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Introduction: Gait disturbances are a common consequence of polyneuropathy 
(PNP) and a major factor in patients’ reduced quality of life. Less is known about 
the underlying mechanisms of PNP-related altered motor behavior and its 
distribution across the body. We  aimed to capture whole body movements in 
PNP during a clinically relevant mobility test, i.e., the Timed Up and Go (TUG). 
We hypothesize that joint velocity profiles across the entire body would enable 
a deeper understanding of PNP-related movement alterations. This may yield 
insights into motor control mechanisms responsible for altered gait in PNP.

Methods: 20 PNP patients (61  ±  14  years) and a matched healthy control group 
(CG, 60  ±  15  years) performed TUG at (i) preferred and (ii) fast movement speed, 
and (iii) while counting backward (dual-task). We recorded TUG duration (s) and 
extracted gait-related parameters [step time (s), step length (cm), and width (cm)] 
during the walking sequences of TUG and calculated center of mass (COM) 
velocity [represents gait speed (cm/s)] and joint velocities (cm/s) (ankles, knees, 
hips, shoulders, elbows, wrists) with respect to body coordinates during walking; 
we then derived mean joint velocities and ratios between groups.

Results: Across all TUG conditions, PNP patients moved significantly slower (TUG 
time, gait speed) with prolonged step time and shorter steps compared to CG. 
Velocity profiles depend significantly on group designation, TUG condition, and 
joint. Correlation analysis revealed that joint velocities and gait speed are closely 
interrelated in individual subjects, with a 0.87 mean velocity ratio between groups.

Discussion: We confirmed a PNP-related slowed gait pattern. Interestingly, joint 
velocities in the rest of the body measured in body coordinates were in a linear 
relationship to each other and to COM velocity in space coordinates, despite PNP. 
Across the whole body, PNP patients reduce, on average, their joint velocities with 
a factor of 0.87 compared to CG and thus maintain movement patterns in terms 
of velocity distributions across joints similarly to healthy individuals. This down-
scaling of mean absolute joint velocities may be the main source for the altered 
motor behavior of PNP patients during gait and is due to the poorer quality of 
their somatosensory information.

Clinical Trial Registration: https://drks.de/search/de, identifier DRKS00016999.
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1. Introduction

Polyneuropathies (PNP) cover a group of diseases that primarily 
cause damage to peripheral nerve fibers in symmetric, distal, length-
dependent “glove and stocking” distribution (Findling et al., 2018). 
Affected patients suffer from sensitivity impairments that can manifest 
in paresthesia, dysesthesia, numbness, and pain in the hands and feet 
(Hanewinckel et al., 2016; Alam et al., 2017). PNP is also associated 
with reduced muscular strength (Rotta et al., 2000; Ferreira et al., 
2017). This may directly result from damage to motor nerve fibers in 
specific types of PNP or advanced disease settings or indirectly from 
a lack of movement due to the aforementioned sensitivity symptoms 
(Andreassen et al., 2006; Martinelli et al., 2013; Hafsteinsdottir and 
Olafsson, 2016; Broers et al., 2019).

Functionally speaking, PNP significantly raises the risk of postural 
instability, meaning balance problems and gait disturbances (Mustapa 
et al., 2016; Kneis et al., 2020b). For example, in older populations, 
PNP accounts for around 18% of gait disorders (Pirker and 
Katzenschlager, 2017) and raises the probability of falling (Cavanagh 
et  al., 1992; Richardson and Hurvitz, 1995; Stolze et  al., 2004; 
Hanewinckel et al., 2017; Findling et al., 2018). PNP can therefore 
reduce both our everyday mobility and quality of life considerably 
(Hoffman et al., 2015; Win et al., 2019) and strain healthcare resources 
(Gordois et  al., 2003; Pike et  al., 2012; Mengel et  al., 2018). 
Standardized clinical tests usually include gait and balance tasks to 
assess one’s mobility status and fall risk. Observation of these tests can 
be refined by motion capture systems enabling specific analysis, e.g., 
about gait abilities. It is well known that people with PNP habitually 
walk slower, take shorter steps, and reveal more gait variability than 
age-matched healthy individuals (Wuehr et al., 2014; Hanewinckel 
et al., 2017; Marshall et al., 2017; Kneis et al., 2020a). However, it 
remains unclear whether the altered gait, especially in terms of 
slowness, is caused by the primary deficit, i.e., damaged peripheral 
nerve structures, or whether it is a secondary strategy to prevent 
accidents such as falls (Courtemanche et al., 1996; Dingwell et al., 
2000; Dingwell and Cavanagh, 2001; Menz et al., 2004; Wuehr et al., 
2014). As PNP makes evident, damage to peripheral nervous 
structures leads to proprioceptive impairments (Hanewinckel et al., 
2016; Findling et  al., 2018). Reliable proprioceptive feedback is 
essential for precise posture control, as it contains information about 
alterations via tendon or muscle lengths and joint angles (Allum et al., 
1998; Dietz, 2002; Masani et al., 2003; Shaffer and Harrison, 2007). 
Disturbances in the proprioceptive signals thus imply inaccurate 
motor control mechanisms (Dietz et al., 2002; Pearson, 2004). In PNP, 
this somatosensory deficit is believed to promote the aforementioned 
balance and gait disturbances. However, its exact interrelation with the 
slowing of gait remains unclear (Courtemanche et al., 1996; Dingwell 
et al., 2000; Menz et al., 2004; Wuehr et al., 2014). Besides gait and 
balance, the functional performance of upper limbs also suffers from 
PNP. There is evidence of less accuracy and slower execution speed 
during goal-directed arm movements (Hondzinski et al., 2010), as well 

