precision. The average
precision can keep the level of 0.99 when the SNRs are good enough
(the cases N ≥ 11). The high precisions show that the proposed
approach is expected to serve as an authentication of critical and
confidential operations. MBCT can ensure that the samples in the
training packets all correspond to a mental state in which the
participants focus their attention on the visual stimuli. We think
that this property of the training packets could account for the high
precisions. If the cognitive task was removed from the paradigm,
the training packets would hardly avoid containing noisy samples,
leading to a decrease in precision.

Accuracy, recall, and F1 score reveal the performance of the
c-VEP authentication from different viewpoints. According to
Figure 4, the three indicators also show a growing trend as the
SNR gradually increases. In Figure 4, the curves of accuracy, recall,
and F1 score present a peak in the case N = 11 and another
peak in the case N = 20. F1 score is the harmonic average of
precision and recall. The ideal goal is to get a high F1 score for
each participant. Unfortunately, the F1 scores of the participants
9, 10, 12, and 16 are not high enough. An analysis revealed that
the EEG signal quality of the participants is significantly lower than
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FIGURE 5

The performance comparisons between the case N = 11 and the

case N = 20. The histograms represent the means and the error bars

indicate the standard deviations. We used Wilcoxon signed-rank test

in the comparisons. “*” means p <0.05.

that of others. The reasons for the difference could be the change
in mental state of the same subject and the session-to-session
electrode shift during acquiring EEG (Gembler et al., 2020).We will
investigate the causes of this variability in the future. From another
perspective, the participants have very high precisions although
their F1 scores are not good enough. That is, other participants
are largely not mistaken for them although they are sometimes
rejected. If someone is rejected, the new operation can finally get
him accepted. The results of the participants 9, 10, 12, and 16 are
not ideal but acceptable.

In the pre-processing of this study, we used an automated ICA
computer program to remove ocular and muscular artifacts, which
does not require an expert to analyze the ICA components. The
purpose of using the ICA algorithm in our study is to make full
use of the collected EEG data. In a real-life scenario, we can even
dispense with the ICA algorithm. A simple solution is to directly
discard the EEG data containing artifacts and collect it again in the
authentication phase.

The performance comparisons between the two cases are
presented in Figure 5. Only in recall, the Wilcoxon signed rank test
(Z value: –0.76, p value: 0.04) revealed the slight advantage of the
case N = 20 over the case N = 11. The Wilcoxon signed rank
test results in accuracy (Z value: –1.94, p value: 0.05), precision (Z
value: –0.30, p value: 0.76), and F1 (Z value: –1.83, p value: 0.06)
between the two cases found no significant difference. Especially,
there is almost no precision difference between the two cases.

High feasibility means achieving high recognition performance
at a low time cost in the authentication phase. High recognition
performance needs high c-VEP SNR. Therefore, it is essential to
averagemore original epochs for high recognition performance. On
the other hand, the larger the number of averaged original epochs,
the greater the time cost. We have to compromise between time
cost and recognition performance. The results show that N = 11 is
a trade-off between the two.

In general, the proposed c-VEP authentication achieved a
desirable performance. Averaging epochs can enhance the SNR
of c-VEP and therefore improve the performance of c-VEP

FIGURE 6

The performance comparisons of di�erent brain areas. F, P, O, and

PO respectively represent the frontal (F1, Fz, and F2), parietal (P1, Pz,

and P2), occipital (O1, Oz, and O2), and parietal-occipital (Pz, PO5,

PO3, POz, PO4, PO6, O1, Oz, and O2) areas . The histograms

represent the means and the error bars indicate the standard

deviations. We used Wilcoxon signed-rank test in the comparisons.

“*”, “**” and “***” mean p <0.05, p <0.01, and p <0.001, respectively.

authentication. Our results are consistent with related studies
(Zhao et al., 2019; Seha and Hatzinakos, 2020). When the number
of averaged original epochs is 11, the performance of the approach
has been quite good. When the number of averaged original epochs
continues to increase, the trend of performance improvement is still
maintained but slower.

