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Background: Transcranial direct current stimulation (tDCS) is a promising 
treatment for Alzheimer’s Disease (AD). However, identifying objective biomarkers 
that can predict brain stimulation efficacy, remains a challenge. The primary aim 
of this investigation is to delineate the cerebral regions implicated in AD, taking 
into account the existing lacuna in comprehension of these regions. In pursuit 
of this objective, we have employed a supervised machine learning algorithm to 
prognosticate the neurophysiological outcomes resultant from the confluence 
of tDCS therapy plus cognitive intervention within both the cohort of responders 
and non-responders to antecedent tDCS treatment, stratified on the basis of 
antecedent cognitive outcomes.

Methods: The data were obtained through an interventional trial. The study 
recorded high-resolution electroencephalography (EEG) in 70  AD patients and 
analyzed spectral power density during a 6  min resting period with eyes open 
focusing on a fixed point. The cognitive response was assessed using the AD 
Assessment Scale–Cognitive Subscale. The training process was carried out 
through a Random Forest classifier, and the dataset was partitioned into K equally-
partitioned subsamples. The model was iterated k times using K−1 subsamples as 
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the training bench and the remaining subsample as validation data for testing the 
model.

Results: A clinical discriminating EEG biomarkers (features) was found. The 
ML model identified four brain regions that best predict the response to tDCS 
associated with cognitive intervention in AD patients. These regions included the 
channels: FC1, F8, CP5, Oz, and F7.

Conclusion: These findings suggest that resting-state EEG features can provide 
valuable information on the likelihood of cognitive response to tDCS plus 
cognitive intervention in AD patients. The identified brain regions may serve 
as potential biomarkers for predicting treatment response and maybe guide a 
patient-centered strategy.

Clinical Trial Registration: https://classic.clinicaltrials.gov/ct2/show/NCT027721
85?term=NCT02772185&draw=2&rank=1, identifier ID: NCT02772185.

KEYWORDS

Alzheimer’s disease, electroencephalography, transcranial direct current stimulation, 
artificial intelligence, machine learning

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative condition that 
progressively impairs cognitive abilities, resulting in a loss of personal 
autonomy and dependence (Sperling et al., 2011; Atri, 2019; Knopman 
et  al., 2021). Transcranial direct current stimulation (tDCS) has 
emerged as a non-invasive and non-pharmacological alternative for 
treating cognitive impairment and improving the quality of life in AD 
patients (Cammisuli et al., 2021). It is suggested that tDCS modulates 
GABAergic and glutamatergic pathways, as well as mechanisms 
related to long-term potentiation (LTP) and long-term depression 
(LTD) associated with plasticity (Pini et al., 2022).

To date, several studies have demonstrated the superiority of 
active tDCS over sham stimulation in inducing clinical and cognitive 
changes in AD patients (Saxena and Pal, 2021; Teselink et al., 2021; 
Andrade et al., 2022). However, results across studies have shown 
heterogeneity, as noted by Grønli et al. (2022). A systematic review 
and meta-analysis investigating the effects of non-invasive 
neurostimulation on healthy older adults and individuals with AD 
revealed that the optimal timing for tDCS administration and 
methodological parameters vary based on physiological and 
pathological aging (Hsu et al., 2015). Furthermore, other researchers 
emphasize the importance of understanding individual factors that 
determine responsiveness (Wiethoff et  al., 2014; Cruz Gonzalez 
et al., 2018).

Different functional neuroimaging techniques have been 
employed to detect alterations in brain activity following tDCS 
treatment, with Electroencephalography (EEG) playing a crucial role 
in comprehending the underlying neurophysiological states 
associated with neuropsychiatric disorders and facilitating 
identification of biomarkers and diagnostic tools for these conditions 
(Al-Kaysi et  al., 2017). EEG in individuals with AD reveals an 
increase in widespread delta and theta activity, along with a reduction 
in posterior alpha and beta activity, which are distinctive features 
primarily observed during the moderate stages of the disease (Hsiao 
et al., 2013; Tsolaki et al., 2014). Moreover, studies demonstrate a 

gradual loss of cortical asymmetry throughout life, with this process 
being more accelerated in AD (Cabeza, 2002; Roe et al., 2021).

Prior research has also indicated that EEG oscillatory activity 
exhibits distinguishing patterns in responders to non-invasive brain 
stimulation compared to non-responders across various 
neuropsychiatric disorders (Woźniak-Kwaśniewska et al., 2015; He 
et  al., 2020; Metin et  al., 2020). Additionally, our recent findings 
indicate that anodal tDCS combined with cognitive stimulation 
enhances overall cognitive function and induces changes in EEG 
brain activity in patients with AD when compared to sham treatment. 
The alterations in cognitive performance are associated with 
modifications in EEG measures of brain activity in individuals with 
AD (Andrade et al., 2022).

Artificial intelligence (AI) has the potential to revolutionize 
medical practice by enhancing diagnosis, prognosis, and medical care 
planning as clinical decision support (Esteva et al., 2019; Romero-
Brufau et  al., 2020). However, implementing AI in healthcare 
necessitates addressing concerns, risks, and challenges associated 
with AI technologies (Esmaeilzadeh, 2020; Laï et  al., 2020). 
AI-enabled tools have proven beneficial in the early diagnosis and 
personalized treatment of AD through analyzing EEG patterns and 
monitoring disease progression and treatment response (Klöppel 
et al., 2012). Machine Learning (ML) is a subfield of AI that focuses 
on algorithms enabling computers to learn from data. ML empowers 
AI systems to learn and improve automatically, without being 
explicitly programmed for specific tasks (Esteva et  al., 2019). 
Moreover, AI techniques can effectively integrate multiple features to 
predict clinically significant outcomes, making them suitable for 
developing models to accurately determine if an individual patient 
would benefit from tDCS (Khosla et al., 2019; Shah et al., 2019).

Recent years have witnessed a surge of interest in applying 
machine learning (ML) to AD detection, owing to its potential in 
enhancing understanding and diagnosis. Yu et al. (2022) demonstrated 
ML’s efficacy through the Tensorizing GAN with High-order Pooling 
(THS-GAN) model, leveraging structural brain image information. 
Furthering this, Yu et  al. (2023) introduced the Multidirectional 
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Perception Generative Adversarial Network (MP-GAN) to visualize 
AD-related features across patient stages. Lei et al. (2022) presented a 
deep-learning framework linking brain regions and longitudinal data 
to predict AD clinical scores. These innovations collectively hold 
promise for refined diagnostic approaches.

Concurrently, AI-driven efforts have also been directed toward 
identifying responders and non-responders to interventions, such as 
tDCS. Paul et al. (2022) ventured into this domain by demonstrating 
that brain connectivity patterns derived from resting-state functional 
magnetic resonance imaging can predict the response of persistent 
auditory verbal hallucinations to tDCS in schizophrenia patients. 
Similarly, Kayasandik et al. (2022) applied ML analysis to forecast the 
cognitive effects of repetitive transcranial magnetic stimulation 
(rTMS) in AD patients via EEG signal analysis. However, the need for 
further research with larger sample sizes, randomized controlled 
trials, and longitudinal follow-up is evident, as indicated by the 
limitations in the study design.

The variability in findings from resting-state EEG studies 
concerning brain regions implicated in AD emphasizes the necessity 
to pinpoint specific neural areas affected in individuals with the 
disease. This determination is pivotal for distinguishing between 
intervention responders and non-responders. Existing research has 
uncovered distinct EEG patterns associated with AD. Noteworthy 
among these are increases in slow oscillations accompanied by 
reductions in fast oscillations (Andrade et al., 2018; Jafari et al., 2020), 
as well as excessive prevalence of delta waves and significant decline in 
posterior alpha rhythms (Franciotti et al., 2020). Conversely, emerging 
data propose elevated high-frequency oscillations, particularly in beta 
and gamma ranges, alongside diminished low-frequency oscillations, 
particularly in frontocentral regions (Huang et al., 2000). Furthermore, 
irregularities in peak frequency, power, and interrelatedness of alpha, 
delta, and theta rhythms are noted in relation to disease progression 
and interventions (Gaubert et al., 2019; Babiloni et al., 2021).

