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Background:Autonomous navigation of catheters and guidewires in endovascular

interventional surgery can decrease operation times, improve decision-making

during surgery, and reduce operator radiation exposure while increasing access

to treatment.

Objective: To determine from recent literature, through a systematic review,

the impact, challenges, and opportunities artificial intelligence (AI) has for

the autonomous navigation of catheters and guidewires for endovascular

interventions.

Methods: PubMed and IEEEXplore databases were searched to identify reports

of AI applied to autonomous navigation methods in endovascular interventional

surgery. Eligibility criteria included studies investigating the use of AI in enabling

the autonomous navigation of catheters/guidewires in endovascular interventions.

Following Preferred Reporting Items for Systematic Reviews and Meta-Analysis

(PRISMA), articles were assessed using Quality Assessment of Diagnostic Accuracy

Studies 2 (QUADAS-2). PROSPERO: CRD42023392259.

Results: Four hundred and sixty-two studies fulfilled the search criteria, of which

14 studies were included for analysis. Reinforcement learning (RL) (9/14, 64%)

and learning from expert demonstration (7/14, 50%) were used as data-driven

models for autonomous navigation. These studies evaluated models on physical

phantoms (10/14, 71%) and in-silico (4/14, 29%) models. Experiments within

or around the blood vessels of the heart were reported by the majority of

studies (10/14, 71%), while non-anatomical vessel platforms “idealized” for simple

navigation were used in three studies (3/14, 21%), and the porcine liver venous

system in one study. We observed that risk of bias and poor generalizability were

present across studies. No procedures were performed on patients in any of the

studies reviewed. Moreover, all studies were limited due to the lack of patient

selection criteria, reference standards, and reproducibility, which resulted in a low

level of evidence for clinical translation.

Conclusion: Despite the potential benefits of AI applied to autonomous navigation

of endovascular interventions, the field is in an experimental proof-of-concept

stage, with a technology readiness level of 3. We highlight that reference standards

with well-identified performance metrics are crucial to allow for comparisons of

data-driven algorithms proposed in the years to come.

Systematic review registration: identifier: CRD42023392259.
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1. Introduction

Cardiovascular (CV) diseases are the most common cause of

death across Europe, accounting for more than four million deaths

each year, with coronary heart disease (44.2%) and cerebrovascular

disease (25.4%) emerging as the predominant contributors to

CV-related mortality across all ages and genders (Townsend

et al., 2016). Endovascular catheter-based interventions such

as percutaneous coronary intervention (PCI), pulmonary vein

isolation (PVI), and mechanical thrombectomy (MT) have become

an established treatment for CV diseases (Thukkani and Kinlay,

2015; Goyal et al., 2016; Giacoppo et al., 2017; Lindgren et al., 2018).

During such a procedure, an operator navigates a guidewire and

catheter from an insertion point (typically the common femoral or

radial artery) to the area of interest to perform the intervention.

Intraoperative fluoroscopy is used intermittently throughout the

navigation and intervention to guide the catheter and guidewire

through the vasculature. Once the target site has been reached, the

treatment can be performed through the catheter. This is typically

thrombus removal in the case of MT, stent deployment in the case

of PCI, and ablation for PVI (Brilakis, 2020).

In acute CV disease, time from symptom onset to treatment is

often crucial for effective endovascular interventions. For example,

the benefits of MT become non-significant after 7.3 h of stroke for

non-stratified patients (Saver et al., 2016). As a result, in the UK for

example, only 1.4% of stroke admissions benefit from MT despite

the 10% of patients that are eligible for treatment (McMeekin et al.,

2017). Other challenges for endovascular interventions relate to

occasional complications including perforation, thrombosis, and

dissection in the parent artery, as well as distal embolization of

thrombus (Hausegger et al., 2001). Moreover, angiography requires

intravascular contrast agent administration, which can occasionally

lead to nephrotoxicity (Rudnick et al., 1995). For operators and

their teams, the high cumulative dose of x-ray radiation from

angiography is a risk factor for cancer and cataracts (Klein et al.,

2009). Although exposure can be minimized with current radiation

protection practice, some measures involve operators wearing

heavy protective equipment which is a risk factor for orthopedic

complications, and so alternative methods of exposure reduction

are beneficial (Ho et al., 2007; Madder et al., 2017).

It is hoped that robotic surgical systems can either mitigate

or eliminate some of the challenges currently presented by

endovascular interventions. For example, robotic systems could

be set up in hospitals nationwide and tele-operated remotely

from a central location, increasing the speed of access to

treatments such asMT beyond what is possible currently (Crinnion

et al., 2022). Additionally, robotic systems might eliminate any

operator physiological tremors or fatigue and allow endovascular

interventions to be performed in an optimum ergonomic position

while potentially increasing procedural precision (for example,

procedure time), and thereby improving overall performance

scores and reducing complication rates (Riga et al., 2010).

Furthermore, as operators would not be required to stand next to

the patient, their radiation exposure would be reduced and the need

to wear heavy protective equipment would be obviated.