as reduced functional hand performance during fine motor tasks 
compared to healthy individuals, while strength capacity seems 
unaffected (Kender et al., 2022). Until now, there has been no known 
whole-body gait movement analysis in PNP considering both upper 
and lower-body motor behavior. We assume that altered motor pattern 
in the lower limbs while walking is also reflected in the upper limbs 
(Wannier et al., 2001; Meyns et al., 2013; Pearcey and Zehr, 2019).

Our approach in the present study is to capture the whole-body 
movement of PNP patients in a standardized mobility test 
acknowledged as clinically relevant, i.e., the Timed Up and Go (TUG) 
test (Salarian et al., 2010; Christopher et al., 2019). The TUG test 
covers essential demands of daily living (standing up and sitting down, 
accelerating and decelerating walking, turning around) and, thus, 
stimulates different body systems responsible for posture stability, 
coordinated movements, and force development. TUG was originally 
done at a preferred movement speed (Podsiadlo and Richardson, 
1991), operating as a reliable and approved sign of vitality (Studenski 
et al., 2011; Perera et al., 2016). For a more differentiated perspective 
of PNP-related sensorimotor impairments, we will add two further 
TUG conditions that challenge patients’ executive resources: executing 
TUG while counting backward to provoke cognitive-motor 
interference (Montero-Odasso et  al., 2012; Montero-Odasso and 
Hachinski, 2014; Bayot et al., 2018; Schniepp et al., 2019), and at a fast 
movement speed to assess acceleration capacities associated with 
disability and functional reserve capacity (Wuehr et al., 2014; Artaud 
et al., 2015; Middleton et al., 2015). For motion behavior analysis, 
we will extract common gait parameters and additionally focus on 
joint velocities across the whole body in comparison to matched 
healthy control individuals. As the first step, we aim to verify that the 
TUG performance of PNP patients falls below that of healthy 
individuals. We assume that PNP-related gait alterations will reflect 
the poorer performance level in each TUG condition. Furthermore, 
we hypothesize that velocity across the whole body can characterize 
PNP-specific motion patterns depending on the TUG condition and 
joints analyzed. We believe that our approach will enable us to derive 
additional velocity-based parameters that will help us better 
understand motor behavior and movement organization in 
neurological diseases.

2. Materials and methods

2.1. Participants

We enrolled 20 patients with clinically confirmed polyneuropathy 
symptoms (PNP) and 20 healthy control participants (control group, 
CG) matched to patients’ age, sex, height, and weight. Exclusion 
criteria for the PNP group cover comorbidities that interact with gait 
and balance abilities. For CG, we excluded any disease that could 
be  related to PNP symptoms or interfere with gait or balance 
performance. Patients’ PNP symptoms were objectified by testing 
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reflexes, vibration sense, joint position sense, temperature, and pain 
sensation in the lower extremities (Liniger et al., 1990; Pestronk et al., 
2004; Kneis et  al., 2020b). All participants underwent detailed 
anamnesis, including chronic or acute diseases requiring treatment. 
Furthermore, we asked for the maximum walking distance as well as 
the number of falls during the last year and estimated the fear of 
falling via the validated Falls Efficacy Scale – International (FES-I) 
(Delbaere et  al., 2010). We  also clinically assessed mobility 
performance by applying a common test, i.e., the Performance 
Oriented Mobility Assessment (Tinetti POMA), with nine items for 
balance (score 0–16) and eight items for gait (score 0–12): a lower 
score indicates a higher risk of falling (Tinetti, 1986).

This study was approved by the Ethics Committee of the 
University of Freiburg (no. 68/19) and conducted according to the 
Declaration of Helsinki (German Register of Clinical Trials no.: 
DRKS00016999). Written informed consent was obtained from all 
individual participants included in the study.