Given the potential of these EEG patterns to unveil unique cerebral 
functional attributes linked to AD, their investigation assumes paramount 
importance. Such an approach facilitates the identification of distinctive 
patterns and potential deviations in brain activity associated with the 
disease. This, in turn, plays a crucial role in categorizing individuals as 
intervention responders or non-responders. The inherent heterogeneity 
in neurodegeneration among AD patients underscores the significance 
of biomarkers associated with positive responses. These biomarkers can 
pave the way for precision-targeted treatments, enhancing their 
effectiveness and efficiency. Consequently, the pursuit of intervention 
response biomarkers transcends the study of response patterns, offering 
invaluable tools for tailoring AD treatment and advancing our 
understanding of disease progression (Ouchani et al., 2021).

Against this backdrop, the primary objective of our investigation 
is to delineate the cerebral regions implicated in AD, addressing the 
existing gaps in our comprehension of these regions. To achieve this 
goal, we have harnessed the power of supervised machine learning 
algorithms to predict the neurophysiological outcomes resulting from 
the amalgamation of tDCS therapy and cognitive intervention. Our 
focus rests on discerning between responders and non-responders to 
antecedent tDCS treatment, stratified based on cognitive outcomes. 
At the heart of our approach lies the spectral power analysis of EEG 
during the quiescent resting state at the inception of the study. In 
tandem, we emphasize the identification of principal cerebral loci 
associated with these outcomes. Our hypothesis posits the existence 

of a subset of discerned features with optimized predictive potential, 
thereby facilitating the identification of functional biomarkers 
conducive to prognosticating the cognitive response triggered by the 
confluence of tDCS therapy and cognitive intervention.

2. Methods

2.1. Study design

The data set used in this study was collected as part of a randomized, 
double-blind, placebo-controlled clinical trial designed to compare the 
efficacy of tDCS and cognitive intervention in patients with AD have 
been previously published by our research group (Andrade et al., 2018). 
Participants were randomly assigned to one of four groups: (a) active 
tDCS plus active cognitive intervention; (b) sham tDCS plus active 
cognitive intervention; (c) active tDCS plus placebo cognitive 
intervention; and (d) sham tDCS plus placebo cognitive intervention. In 
this study, tDCS was applied to six cortical areas affected by AD. These 
sites are primary centers involved in the manifestation of clinical 
symptoms of the disease, including the left and right portions of the 
dorsolateral prefrontal cortex, related to short-term and long-term 
memory, judgment ability and executive functions; Broca’s area and 
Wernicke’s area, located in the temporal lobe, responsible for language; 
and the right and left somatosensory association cortex, in the parietal 
lobe, related to topographical and spatial orientation and praxis. The 
choice of these areas follows previously-tested neurostimulation protocols 
in patients with AD (dos Santos Moraes et al., 2006; Passeri et al., 2022).

The non-pharmacological therapy was administered three times a 
week for a period of 2 months (24 sessions), and ADAS-Cog assessments 
were conducted within 7 days of the pre-and post-intervention phases.

By using ML models, we aimed to use the EEG oscillatory activity 
to predict the response of patients with AD to treatment with tDCS 
combined with cognitive intervention. Responders were previously 
defined as patients who exhibited a minimal clinically relevant change 
(MCRC) on the Alzheimer’s Disease Assessment Scale–Cognitive 
Subscale (ADAS-Cog) during the post-intervention phase (“ADAS-Cog 
pre” minus “ADAS-Cog post” ≥ 3.76), as indicated in previous tDCS 
clinical studies (Andrade et al., 2022). On the other hand, non-responders 
were defined as patients who did not show an MCRC (“ADAS-Cog pre” 
minus “ADAS-Cog post” ≤3.76). After this classification of groups based 
on clinical data, we proceeded to classify the neurophysiological data 
(EEG) using our ML technique, to confirm the classification of 
responders or non-responders provided by the clinical data and to 
analyze which regions would be more implicated for this classification.

2.2. Participants

The sample was composed of 70 participants diagnosed with AD 
according to NINCDS-ADRDA (McKhann et al., 1984), presenting a 
score of 1 or 2 on the Clinical Dementia Rating (CDR) (Hughes et al., 
1982), as well as a score of higher than 12 on the Mini Mental State 
Examination (MMSE) (Folstein et al., 1975). This study was approved 
by the institutional ethics committee and conducted in accordance 
with the principles outlined in the 1964 Declaration of Helsinki. 
Written informed consent was obtained from all patients or their 
surrogates before the experiment.
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2.3. Data collection

EEG was initially conducted in a controlled environment with the 
patient in a resting state under quiet conditions to obtain the 
pre-treatment electrophysiological measurements. A BrainVision 
actiCHamp® device (Brain Products, Munich, Germany) was utilized, 
featuring 32 channels with active Ag-AgCl electrodes. These electrodes 
were applied to the scalp using an adjustable cap, following the 
international 10–20 EEG system, to enable bilateral monitoring of the 
prefrontal, frontal, temporal, parietal, and occipital regions. The specific 
channels employed were: Fc1, Fc2, Fc5, Fc6, Fp1, Fp2, F3, F4, F7, F8, FT9, 
FT10, C3, C4, CP1, CP2, CP5, CP6, T7, T8, P3, P4, P7, P8, O1, and O2. 
Recording commenced once all electrodes achieved impedance below 10 
kΩ, which took approximately 6 min. The recording included alternating 
rest periods with eyes open while focusing on a fixed point, with each 
period lasting 1 min. The data were subsequently processed using the 
Brain Vision Analyzer software program (Brain Products, Munich, 
Germany), including artifact inspection and removal. Following data 
segmentation, the Fast Fourier Transform was applied to calculate the 
power spectra of the delta, theta, alpha, beta, and gamma frequency bands.

2.4. Statistical analysis

Taking into account the objectives of the study, a detailed analysis 
of supervised learning ML algorithms was conducted. This approach 
is characterized by having prior knowledge of the output variable 
through learning from past values of the target variable (Bystad et al., 
2016). Within this framework, the optimal subset of EEG features was 
identified using the Random Forest (RF) feature importance tool. This 
metric represents the relative importance of each variable for the 
prediction model (Inagawa et al., 2019).

2.4.1. Random Forest method
The Random Forest algorithm by Breiman (2001) is a powerful 

strategy for classification and regression tasks, employing multiple 
decision trees to improve accuracy and prevent overfitting. Each tree 
follows a flowchart structure, using binary feature-based splits to 
predict the target variable (Figure 1).

Through bagging, the algorithm combines these trees by creating 
subsets of training data, reducing variance. It also fosters diversity by 
randomly selecting features during tree construction, minimizing 
correlation. Typically, the square root of total features guides feature 
selection per split. In classification, tree predictions merge through 
majority voting; in regression, they average, boosting accuracy and 
resilience. The mathematical representation of Random Forest’s final 
classification prediction is illustrated in Figure 2. For classification 
tasks, the Random Forest prediction arises from the amalgamation of 
individual decision tree predictions using majority voting, symbolized 
by “mode” (Liaw and Wiener, 2002). In regression scenarios, the 
ultimate prediction is expressed by the subsequent equation, with yt 
representing the tth decision tree’s forecast and T signifying the total 
forest trees (Liaw and Wiener, 2002; Hastie et al., 2009) (Figure 3).

