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Background: Research on music-induced emotion and brain activity is constantly

expanding. Although studies using inter-subject correlation (ISC), a collectively

shared brain activity analysis method, have been conducted, whether ISC

during music listening represents the music preferences of a large population

remains uncertain; additionally, it remains unclear which factors influence

ISC during music listening. Therefore, here, we aimed to investigate whether

the ISCs of electroencephalography (EEG) during music listening represent a

preference for music reflecting engagement or interest of a large population in

music.

Methods: First, we selected 21 pieces of music from the Billboard Japan Hot

100 chart of 2017, which served as an indicator of preference reflecting the

engagement and interest of a large population. To ensure even representation,

we chose one piece for every fifth song on the chart, spanning from highly

popular music to less popular ones. Next, we recorded EEG signals while the

subjects listened to the selected music, and they were asked to evaluate four

aspects (preference, enjoyment, frequency of listening, and arousal) for each

song. Subsequently, we conducted ISC analysis by utilizing the first three principal

components of EEG, which were highly correlated across subjects and extracted

through correlated component analysis (CorrCA). We then explored whether

music with high preferences that reflected the engagement and interest of large

population had high ISC values. Additionally, we employed cluster analysis on

all 21 pieces of music, utilizing the first three principal components of EEG, to

investigate the impact of emotions and musical characteristics on EEG ISC during

music listening.

Results: A significant distinction was noted between the mean ISC values of the 10

higher-ranked pieces of music compared to the 10 lower-ranked pieces of music

[t(542) = −1.97, p = 0.0025]. This finding suggests that ISC values may correspond

preferences reflecting engagement or interest of a large population. Furthermore,

we found that significant variations were observed in the first three principal

component values among the three clusters identified through cluster analysis,

along with significant differences in arousal levels. Moreover, the characteristics

of the music (tonality and tempo) differed among the three clusters. This indicates

that the principal components, which exhibit high correlation among subjects and

were employed in calculating ISC values, represent both subjects’ arousal levels

and specific characteristics of the music.
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Conclusion: Subjects’ arousal values during music listening and music

characteristics (tonality and tempo) affect ISC values, which represent the interest

of a large population in music.
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1. Introduction

The interpretation and appreciation of music requires extensive
bilateral control of attention, memory, emotion, reward, motor
skills, and auditory, syntactic, and semantic processing, organized
by a complex brain network centered in the temporal lobe but
spanning multiple cortical and subcortical regions (Sihvonen and
Särkämö, 2022). In the brain, the interpretation of higher-order
musical integrative features such as chords and harmonies occurs
in multiple frontal and parietal lobe regions, including the inferior
frontal gyrus (IFG), medial prefrontal cortex, inferior parietal
lobule, and premotor areas (Janata et al., 2002; Schulze et al., 2011;
Foster et al., 2013; Royal et al., 2016). Moreover, the perception
of rhythm involves a motor network consisting of the cerebellum,
basal ganglia, and primary motor cortex (Grahn and Brett, 2007;
Chen et al., 2008). In addition, the thalamus projects sound
information to limbic areas such as the amygdala and orbitofrontal
cortex, allowing for rapid analysis of emotional acoustic cues
in music (LeDoux, 2000). These limbic structures have been
found to engage in repetitive exchanges with the auditory cortex,
facilitating the cortical elaboration of auditory signals (Frühholz
et al., 2016) and generating music’s hedonic and motivational value
(Salimpoor et al., 2013).