Commercial robotic systems are currently available to perform

endovascular interventions. Hansen Medical developed the

MagellanTM system (Auris Health, Redwood City, USA), the first

commercially available robotic system to be used for PVI, and

more recently used to successfully perform carotid artery stenting

in 13 patients (Duran et al., 2014; Jones et al., 2021). This system

comprises a steerable guide catheter inside a steerable sheath

allowing movement in three dimensions, and a separate remote

guidewire manipulator allowing linear and rotational movement.

The Corpath GRX R© (Corindus Vascular Robotics, USA), the next-

generation system of the Corpath R© 200 robot, has successfully

been used for PCI and PVI. This system has performed diagnostic

cerebral angiography procedures and ten carotid artery stenting

procedures (Nogueira et al., 2020; Sajja et al., 2020; Weinberg et al.,

2021). Furthermore, it has been recently used to perform robot-

assisted, neuroendovascular interventions including aneurysm

embolization and epistaxis embolization (Pereira et al., 2020;

Cancelliere et al., 2022; Saber et al., 2022). These systems use a

controller-operator structure, where operators remotely control

and navigate a robot through a patient’s vasculature to the target

site. In currently available systems, the operator has complete

control over the robot and makes all of the decisions.

While these robotic systems help alleviate some of the

challenges of endovascular interventions, they have limitations.

The controller-operator structure requires a reasonably high

cognitive workload, can still result in human error and means

that the procedure is limited to an individual operator’s skill

set (Mofatteh, 2021). These robotic systems also consist of user

interfaces such as buttons and joysticks, requiring skills that are

different to those used in current clinical practice. Additionally,

a lack of haptic feedback from robotic systems might result

in difficulties to receive tactile feedback from the catheters and

guidewires as they interact with vessel walls (Crinnion et al., 2022).

One emerging method of mitigating these challenges is

using artificial intelligence (AI) techniques in conjunction with

robotic systems. AI, and in particular, machine learning (ML),

has accelerated in recent years in its applications for data

analysis and learning (Sarker, 2021), with many areas of

healthcare already making use of this technology for disease

prediction and diagnosis (Fatima and Pasha, 2017; Silahtaroğlu and

Yılmaztürk, 2021). ML algorithms can be divided into three main

groups: supervised, unsupervised, and reinforcement learning

(RL). Supervised learning is the most common form of ML and

involves constructing a model trained on a dataset with labels (the

corresponding correct outputs). The model can then accurately

predict the labels of new, unknown instances based on the patterns

learned from the training data (Kotsiantis, 2007).

Unsupervised learning involves training an algorithm to

represent particular input features in a way that reflects the

structure of the overall collection of input patterns (Dayan, 2017).

In contrast to other types of ML, the dataset is unlabeled and

there are no explicit target outputs or environmental evaluations

associated with each input.

RL is a form of ML, whereby an agent learns by interacting with

the environment and receiving feedback in the form of rewards.

The goal of RL is to maximize the cumulative reward over time

by learning a policy that optimizes the agent’s current state for a

set of actions (Arulkumaran et al., 2017). Similar to the natural

way of human learning, robotic RL automatically acquires the skills
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through “trials and errors” (Sutton and Barto, 2018). Applications

of RL are becoming more expansive, as numerous research areas

aim to use the method, for example, in precision medicine, medical

imaging, and rehabilitation (Lowery and Faisal, 2013; Naros and

Gharabaghi, 2015; Ghesu et al., 2018).

Learning from demonstration (LfD) is a variant of supervised

learning, where input data is provided by an expert demonstrator.

This can also act as a precursor for RL, whereby the agent

can further improve its behavior through interaction with the

environment. Table 1 describes the ML methods that are referred

to later in this paper, each of which can be used to improve

performance across the three types of ML described above. LfD has

been separated from the other types of ML in this case, as it can be

used in the context of both supervised learning and RL.

The use of these ML techniques for autonomy in medical

robotics presents several challenges. To help in the consideration of

regulatory, ethical, and legal barriers imposed, a six-level autonomy

framework has been proposed, ranging from no autonomy at level

0, up to level 5 which involves full autonomy with no human

intervention (Yang et al., 2017). This study aims to systematically

review the methodology, performance and autonomy level of

AI applied to the autonomous navigation of catheters and

guidewires for endovascular interventions. Understanding the

current developments in the field will help determine the impact,

challenges, and opportunities required to direct future translational

research and ultimately guide clinical practice.

2. Methods

This systematic review is PROSPERO (International

prospective register of systematic reviews) registered

(CRD42023392259). The review followed Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (PRISMA)

guidelines (Page et al., 2021).

2.1. Selection criteria

2.1.1. Eligibility criteria
Included reports consisted of primary research studies, which

investigated the use of AI in enabling the autonomous navigation

of catheters and/or guidewires in endovascular interventions.

Excluded studies did not use AI methods to achieve autonomous

navigation of catheters/guidewires or looked at path planning

for endovascular interventions rather than the navigation itself.

Additionally, studies without an English translation were not

included (Nussbaumer-Streit et al., 2020).

2.1.2. Information sources and search strategy
PubMed and IEEEXplore were used to capture original

research articles, published anytime until the end of January

2023, with the following search query: “(Artificial Intelligence OR

Machine Learning OR Reinforcement Learning OR Deep Learning

OR Autonomous OR Learning-based) AND (Endovascular

OR Vascular Intervention OR Catheter OR Guidewire) AND

(Navigation OR Guidance).” Pre-prints and non-peer-reviewed

articles were excluded.