2.2. Assessments

All participants performed the Timed Up and Go (TUG) test in 
three different conditions twice: performing TUG first at preferred 
movement speed (preferred condition), secondly while executing an 
additional cognitive task [counting backward in steps of two (Al-
Yahya et al., 2011); dual-task condition], and thirdly as fast as possible 
without running, meaning one or both feet always in ground contact 
(fast condition, test instruction: “walk as fast as safely possible”). The 
instructions were standardized. Participants walked wearing their own 
footwear. Each TUG condition was performed twice.

2.3. Motion capture

All movements during TUG execution were recorded via a 
markerless vision-based motion capture system, i.e., The Captury (The 
Captury GmbH, Saarbrücken, Germany). It uses a visual hull and 
background subtraction method to estimate the subject’s silhouette. 
Body movements are tracked by 12 cameras at a 100 Hz sampling rate 
and resolution of ~1 mm. An automatic scaling process fits a skeleton 
into the subject (up to 60 s). The system calculates precise position 
data of the whole body, represented by specific joints, e.g., wrist, elbow, 
shoulder, hip, knee, and ankle, and center of mass (COM) estimation 
(Kuhner et al., 2017; Harsted et al., 2019).

2.4. Data processing

A custom build MATLAB™ (R2019b; MathWorks, Natick, 
Ma) program was used for data processing. For analysis, we relied 
on the mean values of the two trials per TUG condition. 
We identified the duration (s) needed to complete each TUG trial 
(TUG time). Furthermore, we extracted three sequences from the 
TUG: walk 1 [(s), walk between the stand-up and turning task], 
turning (s), and walk 2 [(s), walk between turning- and turn-to-
sit-task]. For gait-specific analysis, steps during the walking 
sequences (walk1 + 2) were detected using the ankle speed: steps 
begin and end if the ankles’ speed approaches zero 

(threshold = 5.5 cm/s). Turning and turn-to-sit sequences were 
identified by shoulder axis rotation (>20°). The thresholds were 
determined based on own datasets for validation. Step detection 
serves to calculate these gait parameters: step time (s) and step 
length (cm), as well as step width (cm).

Velocity measures were calculated using the mean values of walk 
1 and walk 2. COM velocity refers to space coordinates and thus 
represents gait speed (cm/s). As the velocity between left and right 
joints was not asymmetric, individual joint velocities (cm/s) were 
presented as mean (wrist, elbow, shoulder, hip, knee, and ankle) and 
calculated with respect to COM during walking. We then derived 
mean joint velocities (per joint and across all joints) for each group 
and velocity ratios between groups.

2.5. Statistical analysis

For statistical analysis, IBM SPSS Statistics for Windows, version 
26.0 (IBM Corp., Armonk, NY, United  States), and for data 
visualization, RStudio, version 4.0.3 (RStudio, PBC, Boston, 
United States) was used. Descriptive statistics are reported as median 
with a 25–75 percentile range. Participants’ characteristics were 
analyzed using T-Test, Pearson-Chi-Quadrat, and Man-Whitney-U 
tests. Shapiro–Wilk test was used to test for normal distribution of 
TUG times, gait parameters, and COM velocity (all parameters were 
normally distributed, except turning and walking 2 times in PNP). 
TUG times, gait parameters, and COM velocity were analyzed 
separately using repeated measures ANOVA, with the condition as the 
dependent variable (Schmider et al., 2010). Bonferroni was used as a 
post-hoc test.

Joint velocities were log-transformed to achieve normal 
distribution, as the original data was skewed to the right. To assess 
joint velocities, we applied the repeated measures multivariate analysis 
of variance (MANOVA) to evaluate the complexity of variable 
relationships by considering two dependent variables (joints and TUG 
condition) and group designation as independent (repeated measures) 
variables. As a post-hoc test for TUG condition, we  used the 
Bonferroni, for joints, the Tukey’s Honest Significant Difference 
(HSD) test. To demonstrate the relations between joint velocities and 
gait speed (COM), we conducted a correlation analysis. We chose the 
ankle (as the most distal joint) and hip (as the most proximal joint) to 
visualize joint behavior relative to gait speed. Spearman-Rho was used 
to correlate velocity ratios (wrist-, elbow-, shoulder-, hip-, knee-ankle 
ratio, and overall velocity ratio) with maximum walking distance, fear 
of falling (FES-I), and mobility performance (Tinetti POMA).