Meticulous data cleaning, modeling, and structuring were 
conducted during the preprocessing phase to ensure data quality. 
Exploratory data analysis techniques, including the utilization of 
boxplots, were employed to examine data distribution and detect any 
irregularities. The analysis confirmed uniform data distribution 
without outliers, further affirming the suitability of the Random Forest 
(RF) method for our study. This is a robust ML approach that combines 
decision trees and proved to be an optimal choice for our study due to 
its capabilities in handling intricate and extensive datasets, alleviating 
overfitting concerns, and offering reliable estimates of variable 
importance (Breiman, 2001). By harnessing the inherent strengths of 
the Random Forest method, we  developed an algorithm adept at 

FIGURE 1

Random Forest working diagram representation.
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effectively analyzing complex patterns within EEG frequency bands. 
This facilitated accurate predictions and facilitated insights into the 
relationship between these oscillations and respondent characteristics.

RF was employed during the training process, capitalizing on its 
ensemble of decision trees to construct a more precise and stable 
prediction model. Thus, two primary strategies were implemented to 
combat overfitting: randomization of data samples and selection of 
variable subsets during tree node splitting. A thorough evaluation of 
all variables was conducted at each iteration to identify the most 
informative variable, thereby ensuring minimal error in tree splitting 
(Breiman, 2001). RF facilitated the creation of smaller trees that 
varied based on the presented EEG data, considering a limited 
number of variables. The final prediction was obtained through 
aggregating individual predictions from each tree (Cutler et  al., 
2012). Moreover, parameter optimization was crucial to ensure the 
robustness of our prediction model (Andrade et al., 2018). Solely 
evaluating the model based on training data can lead to overfitting, 
where the model exhibits high performance during training, but 
struggles when applied to new data. Thus, we  implemented the 
Random Search technique within the RF algorithm in order to 
mitigate this issue, which depends on hyperparameters that directly 
impact the model’s performance. The search space was defined based 
on the Scikit-Learn library (Pedregosa et  al., 2011), aiming to 
establish an efficient strategy for parameter selection.

Next, the RandomizedSearchCV classifier from the Random Forest, 
developed by the Scikit-Learn library (Probst et  al., 2019), was 
implemented. This approach involved K-fold cross-validation, where the 
dataset was divided into K = 3 equally partitioned subsamples. The model 
was trained K−1 times during each iteration using the subsamples as the 
training set, with the remaining subsample serving as the validation set 
to evaluate the model’s performance. This process was repeated until each 
subsample had been utilized as the validation set for the other subsamples.

Splitting a dataset into training and test sets is vital because it 
allows for evaluating how well a model generalizes to new data, 
preventing overfitting by assessing performance on unseen examples. 
This separation also aids in hyperparameter tuning, performance 
metric calculation, analyzing bias and variance, comparing models 
fairly, and building trust in machine learning results. Test sets provide 
a reliable basis for evaluating model performance, enabling better 
decision-making and accurate assessments of model effectiveness. The 
parameter values were adjusted based on the specific dataset used. 

Given the relatively small size of the dataset, it was determined that 
the obtained results aligned with the expected outcomes.

By incorporating this modified data into the RF algorithm, 
we obtained the parameters of the RF model, and their corresponding 
values were as follows: (1) The “Bootstrap” parameter was set to 
“False,” indicating a sampling without replacement of the training 
data; (2) The splitting criterion used was “gini,” which measures the 
data impurity at each tree node; (3) The maximum number of features 
considered for each split was limited to “sqrt,” corresponding to the 
square root of the total number of features; (4) A total of “223” 
decision trees were created in the model; (5) The minimum number 
of samples required to form a leaf node was set to “4,” while the 
minimum number of samples to perform a split at an internal node 
was defined as “2”; and (6) The maximum depth of the tree was 
specified as “50.” These parameters were optimized using the Random 
Search technique in conjunction with K-fold cross-validation to 
ensure the proper performance of the RF model in the study.

To judge the performance of the ML classification algorithms, 
we ran confusion matrices for the calculation of various performance 
metrics, such as accuracy, precision, recall, and F1-score. These 
metrics help assess the classifier’s overall performance, including its 
ability to correctly classify samples, identify true positives, avoid false 
positives, and detect false negatives. Along with these measures, 
we carried out response prediction on all patients calculating: the 
proportion of responders that were correctly classified (i.e., true 
positives), the proportion of non-responders that were correctly 
classified (i.e., true negatives), the proportion of responders that were 
misclassified as non-responders (i.e., false positive) and the portion 
of non-responders that were misclassified as responders (i.e., 
false negative).

Additionally, we employed entropy to select brain regions that 
most significantly contribute to classification. The algorithm gauges 
data distribution across predictor variables by considering fluctuations 
within the target variable. Higher entropy values indicate more data 
disorder, while lower values signify enhanced data organization. The 
algorithm assesses information gain for each variable, quantifying the 
correspondence between predictor and target variables. Essentially, it 
elucidates the extent to which the activity within specific brain regions 
explicates variations in the target variable, which, in the context of this 
study, could pertain to cognitive response or disease progression. The 
brain region that showcases the most substantial information gain is 
subsequently chosen as the pivotal variable for the initial node of the 
decision tree. This selection process hinges upon the brain region’s 
capacity to effectively elucidate the intricacies of the target variable, 
ultimately paving the way for the commencement of the decision tree 
construction centered around the most influential brain region.

3. Results

All participants were included in the analysis. The baseline 
characteristics is provided in Table 1. The difference in ADAS-cog 
scores between baseline and endpoint was significant (mean group 
difference 7.12 points; 95% CI 11.03–18.75; p < 0.002). In 30 of 70 
volunteers, ADAS-Cog decreased with the MCRC and these 
participants were classified as responders. Non-responders remained 
on a similar level from baseline or increased their ADAS-cog scores 
after treatment.

FIGURE 2

The mathematical representation of Random Forest's final 
classification prediction.

FIGURE 3

The Random Forest prediction equation.
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The RF model identified four key brain activity points at baseline 
associated with two frequency bands as the strongest predictors of 
cognitive response to tDCS combined with cognitive intervention in 
AD patients. These findings are presented in Table 2, along with their 
respective feature importance.

To investigate the channels that best predict the treatment response, 
we  then compared the error rates across regions. The classification 
accuracy of individual channels is shown in Figure  4. The results 
indicate that the channels located near or inside the brain stimulation 
area yielded the highest classification accuracy: FC1 (71 ± 4%), F8 
(72 ± 8%), CP1 (69 ± 3%), Oz (62 ± 11%), and P7 (64 ± 6%). The average 
error was lowest for frontal, parietal-occipital area (p < 0.01).

4. Discussion

In this study the objective was to delineate baseline resting-state EEG 
features capable of effectively discriminating between intervention 
responders and non-responders among AD patients, while pinpointing 
the specific cerebral regions most implicated in this classification. 

Employing a random forest classifier, we leveraged baseline EEG spectral 
power to prognosticate the cognitive improvement outcomes subsequent 
to the intervention. Through comparisons of average classifications 
encompassing all cerebral regions, the frontal and parietal-occipital 
channels exhibited superior performance in predicting treatment 
response. Notably, this study represents the inaugural endeavor, to the best 
of our knowledge, in successfully applying EEG-based machine learning 
to predict individual responses to brain stimulation therapy for AD.