2.1.3. Selection and data collection process
A medical robotics data scientist, H.R. (3 years of research

experience), searched for studies as defined in the search strategy

and followed the selection process as shown in Figure 1. A

medical robotics data scientist, L.K. (4 years experience in

autonomous endovascular navigation using AI), independently

reviewed the manuscripts against the eligibility criteria. In the case

of discrepancy, consensus was reached by discussion between the

two reviewers. If consensus was not reached, the multi-disciplinary

authorship would make the final arbitration. The relevant data

items, as defined in the following section, were extracted.

2.2. Data items, e�ect measures, and
synthesis methods

Information extracted from each study included: the AImethod

used andmore granular model details (where available), the current

level of autonomy, the type of experiment (in vivo, in vitro, in silico),

the method of tracking the catheter and/or guidewire position, the

method of catheter and/or guidewire manipulation, description of

the navigation path, performance measures, and key performance

outcomes (where available).

The levels of autonomy followed (Yang et al., 2017). Briefly,

these are level 0: no autonomy, level 1: robot assistance, level 2: task

autonomy, level 3: conditional autonomy, level 4: high autonomy,

and level 5: full autonomy. It should be noted that if the autonomy

level was not described in the study, an appropriate level was

assigned based on the content of the paper.

2.3. Study risk of bias, reporting bias, and
certainty assessment

Where appropriate, both Quality Assessment of Diagnostic

Accuracy Studies 2 (QUADAS-2) methodology alongside AI

metrics from the Checklist for Artificial Intelligence in Medical

Imaging (CLAIM) were used to assess the risk of bias for each study

(Rutjes et al., 2011; Mongan et al., 2020).

3. Results

3.1. Studies

As shown in Figure 1, 462 studies met the search criteria, and 21

full-text studies were assessed against the eligibility criteria. A total

of 14 were identified for review (Rafii-Tari et al., 2013, 2014; Chi

et al., 2018a,b, 2020; Behr et al., 2019; You et al., 2019; Zhao et al.,

2019; Kweon et al., 2021; Meng et al., 2021, 2022; Cho et al., 2022;

Karstensen et al., 2022;Wang et al., 2022). The characteristics of the

fourteen studies are listed in Table 2.

According to QUADAS-2 methodology, all studies reviewed

gave a high or unclear “risk of bias” and “concerns regarding
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TABLE 1 Description of ML methods.

Name ML Type Description

A3C RL An algorithm that employs multiple agents working in parallel to learn policies in an environment (Mnih et al., 2016).

Behavior cloning LfD technique where an agent learns a policy by imitating expert behavior. It learns from labeled examples provided by experts,
mapping input observations to corresponding actions to replicate the demonstrated behavior. It can be used as a pre-training
step in RL allowing the agent to learn by imitating the behavior of an expert (Codevilla et al., 2019).

CNN Supervised learning Type of deep neural network specifically designed for image processing and pattern recognition tasks. CNNs leverage spatial
hierarchies through convolutional layers that extract local features and preserve spatial relationships, enabling effective image
classification, object detection, and image segmentation tasks (O’Shea and Nash, 2015).

DDPG RL An algorithm that merges RL and policy optimization. It iteratively refines the policy based on estimated value distributions, to
find an optimal strategy (Lillicrap et al., 2016).

DQN RL Leverages a deep neural network to learn optimal policies through Q-learning (see Q-learning explanation below). It enables
agents to make decisions by maximizing the expected cumulative rewards, facilitating dynamic environment interaction (Mnih
et al., 2013).

Dueling DQN RL An extension of DQN that separates the estimation of state value and action advantages. By independently approximating these
values, the agent can learn the value of being in a particular state while also considering the advantages of each action (Wang
et al., 2016).

GAIL LfD Method where an agent learns a policy by imitating expert behavior using a generative adversarial framework. It involves a
generator network that aims to replicate the expert and a discriminator network that distinguishes between expert and
generated behavior (Ho and Ermon, 2016).

GMM Unsupervised learning A statistical model that assumes data is generated by a mixture of several Gaussian distributions (Reynolds, 2015).

HD LfD Term that encompasses the process of an expert performing a task. Human demonstration can be used as a means to collect
data for LfD (Nair et al., 2017).

HER RL Allows an agent to learn from “failed” experiences by redefining the goal of a task (Andrychowicz et al., 2017).

HMM Unsupervised learning A statistical model that assumes observations are generated by a hidden sequence of states that follow a Markov process
(Rabiner, 1989).

PI2 RL Optimization algorithm which aims to find the optimal policy by iteratively improving the policy through gradient-based
optimization methods, maximizing the expected return (Theodorou et al., 2010).

PPO RL An algorithm that optimizes policies iteratively while ensuring small policy updates. It balances exploration and exploitation,
enhancing stability, and sample efficiency during training (Schulman et al., 2017).

Q-learning RL Algorithm that learns the optimal action-value function (Q-value function) for sequential decision-making. It updates Q-values
iteratively based on observed rewards and the maximum expected future rewards (Jang et al., 2019).

Rainbow RL Extension of DQN that combines multiple improvements to enhance performance, by incorporating techniques such as
prioritized experience replay, distributional value estimation, and multi-step learning to improve overall learning stability and
efficiency (Hessel et al., 2017).