3. Results

No adverse events occurred during the tests, and all participants 
performed all test conditions. We  included data from N = 40 
participants (20 PNP:20 CG) in our analysis. The comparative groups 
PNP and matched CG exhibited similar anthropometric parameters 
(Table  1). Participants’ characteristics revealed significant group 
differences in fall incidence, maximum walking distance, fear of falling 
(FES-I), mobility performance (Tinetti POMA; Table 1), medicine 
intake, and chronic disabilities (Supplementary Table S1). All included 
patients had relevant PNP symptoms (Table 2).
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3.1. TUG times and TUG-related gait 
parameters

PNP patients performed slower across all TUG conditions than 
their matched CG: The PNP group needed more time to complete 
TUG (4.2 s at preferred, 2.8 s at dual-task, and 1.7 s at fast condition), 
walked slower (29 cm/s slower gait speed at preferred, 14.8 cm/s at 

dual-task, and 14.1 cm/s at fast condition) with prolonged step time 
(5% at preferred, 6% at dual-task, and 6% at fast condition). Patients 
also took shorter steps during preferred (5.2 cm) and dual-task 
(5.1 cm) walking, while in the fast condition, the step lengths differed 
marginally (2.1 cm) (Table 3).

We detected significant group effects for all TUG times (overall, 
walk 1, walk 2, turning) and the TUG-related gait parameters gait 
speed, step time, and length (p < 0.001 respectively), except for step 
width (p = 0.568). The TUG condition showed a significant effect on 
all TUG parameters (excluding step width). Post-hoc tests revealed a 
significant difference between fast and preferred and between fast and 
dual-task conditions for all TUG parameters (p < 0.001). The step 
time, additionally, differed between preferred and dual-task 
(p < 0.001). We found no interaction between group designation and 
TUG condition (Table 4).

3.2. Joint velocities

Analysis of joint velocities (MANOVA) revealed a significant 
influence of the factors group designation (PNP, CG; F = 123.9, p < 0.001, 
η2 = 0.266, Figures 1A, B), joint (wrist, elbow, shoulder, hip, knee, ankle; 
F = 1152.6, p < 0.001, η2 = 0.944, Figure  1A), and TUG condition 
(preferred, dual-task, fast; F = 218.1, p < 0.001, η2 = 0.561, Figure 1B).

The PNP group revealed a significantly slower velocity than CG 
(−7.9 cm/s, 95%CI −9.1 to −6.6) across all conditions and joints. No 
group interaction was found for either joint or TUG condition 
(Figure 1B).

Velocities varied depending on joints (across groups and 
conditions), with higher velocities at distal joints compared to 
proximal joints (Figure 1A). For example, the ankle, the most distal 
joint in this analysis, displayed 80% higher velocity than the hip, the 
most proximal joint (Figure  1A). Post-hoc-test of joint velocities 
revealed significant differences in all pairwise joint comparisons 
(p ≤ 0.001) except for the comparison of knee and wrist (p = 0.082) 
(See Table 5).

TABLE 1 Participants’ characteristics.

PNP matched CG p-value

n =  20 n =  20

Age mean ± SD 60.7 ± 13.9 60.4 ± 14.7 0.9391

Sex (m:f) N (%) 15:5 (75:25) 15:5 (75:25) 1.0002

BMI (kg/m2) mean ± SD 26.9 ± 5.2 25.2 ± 3.9 0.2641

Falls (past year) N 32 2 0.0013

  Faller / non-faller N (%) 13(65)/7(35) 2 (10)/18 (90)

FES-I (16–64 Points) mean (range)a 22.1 (16–38) 17.4 (16–20) 0.0063

  Low concern (16–19) N (%) 9 (45) 16 (80)

  Moderate concern (20–27) N (%) 6 (30) 4 (20)

  High concern (28–64) N (%) 5 (25) 0 (0)

Tinetti POMA (0–28 Points) mean (range)b 22.6 (10–28) 27.8 (27–28) <0.0013

  Moderate risk of falling (19–24) N (%) 6 (30) 0 (0)

  High risk of falling (10–19) N (%) 5 (25) 0 (0)

Maximum walking distance (km) mean (range) 6.8 (0.5–18) 12.8 (2–50) 0.0083

PNP, polyneuropathy patients; matched CG, matched healthy control group; SD, standard deviation; 1 T-Test; 2 Pearson-Chi-Quadrat; 3 Man-Whitney-U.
a Classification from Delbaere et al. (2010); b Classification from Tinetti et al. (1986); significant differences (p < 0.05) between groups are marked in bold.

TABLE 2 PNP-specific characteristics.