Given the complexity of AD, treatment of patients remains 
challenging (Passeri et  al., 2022). Current prediction models of 
cognitive response in AD patients are typically based on clinical 
measures and the underlying mechanisms of recovery are still poorly 
understood. Therefore, implementing quantitative EEG presents a 
promising biomarker for investigating the neurophysiological 
impacts of non-invasive brain stimulation techniques. We recently 
showed that individuals with AD who received active tDCS in 
combination with cognitive stimulation exhibited enhanced cognitive 
performance and greater alterations in EEG spectral power and 
bilateral EEG coherence in comparison to those in the sham group 
(Andrade et al., 2022). The current study showed that five channels 
held predictive information of cognitive improvement following a 
tDCS treatment. The channels identified corresponded with cortical 
regions stimulated during treatment. Notably, abnormal EEG activity 
within the frontal and parietal cortex, the region underlying the 
channel pairs identified, has previously been shown to predict the 
cognitive response to pharmacological treatment (Passeri et  al., 
2022). These patterns of EEG abnormalities in AD patients are 
characterized by a generalized increase in delta and theta activity, a 
reduction in posterior alpha and beta activity in the frontal and 
temporo-parietal areas, with less complex brain activity correlated 
with severity of dementia (dos Santos Moraes et al., 2006; Babiloni 
et al., 2013). Moreover, we observed that the accurate EEG outcome 
classifier confirms frontal and parietal–temporal areas as 
neuroanatomical marker for brain stimulation. This is a finding of 
particular interest, as tDCS of the dorsolateral prefrontal cortex, 
inferior parietal region and temporal lobe has also been used in the 
experimental treatment of Alzheimer’s disease (Van der Hiele et al., 
2007; Bystad et al., 2016; Roncero et al., 2017; Inagawa et al., 2019; de 
Almeida Rodrigues et al., 2020).

Our results further showed that EEG occipital area were 
predictive of treatment response. This finding may be an indication 
of the presence of complex and diverse pathway underling AD 
neurobiology. Interestingly, the reduction in the alpha band and 
reduced beta power in the parietal and occipital regions has 
previously been shown to differentiate normal aging, mild cognitive 
impairment, and AD (Jeong, 2004; Rossini et al., 2006). According to 
Plaza-Rosales et  al. (2023), the core network for navigation is 
constituted by the hippocampus, parietal, prefrontal, and occipital 
regions. This network impairment affects several frontal lobe areas 
and occipitofrontal desynchronization in subjects with AD is part of 
this compensatory mechanism rather than just a poor visual–spatial 
ability during cognitive tasks. Further research is necessary to 
confirm this putative role of occipital area and the clinical utility of 
this target in tDCS treatment of AD.

Our study provides valuable insights into personalized treatments 
for AD by conducting a secondary analysis that goes beyond the 
overall effectiveness of tDCS. We employed a ML approach to focus 
on patient stratification and predict cognitive response. The 

TABLE 1 Baseline characteristics of all participants.

Variables Type of measurement

Age (years) M(SD) 77.8 (± 3.6)

Sex

Female (N) 32

Male (N) 38

Instruments

DAD scores M(SD) 85.2 (± 2.8)

ADAS-Cog scores M(SD) 16.4 (± 2.3)

NPI-Q scores M(SD) 40.8 (± 4.2)

Disease duration (months) M(SD) 18.5 (± 3.4)

Medications

Colinesterase inhibitors (N) 23

Memantine* (N) 51

ADAS-Cog, Alzheimer’s disease assessment scale-cognitive subscale; DAD, disability 
assessment for dementia; NPI-Q, neuropsychiatric inventory questionnaire; ChEIs, 
cholinesterase inhibitors. Descriptive data is presented as M(SD) = mean ± standard 
deviations; and N = number of participants. *Memantine is an FDA-approved medication 
used in the treatment of Alzheimer’s disease. It belongs to a class of drugs known as 
N-methyl-D-aspartate (NMDA) receptor antagonists.

TABLE 2 Brain regions with the highest predictive scores for response to 
neurostimulation combined with cognitive stimulation in AD patients.

Brain region Average 
amplitude (μV)

Feature 
importance

Frontal <= 0.959 0.074

Central/parietal <= 0.995 0.069

Temporal <= 0.995 0.022

Occipital <= 1.02 0.051

Average amplitudes refer to the mean of the patterns or oscillations of electrical brain activity 
at different frequencies (delta, theta, alpha, beta, and gamma) for each brain region. Feature 
importance corresponds to the frequency of the brain region’s appearance across all trees. 
The range of feature importance values in a Random Forest can vary from 0 to 1, with higher 
values indicating greater importance and being considered more influential in making 
accurate predictions.
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resting-state baseline EEG of AD patients proved to be a reliable 
predictor of cognitive changes, as measured by the ADAS-cog 
instrument, following treatment with tDCS combined with cognitive 
intervention. We specifically identified specific cortical areas that 
were highly predictive in patients who responded to the intervention. 
Targeting these regions in the intervention could potentially reduce 
response variability and enhance the effectiveness of these techniques 
in clinical practice.

According to your results, the brain regions most involved in 
predicting responders to intervention in AD patients were 
represented by the channels FC1, F8, CP5, Oz, and F7. FC1 and F8 
are situated in the frontal cortex, which plays a pivotal role in 
cognitive functions such as memory, attention, and executive 
processes. CP5 is associated with the parietal cortex, involved in 
spatial processing and attention. Oz corresponds to the occipital 
cortex, responsible for visual processing, while F7 resides in the 
frontal-temporal junction, implicated in various cognitive tasks 
(Huang et  al., 2000). Yang et  al. (2022) hint at these channels’ 
relevance in capturing distinct connectivity patterns, which could 
be perturbed in AD-related disruptions. This aligns with the notion 
that these channels might offer insights into the structural and 
functional intricacies characterizing AD. Also, these specific brain 
regions align with the documented alterations in AD. Frontal regions 
(FC1 and F8) are affected due to the disruption of communication 
between various regions, as seen in AD’s cognitive deficits. The 
parietal cortex (CP5) is implicated in spatial processing deficits, and 
the occipital cortex (Oz) experiences disruptions in visual processing. 
The frontal-temporal junction (F7) is relevant to memory and other 
cognitive functions compromised in AD (Plaza-Rosales et al., 2023). 
In essence, the convergence of EEG findings, the understanding of 
AD pathology, and the insight into structural and functional 
dynamics within specific brain regions provide a comprehensive 
framework for the selection of FC1, F8, CP5, Oz, and F7 channels. 
These regions, inherently linked to the cognitive impairments and 
neural disruptions in AD, emerge as pivotal predictors for assessing 
tDCS intervention response in AD patients.

The observed amplification of power in brain regions linked to 
FC1, F8, CP5, Oz, and F7 channels among AD individuals 
displaying notable treatment responses (more than 4 points gain in 

ADAS-Cog scores) adds a layer of complexity to treatment efficacy 
in the context of AD. These regions, essential for cognitive processes 
encompassing memory, attention, visual processing, and executive 
functions, are intertwined with several factors intrinsic to 
AD’s pathophysiology.

The augmented power within regions affiliated with the Default 
Mode Network (Chen et  al., 2023) potentially underscores 
preserved intrinsic connectivity and engagement in introspective 
cognitive tasks, suggesting that these regions could be crucial for 
treatment-induced cognitive enhancements. Enhanced functional 
integrity within these regions among responders might contribute 
to their favorable treatment response. Moreover, individuals with 
substantial cognitive reserve could leverage these regions’ intact 
neural resources (Raichle et al., 2001), potentially explaining the 
connection between heightened power and positive treatment 
outcomes. Additionally, the variance in disease severity might 
underpin these observations, as responders might belong to a 
subgroup with milder neurodegeneration, rendering these regions 
more responsive to treatment-induced improvements. The 
involvement of plasticity mechanisms (Stern, 2002) is also plausible, 
as the heightened power might signify the potential for 
reorganization and adaptation, aligning with the brain’s inherent 
ability to remodel its functional networks. Altogether, the increased 
power in these regions among treatment responders highlights their 
relevance, demanding further investigation to comprehend the 
intricate interplay between network dynamics, cognitive reserve, 
disease severity, and plasticity mechanisms within these specific 
neural substrates.