YOLO Supervised learning Object detection algorithm that can detect and classify objects in real-time. It uses a single neural network to directly predict
bounding boxes and class probabilities for objects in an image, providing fast and accurate object detection (Redmon et al.,
2015).

A3C, asynchronous advantage actor critic; CNN, convolutional neural network; DDPG, deep deterministic policy gradient; DQN, deep Q-network; GAIL, generative adversarial imitation

learning GMM, Gaussian mixture modeling; HD, human demonstration; HER, hindsight experience replay; HMM, hidden Markov models; LfD, learning from demonstration; PI2, policy

improvement with path integrals; PPO, proximal policy optimization; RL, reinforcement learning; YOLO, you only look once.

applicability” in all domains. No studies performed procedures

on patients and therefore had no clearly defined patient selection

criteria, reference standards, or index tests. Despite the low level

of evidence, there is value in discussing these individual studies as

they represent the current state of the art and form a baseline for

further research.

3.2. AI models

3.2.1. RL methods
RL was used in nine studies (9/14, 64%) with algorithms

including A3C, DDPG, DQN, Dueling DQN, HER, PI2, PPO,

and Rainbow (Chi et al., 2018a, 2020; Behr et al., 2019; You

et al., 2019; Kweon et al., 2021; Meng et al., 2021, 2022;

Cho et al., 2022; Karstensen et al., 2022). Demonstrator data

in some form (GAIL, Behavior Cloning, or HD) was used

as a precursor in four of the studies (4/14, 29%) during

training (LfD), in conjunction with other RL algorithms (Chi

et al., 2018a; Behr et al., 2019; Kweon et al., 2021; Cho

et al., 2022). The SOFA framework (Inria, Strasbourg, France;

Faure et al., 2012) was used for training RL models in

four studies (4/14, 29%; Behr et al., 2019; Cho et al., 2022;

Karstensen et al., 2022; Meng et al., 2022), the Unity engine

(Unity Technologies, San Francisco, USA) was used in two

studies (2/14, 14%; You et al., 2019; Meng et al., 2021), while

the platform used for training was not specified in three
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FIGURE 1

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram showing the number of articles searched and excluded

at each stage of the literature search after screening titles, abstracts, and full texts.

studies (3/14, 21%; Chi et al., 2018a, 2020; Kweon et al.,

2021).

3.2.2. Other ML types
RLwas not used in five studies (5/14, 36%) which employed LfD

(not as a precursor for RL), unsupervised (GMM and HMM) and

supervised (CNN and YOLO) methods alone or in combination

(Rafii-Tari et al., 2013, 2014; Chi et al., 2018b; Zhao et al., 2019;

Wang et al., 2022). The most common method was LfD, which

was used in three studies (3/14, 21%; Rafii-Tari et al., 2013, 2014;

Chi et al., 2018b). Two of these studies (2/14, 14%) used a GMM

to generate the probabilistic representation of the dataset provided

by a demonstrator (Rafii-Tari et al., 2013; Chi et al., 2018b), while

the other study utilized HMMs to model each movement primitive

(Rafii-Tari et al., 2014). The other two non-RL studies (2/14, 14%)

used solely CNNs or YOLOV5s (Zhao et al., 2019; Wang et al.,

2022).

3.3. Level of autonomy

Conditional autonomy (level 3) was performed in seven studies

(7/14, 50%; Behr et al., 2019; You et al., 2019; Zhao et al., 2019;

Kweon et al., 2021; Cho et al., 2022; Karstensen et al., 2022;

Wang et al., 2022). Here, a target in the vasculature is selected

by an operator and the subsequent navigation to the target of

the guidewire and/or catheter takes place autonomously. Task

autonomy (level 2) was performed across five studies (5/14, 36%),

whereby the robotic driver automates the catheter motion and an

operator manipulates the guidewire for assistance (Rafii-Tari et al.,

2013, 2014; Chi et al., 2018a,b, 2020). Robot assistance (level 1)

was demonstrated in two studies (2/14, 14%), where experiments

were performed entirely in simulation and under continuous

supervision of an operator (Meng et al., 2021, 2022).

3.4. Experimental design

Clinical trials were not performed in any of the studies

reviewed. Physical phantoms were used in the majority of studies

(11/14, 79%) reviewed (Rafii-Tari et al., 2013, 2014; Chi et al.,

2018a,b, 2020; Behr et al., 2019; You et al., 2019; Zhao et al., 2019;

Kweon et al., 2021; Cho et al., 2022; Wang et al., 2022). Of these

studies, seven used 3D vascular phantoms (Rafii-Tari et al., 2013,

2014; Chi et al., 2018a,b, 2020; You et al., 2019; Wang et al., 2022),

three used 2D phantoms (Behr et al., 2019; Zhao et al., 2019; Cho

et al., 2022), and one study used both 2D and 3D phantoms (Kweon

et al., 2021). Commercial phantoms were used in six studies (6/14,

43%): 3D silicone-based, transparent, anthropomorphic phantoms

(Elastrat Sarl, Geneva, Switzerland) were used in 5/14 (36%) studies

(Rafii-Tari et al., 2013, 2014; Chi et al., 2018a,b, 2020); and the study

using both 2D and 3D phantoms used firstly, a 2D PCI trainer for

beginners (Medi Alpha Co., Ltd., Tokyo, Japan) and secondly, a

silicone 3D Embedded Coronary Model (Trandomed 3D Medical

Technology Co., Ltd., Ningbo, China), respectively. Five studies
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(5/14, 36%) appeared to use in-house phantoms: one study used

a silicone-based 3D printed heart model and inferior vena cava

(You et al., 2019), and one used a 10 mm vessel diameter phantom

made of polymethyl methacrylate (PMMA; Behr et al., 2019), while

sufficient phantom detail is not provided by the other three studies

(Zhao et al., 2019; Cho et al., 2022; Wang et al., 2022).