PNP

n =  20

PNP entity N (%)

  CIPN 4 (20)

  CIDP 15 (75)

  Not classified 1 (5)

PNP specific treatment N (%)

  Rituximab 2 (10)

  IVIg 14 (70)

PNP symptoms N (%)

  Reduced vibration sense MJ/ML# 15 (75)/15 (75)

  Reduced joint position sense+ 9 (45)

  Reduced temperature sensation* 12 (60)

  Reduced pain sensation* 7 (35)

  Loss of reflexes AT/PT 10 (50)/6 (30)

  Reduced reflexes AT/PT 4 (20)/8 (40)

PNP, polyneuropathy patients; CIPN, chemotherapy induced polyneuropathy; CIDP, chronic 
inflammatory demyelinating polyneuropathy; IVIg, intravenous immunoglobulin infusions; 
#vibration sense was measured on the Metatarsophalangeal joint (MJ) and Malleolus lateralis 
(ML) by the Rydell-Seiffer tuning fork [scale ranging from 0/8 (no sensitivity) to 8/8 (highest 
sensitivity)], value ≤ 4 was rated as reduced; +measured on second toe, ≥ 3 failures out of 10 
trials in random order; *measured on arch, ≥ 3 failures out of 10 trials in random order. AT, 
Achilles tendon; PT, Patella tendon.
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Velocities varied depending on the TUG condition (across groups 
and joints): the fast condition revealed higher velocities than the 
preferred (20.7 cm/s, 95%CI 17.9–23.5, p < 0.001) and dual-task 
condition (23.4 cm/s, 95%CI 20.6–26.2, p < 0.001), moreover, the 
preferred condition revealed higher velocities than the dual-task 
condition (p = 0.012) (Figure 1B).

3.3. Correlation analysis

Correlation analysis between gait speed (COM velocity) and all 
joint velocities within groups revealed that joint velocities and gait 
speed are positively interrelated in individual subjects (Figure 2A, 
exemplarily for ankle and hip velocities, see Supplementary Figure S1 
for all joint velocities) with a 0.87 mean velocity ratio between groups 
(Figure 2B). This means that PNP joint velocities are 13% slower than 
the CG’s regardless of joint and condition.

Our PNP correlation analysis showed that the overall velocity 
ratio correlated negatively with the fear of falling (FES-I, r2 = −0.636, 

p = 0.003) and positively with mobility performance (Tinetti POMA, 
r2 = 0.583, p = 0.007). Hip, knee, and ankle ratios correlated positively 
with self-reported maximum walking distance (hip, r2 = 0.562, 
p = 0.010; knee, r2 = 0.575, p = 0.008; ankle, r2 = 0.556, p = 0.011), while 
the overall velocity ratio did not correlate significantly (velocity ratio, 
r2 = 0.401, p = 0.080). This indicates that a stronger fear of falling and 
poorer mobility were associated with a slower gait speed in the patient 
group (Supplementary Figure S2).

4. Discussion

The main objective of the present study was to analyze the 
motion patterns of PNP patients along the body axis for a deeper 
understanding of altered motion behavior caused by 
PNP. We assessed PNP patients’ performance in a clinically relevant 
functional test, i.e., the Timed-Up-and-Go test (TUG), by 
comparing gait-related parameters and joint-velocity profiles across 
the whole body to a group of matched healthy individuals. As 
hypothesized, PNP patients performed TUG slower than the 
control group during all test conditions, i.e., at preferred and fast 
movement speed and while executing a cognitive task (dual-task 
condition). More specifically, we found a PNP-related slowed gait 
pattern during TUG execution determined by reduced gait speed, 
shorter steps, and prolonged step time, as well as lower mean 
velocities in all other measured body joints. Interestingly, the 
slowing factor of PNP patients’ joint velocities was independent of 
the respective joint and, therefore, individual mean joint velocity, 
which tends to vary across the body. Moreover, this factor applied 
to each TUG condition similarly and amounted, on average, to 0.87 
compared to the healthy control group.

As expected, PNP patients’ overall TUG performance fell below 
that of the healthy control group across all conditions. Patients needed 
approximately 20% more time to complete TUG independently of the 
test condition. By extracting gait-related parameters, we detected a 
slowed walking pattern in PNP (preferred: 80.7 cm/s; fast: 134.7 cm/s) 
compared to the CG (preferred: 109.7 cm/s; fast: 148.8 cm/s) 
determined by shorter steps (preferred: 54 cm vs. 59 cm) and 
prolonged step time (preferred: 0.60 s vs. 0.57 s). These results concur 
with other studies investigating PNP-related gait impairments 
(Fernando et  al., 2013; Wuehr et  al., 2014; Marshall et  al., 2017), 
identifying 139 cm/s for fast walking (Wuehr et  al., 2014), and 
93–110 cm/s for preferred walking in PNP patients (Menz et al., 2004; 
Wuehr et al., 2014; Marshall et al., 2017). In contrast to other studies 
(Petrofsky et al., 2005; Brach et al., 2008; Wuehr et al., 2014; Brown 
et al., 2015), we failed to observe a wider gait base in PNP patients 
than in healthy individuals. Basically, the TUG condition significantly 
affected TUG performance in both groups in a similar way but at a 
different speed level.