Specifically, the identified brain regions in this study exhibit a 
noteworthy relationship with the Default Mode Network (DMN) 
(Chen et  al., 2023). The DMN is recognized as a crucial neural 
network that becomes compromised early in the course of AD. The 
posterior brain areas, including the precuneus, which is part of the 
DMN, have been reported to display hyperexcitability in AD patients 
(Merzenich et  al., 2014). This hyperexcitability reflects synaptic 
dysfunction, contributing to disruptions in long-range connectivity 
(Casula et al., 2023). Therefore, the correspondence between our 
study’s findings and the existing knowledge of hyperexcitability in the 
DMN-associated posterior regions adds a layer of significance to our 

FIGURE 4

The average classification error for the best channel combinations per brains regions. (A) Montage of transcranial direct current stimulation (tDCS) 
sessions according to the EEG 10/20 System. (B) Classification accuracy of individual channels based on cognition labels. White dots indicate the 
channels with highest accuracy.
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results. It suggests that the aberrant activity observed in FC1, F8, 
CP5, Oz, and F7 could be related to the malfunctioning of the DMN, 
which might be  indicative of underlying AD pathology and offer 
potential insights into the mechanisms behind the observed 
treatment response in the context of tDCS interventions combined 
with cognitive intervention.

The inquiry into the nature of the identified biomarkers prompts 
an exploration of their attributes and relevance in delineating 
treatment responders from non-responders. Yang et  al. (2022) 
investigation into person-identifying EEG “base signals” underscores 
their temporal stability, contextual independence, and consistent 
distribution across channels. Particularly pronounced within 
monozygotic twins, these signals suggest a structural basis rather 
than functional manifestations, extending beyond specific task 
contexts. Concurrently, Chen et al. (2023) study of rTMS treatment 
efficacy in Alzheimer’s patients highlights the left angular gyrus as a 
target for cognitive enhancement. Cognitive improvements correlate 
with DMN connectivity patterns, indicating a potential interplay 
between structural and functional disparities—a composite nature 
intrinsic to the biomarkers. Synthesizing these insights, it is 
conceivable that the biomarkers identified in rTMS interventions 
(Chen et al., 2023) encapsulate a blend of structural and functional 
distinctions between responders and non-responders. These 
conjectures align with the person-identifying EEG base signals’ 
potential portrayal of unique connectivity patterns within cerebral 
networks, delineated by Yang et al. (2022). The reciprocal influence 
of structural traits and functional dynamics, as evidenced by DMN 
subsystem connectivity during rTMS interventions, emerges as an 
influencer of cognitive responses. The identified biomarkers, 
reflecting both structural and functional aspects of treatment 
response, could potentially extend their influence to tDCS studies 
due to the shared underlying dynamics of brain modulation. While 
the direct nature of tDCS introduces unique variables, the interplay 
between structure and function highlighted by these biomarkers 
remains relevant.

However, it is important to acknowledge the limitations of our 
study. Firstly, it is worth noting that the eligibility criteria for participants 
in our randomized clinical trial may differ from the patient profiles 
encountered in routine clinical practice, such as frontotemporal 
dementia, mild cognitive impairment, and severe AD. To measure the 
cofounding effects of inter-individual differences, the development of 
tDCS protocols considering the EEG characteristics would be useful to 
the future implementation of these ML models in clinical practice. 
Secondly, it is essential to highlight that our analysis has predominantly 
centered on EEG data and its associations with cognitive responses 
among patients with AD. However, it is of utmost significance to 
acknowledge that pertinent clinical variables, such as age, sex, and 
baseline cognitive status, were not encompassed within our analysis. To 
obtain a more holistic grasp of the multifaceted determinants 
influencing cognitive outcomes in AD, forthcoming investigations 
should seek to integrate these pivotal variables. Moreover, broadening 
the scope of our study to encompass larger and more diverse cohorts 
would undoubtedly bolster the external validity of our findings. Thirdly, 
while our study maintains an exploratory and neurophysiological focus, 
it’s important to note that considering all four participant groups could 
provide deeper insights into the interactions between tDCS treatment, 
cognitive intervention, and practice effects on ADAS-Cog scores. By 
doing so, we could better elucidate the potential interplay between 

tDCS treatment, cognitive intervention, and practice/learning effects, 
ultimately leading to a more comprehensive understanding of the 
observed changes in ADAS-Cog scores. However, our analysis is 
concentrated on tDCS treatment responders, reflecting the study’s 
exploratory nature and utilization of machine learning techniques.

Overall, our findings underscore the potential of personalized 
treatments in AD and pave the way for future research to validate and 
expand upon our results in larger and more diverse cohorts. 
Indications between augmented power in brain regions found in this 
study and positive treatment responses in AD hold profound clinical 
and research implications. These findings underscore the potential of 
utilizing these regions as biomarkers for treatment responsiveness, 
allowing for more personalized therapeutic interventions tailored to 
individual neural profiles. This could enhance treatment efficacy and 
optimize cognitive improvements in AD patients. From a research 
perspective, these observations stimulate further investigations into 
the underlying mechanisms that render these regions more receptive 
to treatment-induced enhancements.

5. Conclusion

Our results support that resting-state EEG dataset could be a 
viable approach for extracting predictive features of tDCS treatment 
efficacy in patients with AD. Furthermore, specific cortical regions 
that are most predictive of the cognitive response to the interventions 
have been identified. The achieved results hold clinical importance 
due to the ability to identify cortical regions that would serve as 
optimal targets for non-invasive brain stimulation in AD treatment. 
Considering that routine scalp EEG is relatively inexpensive 
(compared to intracranial EEG and magnetic resonance image) and 
feasible to acquire in ambulatory settings, our findings can form the 
basis for novel and cost-effective ways to assist the AD patients, 
utilizing prognostic biomarkers can guide and optimize the 
therapeutic application of cognitive treatment.

Data availability statement

Publicly available datasets were analyzed in this study. This data 
can be found at: https://www.clinicaltrials.gov/ct2/show/NCT027721
85?term=NCT02772185&draw=2&rank=1.

Ethics statement

The studies involving humans were approved by Ethics 
committee of the Federal University of Paraíba (CAAE: 
44388015.7.0000.5188). The studies were conducted in accordance 
with the local legislation and institutional requirements. The 
participants provided their written informed consent to participate 
in this study.

Author contributions

SA, LS-S, FF, KM, NA, BF-C and JS are the investigators 
responsible for project design and protocol writing. SA, CC, EA, EL, 

https://doi.org/10.3389/fnhum.2023.1234168
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.clinicaltrials.gov/ct2/show/NCT02772185?term=NCT02772185&draw=2&rank=1
https://www.clinicaltrials.gov/ct2/show/NCT02772185?term=NCT02772185&draw=2&rank=1


Andrade et al. 10.3389/fnhum.2023.1234168

Frontiers in Human Neuroscience 09 frontiersin.org

FF, MC and JS contributed to the study background, general design, 
study variable definition, and statistical analysis planning. SA, LS-S, 
KM, LA, DB, ES, AL, RP, EM, SY, NA, BF-C, and JS contributed to the 
preparation of the project. All authors contributed to the article and 
approved the submitted version.

Funding

BF-C was the recipient of a Senior Distinguished Researcher 
position (Beatriz Galindo Program) in the Department of Psychology 
at Universidad de Córdoba (ref. BEAGAL18/00006). The study was 
supported by a grant from the Brazilian National Council for Scientific 
and Technological Development (CNPQ) to BF-C (422533/2016-5).