In silico methods were used in two of the studies (2/14,

14%; one used SOFA framework and one used Unity engine;

Meng et al., 2021, 2022). Ex vivo experiments using porcine liver

vasculature were reported by one study (Karstensen et al., 2022).

Here, in silicomethods were used for training models before the ex

vivo experiments.

Figure 2 shows the anatomical regions where each study

focuses. Experiments within or around the blood vessels of the

heart were reported by the majority of studies (10/14, 71%; Rafii-

Tari et al., 2013, 2014; Chi et al., 2018a,b, 2020; You et al., 2019;

Kweon et al., 2021; Meng et al., 2021, 2022; Wang et al., 2022),

with the study with the longest path length starting at the femoral

artery and finishing at the coronary artery (Wang et al., 2022). Non-

anatomical vessel platforms “idealized” for simple navigation were

used in three studies (3/14, 21%; Behr et al., 2019; Zhao et al., 2019;

Cho et al., 2022), and the porcine liver venous system in one study

(Karstensen et al., 2022).

3.5. Evaluation

Passive tracking relies on external sensors to detect the

catheter’s position, active tracking involves the use of sensors

located at the distal end of the catheter for real-time position

tracking, and magnetic tracking utilizes external magnetic fields to

guide the catheter’s movement and track its position. A passive,

tracking-based, method for catheter manipulation was used in

eight studies (8/14, 57%; Rafii-Tari et al., 2013, 2014; Chi et al.,

2018a,b, 2020; You et al., 2019; Meng et al., 2021, 2022), whereas

a passive, image-based, method for catheter manipulation was used

in the other six studies (6/14, 43%; Behr et al., 2019; Zhao et al.,

2019; Kweon et al., 2021; Cho et al., 2022; Karstensen et al., 2022;

Wang et al., 2022). None of the studies reviewed reported active or

magnetic steering methods.

A top-down camera for tracking the location of the guidewire

and/or catheter was implemented in five of the studies (5/14,

36%) where transparent phantoms allowed real-time video to

provide software-generated tracking data (Behr et al., 2019; Zhao

et al., 2019; Kweon et al., 2021; Cho et al., 2022; Wang et al.,

2022). Electromagnetic (EM) position sensors were employed in

six studies (6/14, 43%; Rafii-Tari et al., 2013, 2014; Chi et al.,

2018a,b, 2020; You et al., 2019). An Aurora control unit and

EM Generator of Aurora electromagnetic tracking system (NDI,

Waterloo, Canada) were used in one of these studies (You et al.,

2019), whilst custom-designed sensors (Rafii-Tari et al., 2013) were

used in the other five. These five studies also employed a top-down

camera simultaneously enabled through the use of transparent

phantoms during data collection pre-training. One study employed

continuous fluoroscopy, capturing 7.5 images per second, and used

a CNN to segment the guidewire from real-time fluoroscopy images

to track data that included the coordinates (Karstensen et al., 2022).

Two studies (2/14, 14%) were performed entirely in silico, and

hence no tracking method was required (Meng et al., 2021, 2022).

Quantitative performance measures used in the studies were

heterogeneous which may reflect the low technology readiness level

(TRL; Mankins, 1995) of AI applied to autonomous navigation of

endovascular interventions shown by the studies in this systematic

review. Common performance measures used were success rate

of navigation task (7/14, 50%) and time to complete procedure

(5/14, 36%). Other performance measures shared across studies

were: measures of force (6/14, 43%); acceleration (4/14, 29%);

various measures of speed (4/14, 29%); and path length (4/14,

29%). Half of the studies (7/14, 50%) reviewed compared manual

performance against their autonomous navigation performance.

The key performance outcomes of the 14 studies are listed in

Table 3.

Where possible, critical outcome data for success rate,

procedure time and path length were extracted from the study.

Three of the 14 studies (3/14, 21%) did not measure any of these

performance measures (Rafii-Tari et al., 2013; Meng et al., 2021;

Wang et al., 2022). Of the seven studies (7/14, 50%) that measured

success rate, the value was over 90% in four studies (4/14, 29%; Chi

et al., 2018a, 2020; Zhao et al., 2019; Kweon et al., 2021).