Recent advances in statistical methods and meta-analysis have
allowed the incorporation of big data into human imaging (Pando-
Naude et al., 2021). Using techniques of the activation likelihood
estimation (ALE; Laird et al., 2010) methodology, a coordinate-
based algorithm for meta-analysis of neuroimaging studies, Pando-
Naude et al. (2021) conducted a coordinate-based meta-analysis
of a wide range of functional magnetic resonance imaging (fMRI)
studies. The results revealed that music perception involves the
right superior temporal gyrus (STG), left superior frontal gyrus,
left medial frontal gyrus, right lentiform nucleus (putamen),
left lentiform nucleus (putamen), caudate, left cerebellum, left
insula, and right frontal gyrus (Pando-Naude et al., 2021). It
was inferred that cortical and subcortical areas that process
musical information both “bottom-up” (sensory processing is
influenced by the narrative nature of the music) and “top-down”
(individual preferences may alter an individual’s level of attention
and engagement) are hierarchically organized (Pando-Naude et al.,
2021). In addition, music imagery was found to involve the left
medial frontal gyrus, left superior parietal lobule, left thalamus,
and left frontal gyrus (Pando-Naude et al., 2021). Music imagery
recruits motor areas involved in generating movement, such as
the premotor and supplementary motor areas, areas of the basal
ganglia also involved in facilitating movement, and parietal areas
involved in perceptual-motor coordination and theory-of-mind
(Pando-Naude et al., 2021).

With the mechanisms of how the brain processes music being
clarified, the study of music-induced emotion and brain activity
is constantly increasing (Koelsch, 2020), and new findings are
being obtained using a variety of analysis methods. Using a data-
driven approach with group independent component analysis
(ICA), sliding time-window correlation, and k-means clustering,
Liu et al. (2021) analyzed the spatial connectivity and temporal
dynamic functional network connectivity (dFNC) of emotions
evoked by a dynamically changing tempo. The results showed
that music with decreasing tempo enhanced FNC in the default
mode network, sensorimotor network, and frontoparietal network,
strengthening neural networks in emotional processing to keep
listeners in a stable, pleasant state (Liu et al., 2021). On the contrary,
music with an increasing tempo was found to be less potent in
evoking multiple neural networks and made listeners’ emotional
processing unstable (Liu et al., 2021). In addition, Daly et al. (2019)
simultaneously recorded electroencephalography (EEG) and fMRI
during music listening and investigated how EEG-based emotional
responses to music reflect changes in activity in the subcortical
emotional response network measured by fMRI by measuring
EEG asymmetry in the prefrontal cortex. The results indicated
that EEG asymmetry in the prefrontal cortex is significantly
related to the activity of subcortical emotional response networks,
including the amygdala, posterior temporal cortex, and cerebellum
(Daly et al., 2019).

Furthermore, the fact that music induces pleasant sensations
has recently attracted attention in the field of neuroscience
(Mas-Herrero et al., 2021a). A meta-analysis study and a study
combining transcranial magnetic stimulation with fMRI suggested
that music-induced pleasure involves both higher-order cortical
regions, such as the right STG and right IFG, which are concerned
with auditory perception and predictive encoding, and reward-
related regions such as the striatum (Mas-Herrero et al., 2021a,b).
Furthermore, Ara and Marco-Pallarés (2020) investigated the
EEG synchronization underlying the pleasant sensations associated
with listening to music using a multilevel Bayesian approach.
As a result, phase synchronization between the right temporal
and frontal theta bands was shown to play an important role
in the pleasant sensations associated with listening to music
(Ara and Marco-Pallarés, 2020).

However, existing studies on brain activity during music-
induced emotional and pleasurable arousal have not reached a
unified view, as the brain areas and functional connectivity that
have been suggested to be associated with musical emotions
and pleasurable feelings are not consistent. For example, Mas-
Herrero et al. (2021b) showed that the bilateral insular cortex
(INS), bilateral STG, right IFG, bilateral ventral striatum, anterior
prefrontal cortex, and ventromedial prefrontal cortex (vmPFC)
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were brain regions involved when listeners reported a pleasurable
music experience. However, Salimpoor et al. (2013) found that
functional connectivity of the nucleus accumbens and STG
increased very robustly when subjects were listening to music
that they rated as having the highest reward value. Furthermore,
hemodynamic increases in the vmPFC, orbitofrontal cortex (OFC),
and amygdala did not predict changes in the reward value of music.
In addition, previous studies on music-induced emotions have
revealed correlations between the intensity of chills and regional
cerebral blood flow in the INS (Blood and Zatorre, 2001), and blood
oxygenation in the INS increases during music listening, which
causes high emotional valence and high arousal (Trost et al., 2012).
However, a coordinate-based ALE meta-analysis of music-induced
emotions did not identify clusters in the INS (Koelsch, 2020).