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

References
Al-Kaysi, A. M., Al-Ani, A., Loo, C. K., Powell, T. Y., Martin, D. M., Breakspear, M., 

et al. (2017). Predicting tDCS treatment outcomes of patients with major depressive 
disorder using automated EEG classification. J. Affect. Disord. 208, 597–603. doi: 
10.1016/j.jad.2016.10.021

Andrade, S. M., Machado, D. G. S., Silva-Sauer, L., Regis, C. T., Mendes, C. K. T. 
T., Araújo, J. S. S., et al. (2022). Effects of multisite anodal transcranial direct 
current stimulation combined with cognitive stimulation in patients with 
Alzheimer's disease and its neurophysiological correlates: a double-blind 
randomized clinical trial. Neurophysiol. Clin. 52, 117–127. doi: 10.1016/j.
neucli.2022.02.003

Andrade, S. M., Oliveira, E. A., Alves, N. T., Santos, A. C. G., Mendonça, C. T. P. L., 
Sampaio, D. D. A., et al. (2018). Neurostimulation combined with cognitive intervention 
in Alzheimer's disease (NeuroAD): study protocol of double-blind, randomized, 
factorial clinical trial. Front. Aging Neurosci. 10:334. doi: 10.3389/fnagi.2018. 
00334

Atri, A. (2019). The Alzheimer’s disease clinical spectrum: diagnosis and management. 
Med. Clin. N. Am. 103, 263–293. doi: 10.1016/j.mcna.2018.10.009

Babiloni, C., Arakaki, X., Azami, H., Bennys, K., Blinowska, K., Bonanni, L., et al. 
(2021). Measures of resting state EEG rhythms for clinical trials in Alzheimer's disease: 
recommendations of an expert panel. Alzheimers Dement. 17, 1528–1553. doi: 10.1002/
alz.12311

Babiloni, C., Carducci, F., Lizio, R., Vecchio, F., Baglieri, A., Bernardini, S., et al. 
(2013). Resting state cortical electroencephalographic rhythms are related to gray matter 
volume in subjects with mild cognitive impairment and Alzheimer's disease. Hum. Brain 
Mapp. 34, 1427–1446. doi: 10.1002/hbm.22005

Breiman, L. (2001). Random forests. Mach. Learn. 45, 5–32. doi: 10.1023/A:1010933404324

Bystad, M., Grønli, O., Rasmussen, I. D., Gundersen, N., Nordvang, L., 
Wang-Iversen, H., et al. (2016). Transcranial direct current stimulation as a memory 
enhancer in patients with Alzheimer’s disease: a randomized, placebo-controlled trial. 
Alzheimers Res. Ther. 8:13. doi: 10.1186/s13195-016-0180-3

Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD 
model. Psychol. Aging 17, 85–100. doi: 10.1037//0882-7974.17.1.85

Cammisuli, D. M., Cignoni, F., Ceravolo, R., Bonuccelli, U., and Castelnuovo, G. 
(2021). Transcranial direct current stimulation (tDCS) as a useful rehabilitation strategy 
to improve cognition in patients with Alzheimer's disease and Parkinson's disease: an 
updated systematic review of randomized controlled trials. Front. Neurol. 12:798191. 
doi: 10.3389/fneur.2021.798191

Casula, E. P., Borghi, I., Maiella, M., Pellicciari, M. C., Bonnì, S., Mencarelli, L., et al. 
(2023). Regional Precuneus cortical Hyperexcitability in Alzheimer's disease patients. 
Ann. Neurol. 93, 371–383. doi: 10.1002/ana.26514

Chen, H. F., Sheng, X. N., Yang, Z. Y., Shao, P. F., Xu, H. H., Qin, R. M., et al. (2023). 
Multi-networks connectivity at baseline predicts the clinical efficacy of left angular 
gyrus-navigated rTMS in the spectrum of Alzheimer's disease: a sham-controlled study. 
CNS Neurosci. Ther. 29, 2267–2280. doi: 10.1111/cns.14177

Cruz Gonzalez, P., Fong, K. N. K., Chung, R. C. K., Ting, K.-H., Law, L. L. F., and 
Brown, T. (2018). Can transcranial direct-current stimulation alone or combined with 
cognitive training be used as a clinical intervention to improve cognitive functioning in 
persons with mild cognitive impairment and dementia? A systematic review and meta-
analysis. Front. Hum. Neurosci.:12. doi: 10.3389/fnhum.2018.00416

Cutler, A., Cutler, D. R., and Stevens, J. R. (2012). “Random forests” in Ensemble 
machine learning. eds. C. Zhang and Y. Q. Ma (New York: Springer), 157–175.

de Almeida Rodrigues, E. T., da Silva Machado, D. G., Leon de Mendonça, C. T. P., da 
Rocha, S. C., Ries, A., Torro, N., et al. (2020). Multisite transcranial direct current 

stimulation in two patients with Alzheimer’s disease: a 10-month follow-up study. 
Neurophysiol. Clin. 50, 393–395. doi: 10.1016/j.neucli.2020.08.001

dos Santos Moraes, W. A., Poyares, D. R., Guilleminault, C., Ramos, L. R., 
Bertolucci, P. H. F., and Tufik, S. (2006). The effect of donepezil on sleep and REM sleep 
EEG in patients with Alzheimer disease: a double-blind placebo-controlled study. Sleep 
29, 199–205. doi: 10.1093/sleep/29.2.199

Esmaeilzadeh, P. (2020). Use of AI-based tools for healthcare purposes: a survey study 
from consumers' perspectives. BMC Med. Inform. Decis. Mak. 20:170. doi: 10.1186/
s12911-020-01191-1

Esteva, A., Robicquet, A., Ramsundar, B., Volodynyr, K., DePristo, M., et al. (2019). A 
guide to deep learning in healthcare. Nat. Med. 25, 24–29. doi: 10.1038/s41591-018-0316-z

Folstein, M. F., Folstein, S. E., and McHugh, P. R. (1975). Mini-mental state: a practical 
method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 12, 
189–198. doi: 10.1016/0022-3956(75)90026-6

Franciotti, R., Pilotto, A., Moretti, D. V., Falasca, N. W., Arnaldi, D., Taylor, J. P., et al. 
(2020). Anterior EEG slowing in dementia with Lewy bodies: a multicenter European 
cohort study. Neurobiol. Aging 93, 55–60. doi: 10.1016/j.neurobiolaging.2020.04.023

Gaubert, S., Raimondo, F., Houot, M., Corsi, M. C., Naccache, L., Diego Sitt, J., et al. 
(2019). EEG evidence of compensatory mechanisms in preclinical Alzheimer's disease. 
Brain 142, 2096–2112. doi: 10.1093/brain/awz150

Grønli, O. K., Daae Rasmussen, I., Aslaksen, P. M., and Bystad, M. (2022). A four-
month home-based tDCS study on patients with Alzheimer's disease. Neurocase 28, 
276–282. doi: 10.1080/13554794.2022.2100710

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning. 
New York, NY: Springer. doi: 10.1007/978-0-387-84858-7

He, R., Fan, J., Wang, H., Zhong, Y., and Ma, J. (2020). Differentiating responders and 
non-responders to rTMS treatment for disorder of consciousness using EEG after-
effects. Front. Neurol. 15:1545. doi: 10.3389/fneur.2020.583268

Hsiao, F.-J., Wang, Y.-J., Yan, S.-H., Chen, W. T., and Lin, Y.-Y. (2013). Altered 
oscillation and synchronization of default-mode network activity in mild Alzheimer's 
disease compared to mild cognitive impairment: an electrophysiological study. PLoS One 
8:e68792. doi: 10.1371/journal.pone.0068792

Hsu, W.-Y., Ku, Y., Zanto, T. P., and Gazzaley, A. (2015). Effects of noninvasive brain 
stimulation on cognitive function in healthy aging and Alzheimer's disease: a systematic 
review and meta-analysis. Neurobiol. Aging 36, 2348–2359. doi: 10.1016/j.
neurobiolaging.2015.04.016

Huang, C., Wahlund, L., Dierks, T., Julin, P., Winblad, B., and Jelic, V. (2000). 
Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent 
EEG sources: a cross-sectional and longitudinal study. Clin. Neurophysiol. 111, 
1961–1967. doi: 10.1016/s1388-2457(00)00454-5

Hughes, C. P., Berg, L., Danziger, W., Coben, L. A., and Martin, R. L. (1982). A new 
clinical scale for the staging of dementia. Br. J. Psychiatry 140, 566–572. doi: 10.1192/
bjp.140.6.566