These findings also apply to joint velocity profiles in PNP 
compared to CG. As with gait-related parameters, we  used the 
walking sequences of the TUG to extract the mean joint velocities of 
ankles, knees, hips, shoulders, elbows, and wrists in body 
coordinates, respectively. Across the whole body, PNP patients 
reduced, on average, their joint velocities with a factor of 0.87 
compared to CG. Interestingly, the velocity reductions occurred 
independently of the respective joint or test condition. This means 
that in each of the three test conditions, the average joint velocity of 

TABLE 3 Descriptive illustration of the TUG parameters for the different 
TUG conditions of polyneuropathy patients (PNP) and matched control 
group (CG).

Parameter TUG 
condition

PNP median 
(IQR)

matched CG 
median (IQR)

n =  20 n =  20

TUG time (s) P 13.4 (10.2–15.0) 9.2 (8.4–10.7)

DT 13.0 (10.8–16.5) 10.2 (8.8–11.2)

F 8.2 (6.2–10.9) 6.5 (5.8–7.0)

  Walk 1 (s) P 4.4 (3.3–4.6) 2.8 (2.6–3.5)

DT 4.4 (3.4–4.7) 3.3 (2.8–3.7)

F 2.4 (1.9–3.4) 1.9 (1.6–2.2)

  Turning (s) P 1.7 (1.4–2.0) 1.3 (1.2–1.4)

DT 1.7 (1.4–2.3) 1.3 (1.2–1.4)

F 1.1 (0.9–1.7) 0.9 (0.9–1.0)

  Walk 2 (s) P 3.6 (3.0–4.4) 2.8 (2.4–3.2)

DT 3.8 (3.3–4.9) 3.1 (2.7–3.4)

F 2.3 (1.8–3.1) 1.9 (1.6–2.0)

Gait speed 

(COM) (cm/s)

P 80.7 (73.7–100.5) 109.7 (100.4–119.1)

DT 81.9 (66.1–98.7) 96.7 (89.4–115.2)

F 134.7 (96.5–166.2) 148.8 (134.1–175.0)

Step time (s) P 0.60 (0.57–0.65) 0.57 (0.54–0.60)

DT 0.65 (0.60–0.74) 0.61 (0.58–0.66)

F 0.50 (0.48–0.55) 0.47 (0.42–0.50)

Step length (cm) P 53.8 (41.2–60.4) 59.0 (56.2–64.1)

DT 51.3 (43.1–59.9) 56.4 (53.3–62.6)

F 61.2 (50.1–70.6) 63.3 (59.5–68.3)

Step width (cm) P 14.5 (10.9–16.8) 13.7 (11.7–16.0)

DT 13.1 (11.2–17.8) 13.3 (11.3–16.1)

F 14.1 (13.0–17.8) 14.4 (12.8–16.3)

IQR, interquartile range (25–75 percentile); TUG, timed up and go test; PNP, 
polyneuropathy patients; matched CG, matched healthy control group; COM, center of 
mass; P, preferred condition, DT, dual-task condition; F, fast condition.
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each joint was reduced by 13% in PNP patients compared to healthy 
individuals. Furthermore, joint velocities (of PNP and CG) were in 
a linear relationship to each other, and gait speed (COM velocity in 
space) referred to the respective test condition (Figure  2B). 
We deduce that despite PNP-related slowing, patients maintained 
movement patterns in terms of velocity distributions across joints 
similarly to healthy individuals.

PNP affects the peripheral nerves in a distal symmetric 
distribution that results in impaired somatosensory information. 
Especially proprioceptive feedback is essential for posture stability 
(Dietz, 2002) as proprioceptors provide continuous feedback about 

joint positions and velocity, thus facilitating our orientation in space 
with respect to the ground and the different body segments (Lackner 
and DiZio, 2005; Shaffer and Harrison, 2007). The proprioceptors’ 
signal carries velocity information relying on changes in lengths 
(tendons or muscles) or the joint angles that are primarily used to 
control motion accurately (Allum et al., 1998; Dietz, 2002; Masani 
et  al., 2003; Shaffer and Harrison, 2007). Because of their 
proprioceptive deficit, PNP patients often suffer from postural 
instability, which manifests in balance problems (Horlings et al., 2008; 
Sawacha et al., 2009; Brown et al., 2015; Kneis et al., 2016, 2020b; 
Mustapa et al., 2016) and gait disturbances (Allet et al., 2008; Sawacha 

TABLE 4 Repeated measures ANOVA results for TUG times and TUG-related gait parametersPL.