Therefore, we focused on inter-subject correlation (ISC)
analysis (Hasson et al., 2004), which has recently facilitated the
elucidation of the mechanisms by which the brain processes natural
stimuli. ISC analysis is a method of collectively analyzing shared
brain activity, which can be used to quantify the degree to which
a subject’s brain activity is similar to that of other subjects (Hasson
et al., 2004; Simony et al., 2016). Previous studies on ISCs to natural
stimuli used audiovisual stimuli such as film (Hasson et al., 2008;
Kauppi et al., 2010; Dmochowski et al., 2012; Tu et al., 2019;
Bolton et al., 2020; Gruskin et al., 2020; Patel et al., 2021; Ou
et al., 2022), television/video (Cantlon and Li, 2013; Schmälzle et al.,
2013; Chen and Farivar, 2020; Kotila et al., 2021), stories (Wilson
et al., 2008; Finn et al., 2018; Lerner et al., 2018; Cohen et al., 2022),
speech (Schmälzle et al., 2015), and audio (Kandeepan et al., 2020;
Thiede et al., 2020).

For example, Hasson et al. (2004) used fMRI to measure brain
activity while participants viewed the movie “The Good, the Bad
and The Ugly” and conducted an ISC analysis. Specifically, they
computed pairwise correlations of the fMRI signals of different
subjects and averaged the results at the group level (Hasson
et al., 2004; Trost et al., 2015). In doing so, they identified
brain regions that showed similar activation time courses across
subjects without a priori defining events (Hasson et al., 2004;
Trost et al., 2015). They found similar responses between subjects
in the visual and auditory cortex and frontal and parietal lobes
(Hasson et al., 2004). This suggests that the film stimulated
each viewer’s senses and perceptions and the same systems were
used to understand the story and emotional response to events
(Schmälzle and Grall, 2020). Following this study, Dmochowski
et al. (2014) suggested that there are correlations between the
ISC and the frequency of an episode of TV being tweeted about
(the rate of tweets associated with each scene or episode), and
between the ISC and Nielsen ratings (time series in minutes)
when watching popular TV programs. Furthermore, they also
conjectured that the strength of ISCs of EEGs obtained from
a relatively small number of subjects (about a dozen) while
watching 20 different commercials can predict the preferences
of large audiences across the United States for commercials
(Dmochowski et al., 2014). Thus, ISCs of brain activity in a
small group can be used to predict public behavioral responses
(Dmochowski et al., 2014).

Inter-subject correlation analysis is also considered to be
a useful approach in the study of music listening. This is
because emotional experiences shared by different people at
the same moment toward a piece of music may lead to

increased synchrony of brain activation patterns among listeners.
Moreover, when ISC occurs at a particular moment in a piece
of music, it may reflect the music’s acoustic characteristics or
the music’s generation of subjective emotions (Trost et al., 2015).
Therefore, ISC analysis is considered a powerful data-driven
methodology that may provide key information about music
processing and music-induced emotions by extracting meaningful
information from ongoing brain activity under natural conditions
(Trost et al., 2015).

Previous studies using ISC analysis have evaluated various
aspects of music perception. In a study on acoustic feature
processing, Alluri et al. (2012) investigated the neural correlates of
timbre, tonal, and rhythmic feature processing to naturalistic music
stimuli and identified large-scale cognitive, motor, and limbic brain
circuits dedicated to acoustic feature processing. Regarding the
neural processing of music, Abrams et al. (2013) suggested that
naturalistic music elicits synchronized patterns of neural activity
across individuals in auditory, motor, and frontal regions of the
brain associated with higher cognitive functions and that the
structure of the musical sequence alters the synchronization of this
entire network. Farbood et al. (2015) showed that the processing
time scale of music gradually lengthens toward higher brain
regions. Regarding the relationship between ISCs and behavioral
ratings, Kaneshiro et al. (2020) found that, while the original
stimuli of popular Bollywood movie music were subjectively rated
as most pleasant, the highest ISC values were found in the time-
scrambled (measure shuffling) stimulus. Furthermore, Dauer et al.
(2021) found that a popular music-style remix of Steve Reich’s
“Piano Phase,” a minimal music piece, caused higher ISCs of
EEGs and higher ISCs of continuous behavior than the original
piece; namely, the abrupt change stimulus [no phasing section
(phase shift)] and segment shuffle stimuli (segments switched by
5 s each). Finally, with regard to musical emotional processing,
Trost et al. (2015) observed significant synchronization between
listeners in a distributed brain network that included not only
the auditory cortex but also regions associated with visual,
motor, attentional, and emotive processes, and brain activation
during the synchronization period was associated with various
acoustic features in the music. Sachs et al. (2020) showed that
enjoyment of sad music predicted inter-subject synchrony in
the auditory cortex, basal ganglia regions, OFC, and posterior
cingulate.