Inagawa, T., Yokoi, Y., Narita, Z., Maruo, K., Okazaki, M., and Nakagome, K. (2019). 
Safety and feasibility of transcranial direct current stimulation for cognitive rehabilitation 
in patients with mild or major neurocognitive disorders: a randomized sham-controlled 
pilot study. Front. Hum. Neurosci. 13:273. doi: 10.3389/fnhum.2019.00273

Jafari, Z., Kolb, B. E., and Mohajerani, M. H. (2020). Neural oscillations and brain 
stimulation in Alzheimer's disease. Prog. Neurobiol. 194:101878. doi: 10.1016/j.
pneurobio.2020.101878

Jeong, J. (2004). EEG dynamics in patients with Alzheimer’s disease. Clin. 
Neurophysiol. 115, 1490–1505. doi: 10.1016/j.clinph.2004.01.001

https://doi.org/10.3389/fnhum.2023.1234168
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://doi.org/10.1016/j.jad.2016.10.021
https://doi.org/10.1016/j.neucli.2022.02.003
https://doi.org/10.1016/j.neucli.2022.02.003
https://doi.org/10.3389/fnagi.2018.00334
https://doi.org/10.3389/fnagi.2018.00334
https://doi.org/10.1016/j.mcna.2018.10.009
https://doi.org/10.1002/alz.12311
https://doi.org/10.1002/alz.12311
https://doi.org/10.1002/hbm.22005
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1186/s13195-016-0180-3
https://doi.org/10.1037//0882-7974.17.1.85
https://doi.org/10.3389/fneur.2021.798191
https://doi.org/10.1002/ana.26514
https://doi.org/10.1111/cns.14177
https://doi.org/10.3389/fnhum.2018.00416
https://doi.org/10.1016/j.neucli.2020.08.001
https://doi.org/10.1093/sleep/29.2.199
https://doi.org/10.1186/s12911-020-01191-1
https://doi.org/10.1186/s12911-020-01191-1
https://doi.org/10.1038/s41591-018-0316-z
https://doi.org/10.1016/0022-3956(75)90026-6
https://doi.org/10.1016/j.neurobiolaging.2020.04.023
https://doi.org/10.1093/brain/awz150
https://doi.org/10.1080/13554794.2022.2100710
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.3389/fneur.2020.583268
https://doi.org/10.1371/journal.pone.0068792
https://doi.org/10.1016/j.neurobiolaging.2015.04.016
https://doi.org/10.1016/j.neurobiolaging.2015.04.016
https://doi.org/10.1016/s1388-2457(00)00454-5
https://doi.org/10.1192/bjp.140.6.566
https://doi.org/10.1192/bjp.140.6.566
https://doi.org/10.3389/fnhum.2019.00273
https://doi.org/10.1016/j.pneurobio.2020.101878
https://doi.org/10.1016/j.pneurobio.2020.101878
https://doi.org/10.1016/j.clinph.2004.01.001


Andrade et al. 10.3389/fnhum.2023.1234168

Frontiers in Human Neuroscience 10 frontiersin.org

Kayasandik, C. B., Velioglu, H. A., and Hanoglu, L. (2022). Predicting the effects of 
repetitive transcranial magnetic stimulation on cognitive functions in patients with 
Alzheimer’s disease by automated EEG analysis. Front. Cell. Neurosci. 16:845832. doi: 
10.3389/fncel.2022.845832

Khosla, M., Jamison, K., Ngo, G. H., Kuceyeski, A., and Sabuncu, M. R. (2019). 
Machine learning in resting-state fMRI analysis. Magn. Reson. Imaging 64, 101–121. doi: 
10.1016/j.mri.2019.05.031

Klöppel, S., Abdulkadir, A., Jack, C. R. Jr., Koutsouleris, N., Mourão-Miranda, J., and 
Vemuri, P. (2012). Diagnostic neuroimaging across diseases. NeuroImage 61, 457–463. 
doi: 10.1016/j.neuroimage.2011.11.002

Knopman, D. S., Amieva, H., Petersen, R. C., Chételat, G., Holtzman, D. M., Hyman, B. T., 
et al. (2021). Alzheimer disease. Nat. Rev. Dis. Primers. 7:1. doi: 10.1038/s41572-021-00269-y

Laï, M. C., Brian, M., and Mamzer, M. F. (2020). Perceptions of artificial intelligence 
in healthcare: findings from a qualitative survey study among actors in France. J. Transl. 
Med. 18:14. doi: 10.1186/s12967-019-02204-y

Lei, B., Liang, E., Yang, M., Yang, P., Zhou, F., Tan, E. L., et al. (2022). Predicting 
clinical scores for Alzheimer’s disease based on joint and deep learning. Expert Syst. 
Appl. 187:115966. doi: 10.1016/j.eswa.2021.115966

Liaw, A., and Wiener, M. (2002). Classification and regression by randomForest. R 
news 2, 18–22.

McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., and Stadlan, E. M. 
(1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work 
group under the auspices of Department of Health and Human Services Task Force on 
Alzheimer’s disease. Neurology 34, 939–944. doi: 10.1212/wnl.34.7.939

Merzenich, M. M., Van Vleet, T. M., and Nahum, M. (2014). Brain plasticity-based 
therapeutics. Front. Hum. Neurosci. 8:74680. doi: 10.3389/fnhum.2014.00385

Metin, S. Z., Balli Altuglu, T., Metin, B., Erguzel, T. T., Yigit, S., Arıkan, M. K., et al. 
(2020). Use of EEG for predicting treatment response to transcranial magnetic 
stimulation in obsessive-compulsive disorder. Clin. EEG Neurosci. 51, 139–145. doi: 
10.1177/1550059419879569

Ouchani, M., Gharibzadeh, S., Jamshidi, M., and Amini, M. (2021). A review of 
methods of diagnosis and complexity analysis of Alzheimer's disease using EEG signals. 
Biomed. Res. Int. 2021:5425569. doi: 10.1155/2021/5425569

Passeri, E., Elkhoury, K., Morsink, M., Broersen, K., Linder, M., Tamayol, A., et al. 
(2022). Alzheimer’s disease: treatment strategies and their limitations. Int. J. Mol. Sci. 
23:13954. doi: 10.3390/ijms232213954

Paul, A. K., Bose, A., Kalmady, S. V., Shivakumar, V., Sreeraj, V. S., Parlikar, R., et al. 
(2022). Superior temporal gyrus functional connectivity predicts transcranial direct 
current stimulation response in schizophrenia: a machine learning study. Front. Psych. 
13:923938. doi: 10.3389/fpsyt.2022.923938

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. 
(2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

Pini, L., Pizzini, F. B., Boscolo-Galazzo, I., Ferrari, C., Galluzzi, S., Cotelli, M., et al. 
(2022). Brain network modulation in Alzheimer's and frontotemporal dementia with 
transcranial electrical stimulation. Neurobiol. Aging 111, 24–34. doi: 10.1016/j.
neurobiolaging.2021.11.005

Plaza-Rosales, I., Brunetti, E., Montefusco-Siegmund, R., Madariaga, S., Hafelin, R., 
Ponce, D. P., et al. (2023). Visual-spatial processing impairment in the occipital-frontal 
connectivity network at early stages of Alzheimer’s disease. Front. Aging Neurosci. 
15:1097577. doi: 10.3389/fnagi.2023.1097577

Probst, P., Wright, M. N., and Boulesteix, A.-L. (2019). Hyperparameters and tuning 
strategies for random forest. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 9:e1301. 
doi: 10.48550/arXiv.1804.03515

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., and 
Shulman, G. L. (2001). A default mode of brain function. Proc. Natl. Acad. Sci. 98, 
676–682. doi: 10.1073/pnas.98.2.676