4. Discussion

4.1. Summary of findings

There is no high-level evidence (Howick et al., 2011) to

demonstrate that AI autonomous navigation of catheters and

guidewires in endovascular intervention is non-inferior or superior

to manual procedures. Currently, AI autonomous navigation of

catheters and guidewires in endovascular intervention has not

surpassed TRL 3. There has been no clinical validation nor has

there been comprehensive laboratory validation. Over half of the

studies (9/14, 64%) employed RL methodologies, particularly in

recent years, where most studies used RL (8/10, 80% published

beyond 2018). There are no standardized in silico, in vitro,

or ex vivo experimental reference standard designs, nor are

there standardized performance measures, meaning comparison of

studies quantitatively is of limited value.

4.2. Strengths and limitations

4.2.1. Strengths
The primary strength of the studies reviewed came from the

range of ML techniques employed. Most focused on finding a

ML technique that would improve upon previous work, rather

than using similar algorithms and extending the experimental

environment. This is demonstrated well within the nine studies

(9/14, 64%) which used RL, where a different ML-based

methodology was used in every case except for two (where the

simulation environment and output measurements were changed

between studies). Exploring various techniques is advantageous for

research, especially in the rapidly evolving field of ML, as the fast

pace of development increases the likelihood that more effective

algorithms are created. For example, autonomous endovascular
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TABLE 2 Studies resulting from our search and eligibility criteria proposing AI models for the autonomous navigation of catheters/guidewires in endovascular interventions.

References ML
method∗

Level of
autonomy

Validation
environment

Tracking type Tracking
method

Navigation path Performance measures

RL

Chi et al. (2018b) PI2 + LfD Level 2 In vitro

(phantom)
Passive
(tracking-based)

EM position
sensor

Origin of LCA, to BCA or LSA Max acceleration of catheter tip,
Mean/max/STDEV/impact area of contact force,
Path-following error (RMSE), Mean/STDEV
speed of catheter tip, Path length, Procedure time

Behr et al. (2019) DDPG, DQN,
HER, + HD

Level 3 In vitro

(phantom)
Passive (image-
based)

Top-down
camera

Idealized vessel platform with a bifurcation followed
by a bi-and trifurcation in one plane

SR of navigation task

You et al. (2019) Dueling DQN Level 3 In vitro

(phantom)
Passive
(tracking-based)

EM position
sensor

Insertion at heart RA’s IVC, target is nerve nodes
around CS and TA of heart RA

Path length, SR of navigation task

Chi et al. (2020) PPO + GAIL Level 2 In vitro

(phantom)
Passive
(tracking-based)

EM position
sensor

Position in aorta (proximal to major branches), to
BCA or LCCA

Mean/max force between endovascular
instruments and vascular phantom, Mean/STDEV
speed of catheter tip, Path length, Procedure time,
SR of navigation task

Cho et al. (2022) DDPG +
Behavior Cloning

Level 3 In vitro

(phantom)
Passive
(image-based)

Top-down
camera

Idealized vessel platform with a bifurcation followed
by a bifurcation in one plane

Procedure time

Meng et al. (2021) A3C Level 1 In silico Passive
(tracking-based)

Simulation-
based

Traversing descending aorta, through aortic arch,
cannulation of LCA, LSA, or innominate artery

Limited information available

Kweon et al. (2021) Rainbow + HD Level 3 In vitro

(phantom)
Passive (image-
based)

Top-down
camera

Proximal point in left anterior descending artery to
target location in main or side branch

Procedure time, SR of navigation task

Meng et al. (2022) A3C Level 1 In silico Passive
(tracking-based)

Simulation-
based

Traversing descending aorta, through aortic arch,
cannulation of LCA, LSA, or innominate artery

Contact force, Procedure time

Karstensen et al. (2022) DDPG, HER Level 3 Ex vivo (porcine
liver)

Passive (image-
based)

Fluoroscopy Vena cava inferior to vena hepatica dextra, vena
hepatica intermedia or and vena hepatica sinistra
(porcine liver)

Number of failures due to wrong
branch/entanglement, SR of navigation task

Non-RL

Rafii-Tari et al. (2013) GMM + LfD Level 2 In vitro

(phantom)
Passive
(tracking-based)

EM position
sensor

Traversing descending aorta, through aortic arch,
cannulation of innominate artery

Mean/max acceleration of catheter tip, Mean/max
speed of catheter tip

Rafii-Tari et al. (2014) HMM + LfD Level 2 In vitro

(phantom)
Passive
(tracking-based)

EM position
sensor

Cannulation of LSA and RCCA Mean/max acceleration of catheter tip, Path length

Chi et al. (2018a) GMM + LfD Level 2 In vitro

(phantom)
Passive
(tracking-based)

EM position
sensor

Origin of LCA, to bifurcation site between RCCA
and RSA

Mean/max acceleration of catheter tip,
Mean/max/STDEV/impact area of contact force,
Mean/max/STDEV speed of catheter tip, Path
length, SR of navigation task

Zhao et al. (2019) CNN Level 3 In vitro

(phantom)
Passive (image-
based)

Top-down
camera

Medical and designed vessel models Procedure time, SR of navigation task

Wang et al. (2022) YOLOV5s Level 3 In vitro

(phantom)
Passive (image-
based)

Top-down
camera

Femoral to coronary artery Average Precision

Clinical: BCA, brachiocephalic artery; CS, coronary sinus; EM, electromagnetic; IVC, inferior vena cava; LCA, left coronary artery; LCCA, left common carotid artery; LSA, left subclavian artery; RA, right atrium; RCCA, right common carotid artery; RSA, right

subclavian artery; TA, transaortic.