Thus, ISC analysis is being used to decipher brain states
during music listening. Schubert et al. (2013) suggest that the ISC
reflects that listeners are drawn to music and interested in what
happens next, and Dmochowski et al. (2014) suggest that the ISC
represents preferences of large audiences reflecting engagement
or interest in video advertising. However, it is unclear whether
ISC during music listening, as opposed to video content, also
represent preferences reflecting engagement or interest of a large
population. In addition, as mentioned earlier, while a growing
number of studies on ISC analysis of neural responses during
music listening, the stimulus attributes that contribute to neural
correlates are still poorly understood (Kaneshiro et al., 2021). In
other words, it is not clear what factors influence ISC during music
listening.

Here, we aimed to investigate whether the ISCs of EEGs
during music listening represent a preference for music reflecting
engagement or interest of a large population in music. Using
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a commercial music chart that indicates the music preferences
of a large population (reflecting engagement and interest), we
selected pieces of music and conducted an ISC analysis of EEGs
measured during music listening. In this study, we found the
linear component of the data that maximizes the cross-correlation
of EEG signals between different subjects (CorrCA; Dmochowski
et al., 2012). The ISC values were then statistically calculated using
a general linear model (GLM) for the degree of fitting between
the components. Then, we investigated whether the ISCs of EEG
during music listening represents a preference for music reflecting
engagement or interest of a large population. Furthermore, by
conducting a cluster analysis of the EEG correlation components
between subjects as features, we investigated which emotional and
musical characteristics influenced the ISCs of EEGs while listening
to music.

2. Materials and methods

2.1. Participants

Seventeen healthy adults participated in the experiment [7
females, aged 21.4 ± 0.69 years, mean ± standard deviation (SD)].
Of the 17 participants, 13 were students at Meiji University, and
four were young adults living in the university’s neighborhood.
To ensure that the results of the experiment were unbiased to
the musical training or ability of the participants, they completed
a questionnaire about their background in music listening and
performance. Fifteen of the 17 participants indicated that they
usually listen to music (1.768 ± 1.207 h/day). Although none
of the participants were professional musicians, six participants
had musical experience, with a mean of 7.167 ± 5.336 years. All
participants had normal hearing and provided written informed
consent to participate in this study. The study protocol was
approved by the Ethics Committee of the School of Science and
Technology, Meiji University. This study was conducted according
to the principles and guidelines of the Declaration of Helsinki.

2.2. EEG recordings

The BCI Research System, an EEG measurement system
manufactured by g.tec, was used for EEG measurements.
A bioamplifier for EEG measurement (g.USBamp; g.tec,
Schiedlberg, Austria) was used for EEG, and sintered Ag/AgCl
electrodes from the same measurement system were used for
the electrodes. The electrodes were an active scalp electrode
(g.LADYbird, g.tec) and a reference electrode (g.GAMMAearclip
Ag/AgCl, g.tec). The scalp and ground electrodes were flat
electrodes, and the reference electrode was an ear-clip type.
A gamma box for direct current (g.GAMMAbox for 16
channels DC, g.tec) was used as the connection device between
the bioamplifier and the electrodes, and a connector cable
(g.USBampGAMMAconnector, g.tec) was used for the connection.
Electrode caps (g.EEGcap, g.tec) were used to attach the electrodes
in the positions specified by the international 10–20 system.
The electrode cap was size M (for a head circumference of 540–
580 mm). A special highly conductive and highly adhesive gel