Parameter Group (PNP, matched 
CG)

TUG condition (P, DT, F) Group*TUG condition

TUG time (s) F = 72.84   p < 0.001 F = 22.77   p < 0.001 F = 0.75   p = 0.476

walk 1 (s) F = 46.71   p < 0.001 F = 28.64   p < 0.001 F = 0.69   p = 0.506

turning (s) F = 40.69   p < 0.001 F = 9.51   p < 0.001 F = 0.46   p = 0.637

walk 2 (s) F = 60.04   p < 0.001 F = 21.75   p < 0.001 F = 0.38   p = 0.685

Gait speed (cm/s)* F = 51.35   p < 0.001 F = 40.29   p < 0.001 F = 0.67   p = 0.516

Step time (s) F = 32.70   p < 0.001 F = 122.86   p < 0.001 F = 0.06   p = 0.942

Step length (cm) F = 60.04   p < 0.001 F = 7.21   p < 0.001 F = 0.97   p = 0.383

Step width (cm) F = 0.33   p = 0.568 F = 0.96   p = 0.385 F = 0.54   p = 0.586

PNP polyneuropathy patients; matched CG matched healthy control group; TUG timed up and go test; COM center of mass; P preferred condition DT dual-task condition; F fast condition; 
*gait speed = COM velocity. Significant p-values <0.05 are marked in bold.

FIGURE 1

Mean joint velocities. The figure shows the mean joint velocities relative to the center of mass (in body coordinates) (y-axis) extracted from the waking 
sequences during the timed up and go test (TUG) per group [CG (red), control group; PNP (blue), patients with peripheral neuropathy]: (A) average 
value per joint (x-axis) across all conditions and (B) per condition (P, preferred; DT, dual-task; F, fast condition) across joints. Boxplots showing the 
lower quartile (25th percentile), median (50th percentile), upper quartile (75th percentile), and degree of dispersion as 95% confidence interval (95% CI) 
(whiskers).
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et al., 2009; Shin et al., 2021) and may raise the risk of falls (Stolze 
et  al., 2004; Allet et  al., 2008). Patients often experience a loss of 
muscular strength also due to the PNP-induced impaired sensorimotor 
interplay (Andreassen et al., 2006; Martinelli et al., 2013; Ferreira et al., 
2017). A slower gait speed, including shorter steps and longer step 
times, may thus become manifest from a diminished propulsion 
capacity, but it may also follow PNP’s safety management (Dingwell 
et al., 2000; Mustapa et al., 2016; Findling et al., 2018). Slower, shorter 
steps imply a relatively higher proportion of the double support phase 
associated with greater stability (Williams and Martin, 2019). Vice 
versa, minimizing the support surface during the single-leg stance 
phase requires more effort to maintain balance, thus challenging the 
postural system (Williams and Martin, 2019). Furthermore, reducing 
movement speed may give patients more time to generate an adequate 
response (Williams and Martin, 2019) and thus contribute to 
movement accuracy despite the proprioceptive deficit. We  are 
assuming that PNP patients’ slower gait implies the slowdown of 
upper limbs’ joint velocities according to the hypothesis of strong 
linear velocity interlimb coupling (Orsal et al., 1990). As mentioned 
above, our PNP patients showed velocity distributions across joints 
resembling those of healthy individuals, which corresponds to the 
manifestation of PNP-induced nerve damage -that is, the symmetrical 
pattern across extremities.

Despite PNP patients’ reduced overall velocity, we conclude that 
velocity control mechanisms are largely intact in PNP (Zehr and 
Duysens, 2004; Meyns et al., 2013). We even propose that slowing 
movement velocity is potentially a secondary compensatory safety 
strategy rather than one triggered by the primary physiological deficit. 
We base this assumption on the fact that our PNP patients were able 
to adjust their movement speed situationally like healthy individuals 
but move within a lower individual speed zone. For example, patients 

increased their movement speed when asked to, as in the fast TUG 
condition. Furthermore, the concurrent execution of a cognitive task 
led to the slowing down of movements in PNP to the same extent as 
in healthy individuals, but again at a lower level. There is evidence that 
multi-task conditions require an allocation of attentional resources to 
each task that often results in slowed movement speed (Hausdorff 
et al., 2008; Montero-Odasso et al., 2012). In general, PNP patients 
may require greater effort in order to allocate more cognitive resources 
than healthy individuals to generate well-coordinated movements 
despite their PNP-related impairments (Courtemanche et al., 1996). 
We, therefore, suggest that PNP patients scale their postural control 
strategy along with the quality of the sensory signals they receive. This 
supposition is supported by findings of studies addressing stance 
control in PNP patients. We found that the postural behavior of PNP 
patients is modifiable by an exercise intervention; that people with 
PNP performed a sensory reweighting and an adjustment of velocity 
control towards the postural behavior of healthy individuals (Kneis 
et al., 2019, 2020b).

Our assumption of PNP patients’ preventive safety strategy is 
highlighted by the correlation between their individual slowing factor 
with their fear of falling (FES-I), mobility performance (Tinetti 
POMA), and self-reported maximum walking distance. We suggest 
that the individual slowing factor measures the degree of PNP 
mobility impairment.