Technical: A3C, asynchronous advantage actor critic; CNN, convolutional neural network; DDPG, deep deterministic policy gradient; DQN, deep Q-network; GAIL, generative adversarial imitation learning GMM, Gaussian mixture modeling; HD, human

demonstration; HER, hindsight experience replay; HMM, hidden Markov models; LfD, learning from demonstration; PI2 , policy improvement with path integrals; PPO, proximal policy optimization; RL, reinforcement learning.

Evaluation: RMSE, root-mean-squared error; SR, success rate; STDEV, standard deviation.
∗LfD was used as a ML method in cases where no further information about the type of LfD was available.

Descriptions of each type of ML method can be found in Table 1.
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FIGURE 2

Diagram depicting the general vessels of interest for each study. *Study is in more than one area. Studies using non-anatomical platforms are also

shown.

TABLE 3 Key performance outcomes from studies reviewed.

References Path length Procedure time Success rate

Behr et al. (2019) n/a n/a 70% for DDPG

Chi et al. (2018a) Median: 360.5 mmmanual, 281.2 mm
robot

n/a Expert model: 100% under dry condition, 94.4% under
continuous flow, 55.6% under pulsatile flow

Chi et al. (2018b) 367.8 mm pre-RL, 211.6 mm RL 74.5± 11.6 s manual, 137.7± 7.1 s
pre-RL, 121.3± 9.5 s RL

n/a

Chi et al. (2020) Type-I Aortic Arch, BCA: 55.7± 9.4
mm automation, 51.4± 8.3 mmmanual

Type-I Aortic Arch, BCA: 52.1± 9.9 s
automation, 6.36± 1.4 s manual

Type-I Aortic Arch: 94.4% for BCA cannulation, 88.9%
for LCCA cannulation

Cho et al. (2022) n/a Real vessel phantom: 34.06 s own
algorithm, 63.2 s expert algorithm

n/a

Karstensen et al. (2022) n/a n/a 30% (ex-vivo surgical task)

Kweon et al. (2021) n/a Proximal targets: 9.29± 6.00 s
autonomous, 82.1± 34.2 s manual

>95% after 646 episodes (distal-main target)

Meng et al. (2021) n/a n/a n/a

Meng et al. (2022) n/a 97.35 s manual, 68.61 s training n/a

Rafii-Tari et al. (2013) n/a n/a n/a

Rafii-Tari et al. (2014) 2.9 m LSA manual intermediate, 0.44 m
LSA robot intermediate

n/a n/a

Wang et al. (2022) n/a n/a n/a

You et al. (2019) n/a n/a 73% no noise model (phantom)

Zhao et al. (2019) n/a n/a Medical vessel model: 94%, Designed vessel model: 92%

BCA, brachiocephalic artery; DDPG, deep deterministic policy gradient; LCCA, left common carotid artery; LSA, left subclavian artery; RL, reinforcement learning.
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intervention progress has been catalyzed by combining two recent

approaches (LfD and RL; Chi et al., 2018a, 2020; Kweon et al.,

2021; Cho et al., 2022). Here, using demonstrator data in a

third of the RL studies allowed expert operator skill in complex

endovascular procedures to be incorporated. This proficiency can

be leveraged effectively to accelerate the RL training process. The

combined approach, therefore, shortens the transition from a

simulated training environment to a physical testing environment

which typically presents significant challenges, as evidenced by the

findings of Karstensen et al. (2022). Another benefit of accelerating

the process is that in some scenarios thousands of mechanical

experimental training cycles may no longer be required leading to

reduced mechanical wear on the experimental equipment.

4.2.2. Limitations
The limitations of the studies assessed encompassed three areas:

(1) Whilst it was a strength that most studies focused on

finding a ML technique that would improve upon previous

endovascular navigation, the lack of focus on using similar or

fixed algorithms and extending the experimental environment

was a limitation. The challenge of fixing many experimental

variables whilst changing another, is compounded by the lack

of standardized in silico, in vitro or ex vivo experimental

reference standard designs for endovascular navigation, as

well as a lack of standardized performance measures. As

such, the ability to compare studies quantitatively was limited

by confounding. For example, although some performance

measures (e.g., “success rate” and “procedure time”) were

common to several studies, study comparison was limited

due to experimental variations between studies. Firstly, the

navigation path used to test the models varied. Secondly, some

studies defined “success rate” only if a task was completed

within a certain time frame, whereas others had no time limit

for completion. Thirdly, “procedure time” wasmeasured using

different starting points and target sites.

(2) Another limitation, also concerned with reference standards,

is the importance of comparing the endovascular navigation

with an autonomous system against the endovascular

navigation without an autonomous system, to determine

any incremental benefit through autonomy. Critically, the

endovascular navigation without an autonomous system

should ideally be operated by a relevant expert operating

with minimal technical constraint to derive the reference

standard (baseline) allowing comparison. Half the studies

(7/14, 50%) reviewed did compare endovascular navigation

with and without an autonomous system; however, in some

cases, the operator was technically constrained by using

a novel robotic system rather than using the equipment

used and processes they would typically employ, during

an endovascular procedure in the clinic. For instance, the

reviewed robotic systems failed to replicate crucial haptic

feedback experienced during manual procedures. These

include viscous forces between catheters and blood, friction

forces between catheters and the vessel wall, impact forces

from catheter tips and guidewire, and contact with the vessel

wall (Crinnion et al., 2022). Additionally, an expert is not

able to use their previous experience with standard equipment

and may be unfamiliar with these controls, meaning that

performance at a given task will likely be affected.