(g.GAMMAgel, g.tec) was inserted between the electrode and
the skin to keep the impedance between the electrode and the
skin below 10 k�. In addition, disposable electrocardiography
(ECG) electrodes (SENSTEC, Japan) were attached to clip-on
electrodes (g.GAMMAclip, g.tec), and electro-oculography (EOG)
was measured simultaneously with EEG measurements from
the same biological amplifier. A 0.5–100 Hz bandpass filter was
applied to the EEG and EOG, and the sampling frequency was
recorded at 512 Hz.

Two PCs were used in the experiment: a measurement PC
to measure EEG data and a control PC to run the experimental
program. The bioamplifiers were controlled and measured using
numerical analysis software (MATLAB; MathWorks, Natick, MA)
and Simulink on the measurement PC. Experimental programs
were created and executed on the control PC using psychological
experiment software (E-prime 3.0; Psychology Software Tools,
Sharpsburg, PA). The software was also used to present the musical
stimuli and to acquire the trigger signal.

In EEG measurements, electrodes were mounted in 30
positions according to the international 10–20 system (Fp1, Fpz,
Fp2, F7, F3, Fz, F4, F8, FC3, T7, C5, C3, Cz, C4, C6, T8, TP7, CP5,
CP3, CP4, CP6, TP8, P7, P5, P3, Pz, P4, P6, P8, O1, and O2). First,
Cz was determined from the midpoint of the line connecting the
nasal root and occipital tubercle and the midpoint connecting the
left and right anterior auricular points. Then, an electrode cap was
placed over the entire head with Cz as the reference. The ground
electrode was located at AFz, the reference was mounted on the
right earlobe, and the montage was recorded using the reference
electrode derivation method. Vertical EOGs were recorded from
above and below the right eye.

2.3. Music stimuli

Experimental stimuli were selected from the Billboard Japan
Hot 100 chart of 2017. The Billboard Japan Hot 100 is a composite
chart that references not only indicators such as the number of
CD sales and music downloads, but also the number of video
views on YouTube and other media, and the number of tweets
about songs and artists’ names. This chart was used in this study
because Dmochowski et al. (2014) utilized online networks such
as Facebook and Twitter to assess public behavioral responses
(including preferences). To evenly represent preferences reflecting
engagement or interest of a large population, every fifth song from
the chart was selected, for a total of 21 songs. The list of all 21
pieces of music is provided in Supplementary Table 1. Each piece
of music was imported from a music CD as an mp3 file into audio
editing software (Audacity 2.3.21) and edited to 62 s (1 s at the
beginning of the music: fade in, 1 s at the end of the music: fade
out). The chorus was always included as it is the part that impresses
people as the main motif in the song, and the verse, bridge, and
other parts that are connected before and after the chorus were
also included. No other techniques of loudness normalization or
other editing were used, and the mean loudness of all songs was
−16.662± 1.376 dBFS.

1 https://www.audacityteam.org/
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2.4. Procedure

E-prime 3.0 (Psychology Software Tools) was used to control
the experimental procedure. In addition, a 27-inch LCD monitor
and mouse were used to present the fixation cross and collect
input for subjective evaluation. Participants were seated in front of
the monitor, and their EEGs were measured while listening to the
presented music. The subjects were asked to use the earphones they
normally use, but those who did not have any used earphones from
the laboratory (Hi-Res in Colors; ELECOM, Osaka, Japan).

During each trial, participants were instructed to gaze on
a fixation cross. After 5 s of silence, the music stimulus was
presented for 62 s followed by silence for 5 s. Participants
indicated their degree of preference for the music by sliding the
mouse along an 11-point scale from −5 to 5. As soon as the
participant finished answering, the participant clicked the button
marked “Next” to start the next trial. Participants were allowed
to take a short break as needed between trials. The 21 selected
songs were presented randomly to the participants. The EEG
measurement was finished when participants had completed all
trials. Then, the participants listened to the 62-s clip of each
song again. This time, the participants indicated their degree
of preference, enjoyment, frequency of listening, and arousal on
an 11-point scale from −5 to 5 using a mouse. Hence, only
the preference evaluation was conducted twice because we used
this to check for any changes in the evaluation between EEG
measurement and questionnaire answering. The entire experiment
took approximately 1 h, including EEG measurements during
music listening and questionnaire answering.