5. Limitations

The 3-meter walking sequences of the TUG test cover a relatively 
short distance for gait analysis, encompassing both acceleration and 
deceleration phases. While we  obtained plausible values for the 

TABLE 5 Joint velocities of PNP and matched CG in body coordinates relative to COM.

Condition Joint PNP median (IQR) matched CG median (IQR)

n =  20 n =  20

Preferred Velocity (cm/s)

Wrist 47.8 (40.5–53.4) 56.9 (46.9–63.8)

Elbow 30.8 (26.4–34.1) 34.9 (32.0–38.5)

Shoulder 18.6 (16.0–20.7) 20.8 (18.7–22.3)

Hip 16.6 (14.1–18.8) 17.9 (16.2–20.6)

Knee 53.5 (45.2–61.7) 61.9 (59.7–72.5)

Ankle 85.3 (77.2–103.7) 108.2 (99.1–115.9)

Dual-task Velocity (cm/s)

Wrist 48.3 (36.6–53.7) 55.1 (43.6–60.7)

Elbow 28.7 (23.5–31.7) 33.6 (29.4–37.3)

Shoulder 18.2 (15.4–19.0) 20.4 (18.0–21.8)

Hip 15.6 (13.2–18.5) 16.7 (15.6–19.0)

Knee 51.3 (42.9–55.7) 56.0 (49.7–67.9)

Ankle 85.1 (71.5–100.0) 98.7 (89.8–114.4)

Fast Velocity (cm/s)

Wrist 79.8 (60.4–93.0) 88.3 (70.1–112.9)

Elbow 43.2 (33.7–50.9) 49.8 (40.5–63.9)

Shoulder 22.3 (19.0–27.2) 25.7 (23.3–30.0)

Hip 20.9 (17.6–24.6) 22.9 (19.9–25.9)

Knee 78.9 (62.7–97.8) 82.0 (776.7–104.7)

Ankle 136.6 (96.5–154.7) 148.6 (133.9–163.0)

PNP, polyneuropathy patients; matched CG, matched healthy control group; IQR, interquartile range (25–75 percentile).
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extracted gait parameters, our experimental setup did not adhere to 
common guidelines for gait analysis. Specifically, it deviated from the 
standard practice of continuous walking over a minimum distance of 
10 to 20 strides, as outlined in the literature (Hollman et al., 2010, 2011). 
Furthermore, our step detection methodology relied on velocity 
thresholds derived from our own validation work, rather than direct 
force plate measurements, which are considered the gold standard 
(Bilney et al., 2003; Steinert et al., 2019). These factors, coupled with the 
limited sample size, emphasize the exploratory nature of our research, 
and underscore the need for a cautious interpretation of the results. The 
diagnostic utility of the TUG test lies in its multidimensional assessment 
of functional performance. However, in this study, we  deliberately 
focused only on the walking sequence of the TUG test, excluding other 
motion tasks such as standing up, turning, and sitting down. These 
additional sequences are vital for a comprehensive understanding of the 
significance of the TUG test. In the future, we plan to incorporate these 
sequences into our motion analysis. Moreover, we  will also extract 
additional biomechanical parameters such as joint torques and 
moments, offering a more comprehensive view of motor behavior 
during the TUG test.

6. Conclusion

Our results indicate that PNP patients reduce all their mean 
joint velocities similarly, resulting in a patient-specific slowness 
factor (on average 13%) compared to healthy individuals, regardless 
of joint or condition. This slowing of all joints in body coordinates 
correlates strongly with the individual gait speed in space 
coordinates (COM velocity). We assume that this global slowing is 
caused by the reduced quality of proprioceptive signals. We maintain 
that PNP patients’ altered gait, as assessed by mean absolute joint 
velocities, is not only determined by the obvious balance 
requirements leading to smaller and slower steps but that it results 

from a shift in general speed of an otherwise undisturbed whole 
body motion pattern.
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FIGURE 2

Correlations. (A) Correlations between the center of mass (COM) representing gait speed (x-axis) and joint velocity (y-axis) across conditions 
exemplarily for the ankle (top) and hip (bottom) joint velocities per group [CG (red), control group; PNP (blue), patients with peripheral neuropathy], 
including the regression equation, R-squared and value of p, respectively. (B) Displays the mean velocity ratio of 0.87 between groups (see regression 
equation). Boxes and whiskers show the mean velocities (box) and standard deviation [horizontal whiskers for CG, vertical whiskers for PNP) of the CG 
(x-axis) against the PNP group (y-axis) per condition (P (red), preferred; DT (blue), dual-task; F (green), fast condition] across joints.
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