(3) There were no clinical studies of autonomous endovascular

navigation which is a reflection of the nascent field and current

TRL of the technology. The majority of studies (11/14, 79%)

were in vitro and are valuable for development and testing

as they limit the number of failures during subsequent in

vivo testing (Ionita et al., 2014). However, these studies did

not consider whether construct, face, and context validity of

endovascular navigation systems was acceptable to allow TRL

progression toward the clinic. In particular, in many of the

studies reviewed, there were translational concerns regarding

how the guidewires and/or catheters are tracked within the

vasculature, as the alternative to using fluoroscopy with

standard off-the-shelf catheters and guidewires is to create

entirely new tracking methods. For example, several papers

(6/14, 43%) used EM-tracking to visualize the catheter in real-

time, which has been shown to allow better real-time 3D

orientation, facilitating navigation, reducing cannulation and

total fluoroscopy times, and improving motion consistency

and efficiency (Schwein et al., 2017). However, clinical

translation using this method would require the introduction

of new systems with specialized catheters and guidewires,

resulting in additional costs and training. Furthermore,

other studies (5/14, 36%) employed an experimental set-up

involving a tabletop with a transparent phantom and a top-

down camera. In its current state, this tracking method would

not be suitable for future clinical studies, as a top-down

camera would not be able to provide images of the guidewire

and/or catheter through patient tissue. Nonetheless, it is noted

that top-down cameras have a narrower clinical translation

gap than EM-tracking, as they pose the same 2D challenges

as fluoroscopy.

4.3. Final thoughts and future research

Using AI, it may be possible to create a robotic system

capable of autonomously navigating catheters and wires through a

patient’s vasculature to the target site, requiring minimal assistance

from an operator. If proven to be safe and effective in clinical

trials, the benefits of autonomous navigation are numerous.

It is plausible that in clinical specialities facing a shortage of

highly-trained operators, there may be a reduced need for their

expertise, potentially leading to greater accessibility of endovascular

treatments globally, such as MT. For example, components

of MT such as complex navigation tasks could be performed

autonomously. Furthermore, autonomous systems are not limited

by human factors such as fatigue or loss of focus, potentially making

procedures safer and quicker (Mirnezami and Ahmed, 2018).

The concept of fully autonomous navigation in endovascular

interventions is promising; however, with a TRL level of 3

(Mankins, 1995), the technology is yet to complete validation

even in a laboratory environment. Due to the inadequate evidence

supporting its use (the limited number of studies and its low-level;
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Howick et al., 2011), it is far from being used in clinical practice.

It first must be demonstrated that it can reliably provide benefits

over currently available treatments before it can progress toward

clinical trials.

Importantly, reference standards for endovascular navigation

models need to be established to allow new models to be

compared. This would allow effective comparison of different AI

methods to determine the most effective model for autonomous

endovascular navigation. These reference standards need to be

established judiciously at the in silico, in vitro, and ex vivo level

with carefully-defined environments for different endovascular

tasks such as PCI, PVI, and MT. It is noteworthy that at

the in silico level, where there are continuous advancements in

modeling research and increased computational power, other areas

of clinically-orientated ML research have successfully employed

reference standards to enable reproducibility of results and

comparability between competing models (Russakovsky et al.,

2015; Stubbs et al., 2019). This includes computer vision (ImageNet

Large Scale Visual Recognition Challenge) and natural language

processing (National NLP Clinical Challenges). Furthermore, a

set of minimum reporting standards of performance should be

defined for studies investigating the use of AI in the autonomous

navigation of endovascular interventions. In combination with a

reference standard, this would allow complete comparison between

ML algorithms designed for this specific task.

Clear regulation is required to determine how the community

designs systems for the autonomous navigation in endovascular

interventions. In the seven studies (7/14, 50%) which proposed a

system with “level 3” autonomy, there is an expert operator in place

who can intervene in the autonomous task if needed (“human in

the loop”). At higher levels of autonomy where the robot can make

decisions, particularly ‘level 5’ and potentially ‘level 4’, it is unclear

how systems will be regulated. Therefore, it may be prudent, for

now, for researchers to focus on optimizing systems with ‘level 1–3’

autonomy. As such future researchers may wish to optimize simple

task autonomy, for example the autonomous navigation from the

puncture point to the target site, in a system where an operator can

stop the procedure and take over at any time. It is envisaged that as

autonomous technology and regulations mature over time, systems

will then be updated to carry out more difficult tasks.

Various AImethods have been used to investigate the possibility

of autonomous navigation in endovascular interventions. Although

it is plausible that autonomous navigation may eventually benefit

patients while reducing occupational hazards for staff, there is

currently no high-level evidence to support this assertion. For

the technology to progress, reference standards and minimum

reporting standards need to be established to allow meaningful

comparisons of new system development.
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