Roe, J. M., Vidal-Piñeiro, D., Sørensen, Ø., Brandmaier, A. M., Düzel, S., 
Gonzalez, H. A., et al. (2021). Australian imaging biomarkers and lifestyle flagship 
study of ageing. Asymmetric thinning of the cerebral cortex across the adult lifespan 
is accelerated in Alzheimer's disease. Nat. Commun. 12:721. doi: 10.1038/
s41467-021-21057-y

Romero-Brufau, S., Wyatt, K. D., Boyum, P., Mickelson, M., Moore, M., and 
Cognetta-Rieke, C. (2020). A lesson in implementation: a pre-post study of providers' 
experience with artificial intelligence-based clinical decision support. Int. J. Med. Inform. 
137:104072. doi: 10.1016/j.ijmedinf.2019.104072

Roncero, C., Kniefel, H., Service EThiel, A., Probst, S., and Chertkow, H. (2017). 
Inferior parietal transcranial direct current stimulation with training improves cognition 
in anomic Alzheimer’s disease and frontotemporal dementia. Alzheimers Dement. (N Y) 
3, 247–253. doi: 10.1016/j.trci.2017.03.003

Rossini, P. M., Del Percio, C., Pasqualetti, P., Cassetta, E., Binetti, G., Dal Forno, G., 
et al. (2006). Conversion from mild cognitive impairment to Alzheimer’s disease is 
predicted by sources and coherence of brain electroencephalography rhythms. 
Neuroscience 143, 793–803. doi: 10.1016/j.neuroscience.2006.08.049

Saxena, V., and Pal, A. (2021). Role of transcranial direct current stimulation in the 
management of Alzheimer's disease: a meta-analysis of effects, adherence, and adverse 
effects. Clin. Psychopharmacol. Neurosci. 19, 589–599. doi: 10.9758/cpn.2021.19. 
4.589

Shah, P., Kendall, F., Khozin, S., Goosen, R., Hu, J., Laramie, J., et al. (2019). Artificial 
intelligence and machine learning in clinical development: a translational perspective. 
NPJ Digit. Med. 26:69. doi: 10.1038/s41746-019-0148-3

Sperling, R. A., Jack, C. R. Jr., and Aisen, P. S. (2011). Testing the right target and 
right drug at the right stage. Sci. Transl. Med. 3:111cm33. doi: 10.1126/scitranslmed. 
3002609

Stern, Y. (2002). What is cognitive reserve? Theory and research application of the 
reserve concept. J. Int. Neuropsychol. Soc. 8, 448–460. doi: 10.1017/
S1355617702813248

Teselink, J., Bawa, K. K., Koo, G. K., Sankhe, K., Liu, C. S., Rapoport, M., et al. (2021). 
Efficacy of non-invasive brain stimulation on global cognition and neuropsychiatric 
symptoms in Alzheimer's disease and mild cognitive impairment: a meta-analysis and 
systematic review. Ageing Res. Rev. 72:101499. doi: 10.1016/j.arr.2021.101499

Tsolaki, A., Kazis, D., Kompatsiaris, I., Kosmidou, V., and Tsolaki, M. (2014). 
Electroencephalogram and Alzheimer's disease: clinical and research approaches. Int. J. 
Alzheimers Dis. 2014:349249. doi: 10.1155/2014/349249

Van der Hiele, K., Bollen, E., Vein, A. A., Reijntjes, R. H. A. M., Westendorp, R. G. 
J., van Buchem, M. A., et al. (2007). EEG and MRI correlates of mild cognitive 
impairment and Alzheimer's disease. Neurobiol. Aging 28, 1322–1329. doi: 10.1016/j.
neurobiolaging.2006.06.006

Wiethoff, S., Hamada, M., and Rothwell, J. C. (2014). Variability in response to 
transcranial direct current stimulation of the motor cortex. Brain Stimul. 7, 468–475. 
doi: 10.1016/j.brs.2014.02.003

Woźniak-Kwaśniewska, A., Szekely, D., Harquel, S., Bougerol, T., and David, O. (2015). 
Resting electroencephalographic correlates of the clinical response to repetitive 
transcranial magnetic stimulation: a preliminary comparison between unipolar and 
bipolar depression. J. Affect. Disord. 183, 15–21. doi: 10.1016/j.jad.2015.04.029

Yang, Y. Y., Hwang, A. H. C., Wu, C. T., and Huang, T. R. (2022). Person-identifying 
brainprints are stably embedded in EEG mindprints. Sci. Rep. 12:17031. doi: 10.1038/
s41598-022-21384-0

Yu, W., Lei, B., Ng, M. K., Cheung, A. C., Shen, Y., and Wang, S. (2022). Tensorizing 
GAN with high-order pooling for Alzheimer's disease assessment. IEEE Trans. Neural 
Netw. Learn. Syst. 33, 4945–4959. doi: 10.1109/TNNLS.2021.3063516

Yu, W., Lei, B., Shen, Y., Wang, S., Liu, Y., Feng, Z., et al. (2023). Morphological feature 
visualization of Alzheimer's disease via multidirectional perception GAN. IEEE Trans. 
Neural Netw. Learn. Syst. 34, 4401–4415. doi: 10.1109/TNNLS.2021.3118369

https://doi.org/10.3389/fnhum.2023.1234168
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://doi.org/10.3389/fncel.2022.845832
https://doi.org/10.1016/j.mri.2019.05.031
https://doi.org/10.1016/j.neuroimage.2011.11.002
https://doi.org/10.1038/s41572-021-00269-y
https://doi.org/10.1186/s12967-019-02204-y
https://doi.org/10.1016/j.eswa.2021.115966
https://doi.org/10.1212/wnl.34.7.939
https://doi.org/10.3389/fnhum.2014.00385
https://doi.org/10.1177/1550059419879569
https://doi.org/10.1155/2021/5425569
https://doi.org/10.3390/ijms232213954
https://doi.org/10.3389/fpsyt.2022.923938
https://doi.org/10.1016/j.neurobiolaging.2021.11.005
https://doi.org/10.1016/j.neurobiolaging.2021.11.005
https://doi.org/10.3389/fnagi.2023.1097577
https://doi.org/10.48550/arXiv.1804.03515
https://doi.org/10.1073/pnas.98.2.676
https://doi.org/10.1038/s41467-021-21057-y
https://doi.org/10.1038/s41467-021-21057-y
https://doi.org/10.1016/j.ijmedinf.2019.104072
https://doi.org/10.1016/j.trci.2017.03.003
https://doi.org/10.1016/j.neuroscience.2006.08.049
https://doi.org/10.9758/cpn.2021.19.4.589
https://doi.org/10.9758/cpn.2021.19.4.589
https://doi.org/10.1038/s41746-019-0148-3
https://doi.org/10.1126/scitranslmed.3002609
https://doi.org/10.1126/scitranslmed.3002609
https://doi.org/10.1017/S1355617702813248
https://doi.org/10.1017/S1355617702813248
https://doi.org/10.1016/j.arr.2021.101499
https://doi.org/10.1155/2014/349249
https://doi.org/10.1016/j.neurobiolaging.2006.06.006
https://doi.org/10.1016/j.neurobiolaging.2006.06.006
https://doi.org/10.1016/j.brs.2014.02.003
https://doi.org/10.1016/j.jad.2015.04.029
https://doi.org/10.1038/s41598-022-21384-0
https://doi.org/10.1038/s41598-022-21384-0
https://doi.org/10.1109/TNNLS.2021.3063516
https://doi.org/10.1109/TNNLS.2021.3118369

	Identifying biomarkers for tDCS treatment response in Alzheimer’s disease patients: a machine learning approach using resting-state EEG classification
	1. Introduction
	2. Methods
	2.1. Study design
	2.2. Participants
	2.3. Data collection
	2.4. Statistical analysis
	2.4.1. Random Forest method

	3. Results
	4. Discussion
	5. Conclusion
	Data availability statement
	Ethics statement
	Author contributions

	References