In order to understand the results shown in Table 2 in depth, we
carried out further performance comparisons, which are presented
in Figure 6. The average performance values of the occipital area are
higher than those of the frontal and parietal areas. We conducted
the Wilcoxon signed-rank test in the statistical comparisons. The
results between O and F in accuracy (Z value: –2.21, p value:
0.02), recall (Z value: –2.12, p value: 0.03), and F1 score (Z value:
–1.98, p value: 0.04) reveal that the occipital area performed
significantly better than the frontal area for the authentication.
However, no significant performance difference between occipital
area and parietal area was discovered byWilcoxon signed-rank test.

Figure 6 shows that the average performance values of the
parietal-occipital area are higher than the counterparts of the
frontal, parietal, and occipital areas. Furthermore, the Wilcoxon
signed-rank test results in accuracy (Z value: –3.14, p value: 0.002),
precision (Z value: –3.25, p value: 0.001), recall (Z value: –2.99, p
value: 0.003), and F1 score (Z value: –3.05, p value: 0.002) reveal
that a significant performance difference indeed exists between the
parietal-occipital and frontal areas for the authentication. Similarly,
the Wilcoxon signed-rank test results in accuracy (Z value: –2.48,
p value: 0.01), precision (Z value: –3.35, p value: 0.001), recall (Z
value: –2.07, p value: 0.04), and F1 score (Z value: –2.39, p value:
0.01) show the significant advantage of the parietal-occipital area
over the parietal area in the authentication. However, theWilcoxon
signed-rank test results in accuracy (Z value: –1.04, p value: 0.29),
precision (Z value: –0.63, p value: 0.52), recall (Z value: –1.08,
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p value: 0.27), and F1 score (Z value: –0.91, p value: 0.36) show
that the performance difference between the parietal-occipital and
occipital areas is not statistically significant for the authentication.

In short, the signals from occipital area result in better
performance of c-VEP authentication than those from the frontal
area and parietal area. Although the 9 channels on parietal-occipital
area can achieve slightly higher accuracies, precisions, recalls, and
F1 scores than the 3 channels on occipital area, the differences are
not statistically significant. The fact will be an important reference
when we have to look for a balance between performance and cost
for c-VEP authentication.

Our work shows that the authentication based on c-VEP is an
attractive option of future authentication technologies. However,
there is still a long way before it is practical. This study indicates that
practical recognition performance can be achieved by averaging 11
EEG epochs. This means that the EEG acquisition time of at least
46.2 s is required for practical authentication. In similar studies,
Maiorana et al. (2015) used 40 s EEG signals from 19 channels,
Seha and Hatzinakos (2020) used 30 s EEG signals from 7 channels,
and Zhao et al. (2019) used 10.5 s EEG signals from 9 channels.
Although our study revealed the feasibility of using only the three
occipital channels, the acquisition time is still too long for practical
applications. Therefore, it is necessary in the future to develop
new approaches to reduce EEG acquisition time without sacrificing
recognition performance. In addition, the current EEG signals are
acquired with wet electrodes. The inconvenient operation of wet
electrodes will limit the application of authentication based on c-
VEP. A proven method must be migrated to the condition of dry
electrodes before practical use. As you can imagine, there will be
many challenges in the process.

5. Conclusion

This study proposed a mild-burdened cognitive task to ensure
that the obtained c-VEP signals are the participants’ EEG signals
when they were paying attention to the visual stimuli. The
effectiveness of c-VEP can prevent authentication from being
misled. Furthermore, this study designed a deep artificial neural
network, c-EEGNet, on the basis of EEGNet (Lawhern et al.,
2018). The c-EEGNet was used to learn authentication models
from c-VEP signals. The learned models were applied to c-VEP
authentication. The experiments show that the proposed approach
could achieve a desirable performance and enable real-world
authentication systems. Additionally, this study also explored the
influence of SNR and brain areas on the performance of c-VEP
authentication. These findings serve as a starting point for our
future work and are also a reference for peers.
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