2.5. Data analysis

Electroencephalography data were preprocessed using
MATLAB (MathWorks) and EEGLAB 14.1.1b (Swartz Center for
Computational Neuroscience, San Diego, CA). First, raw data
were subjected to a 1–60 Hz bandpass filter and a 50-Hz notch
filter. Next, the data were subjected to ICA and elimination of
ocular artifacts. After that, we performed correlated component
analysis (CorrCA) (Dmochowski et al., 2012; Jäncke and Alahmadi,
2016), ISC analysis (Hasson et al., 2004; Simony et al., 2016), and
clustering of brain activity components using preprocessed data.

First, we performed CorrCA to extract only wave patterns
expressing specific brain activity with high correlation between
subjects as components. CorrCA is a dimensional compression
method for integrating signals by extracting only those signals
common to multiple sources of information (Dmochowski
et al., 2012). While principal component analysis, a well-known
representative method of dimensional compression, takes the
maximum variance among a given data set, CorrCA takes as
its component the maximum correlation among data sets. This
concept of maximizing correlations is identical to canonical
correlation analysis (Hotelling, 1936), the only difference being
that the data sets are in the same space and share the same
projection vector. CorrCA calculates weights w, maximizing
Pearson’s correlation coefficient between components x1 and x2. In
the next ISC analysis, the ISC value is calculated for the component
y by multiplying the EEG data X and the weight w obtained from

CorrCA. We calculated the common weights that are unified for
all subjects and all music up to 30 components using CorrCA.
Specifically, we first concatenated the data of all music for each
subject. At that time, the baseline was corrected to be equal to
the values at the end and the beginning of the data to smooth
the connection. Subsequently, we performed CorrCA using the
concatenated data of all subjects, and weights w were calculated.
We employed the CorrCA approach of Dmochowski et al. (2012),
the mathematical details of which are described below.

The EEG data X is defined as X1 ∈ RD × T and X2 ∈ RD × T

with the number of channels D and the number of time samples T.
The transposed EEG data multiplied by the weight w are y1 = XT

1 w
and y2 = XT

2 w, where the weight vector is w1 ∈ RD. We found the
weight vector ŵ so that y1 and y2 were maximally correlated:

ŵ = arg max
w

yT1 y2
||y1|| ||y2||

= arg max
w

wTR12w√
wTR11w

√
wTR22w

, (1)

where the covariance matrices are denoted by R11 =
1
T X1XT

1 ,
R22 =

1
T X2XT

2 and R12 =
1
T X1XT

2 . The differentiating equation
(1) with respect to w and setting it to zero led to the following
equation:

σ11σ22

σ12
R12w = (σ22R11 + σ11R22)w, (2)

where σ11 = wTR11w, σ22 = wTR22w and σ12 = wTR12w are
scalar power terms to bring the two data sets onto the same scale.
Here we assume that the two data sets have similar power levels,
σ11 ≈ σ22. Furthermore, symmetrizing the mutual covariance
matrix R12 leads to the following eigenvalue equation:

(R11 + R22)
−1 (R12 + R21)w = λw, (3)

where λ = σ22/σ11. The eigenvector obtained by solving the
eigenvalue equation is ŵ. The eigenvector for the largest eigenvalue
(i.e., highest correlation) is the first principal component, the
eigenvector for the second largest eigenvalue is the second principal
component, and so on.

We obtained spatial filters corresponding to brain regions using
the forward model (Parra et al., 2005) to examine the brain activity
characteristics for each principal component. Then, the absolute
values were taken and normalized so that the maximum value was 1
for each principal component, and the brain area for each principal
component was described as a color map. The forward model is
presented by the following equation A:

A = RW(WTRW)−1 (4)

Second, we performed ISC analysis to quantitatively acquire a
similar degree of brain activity between subjects. We used a GLM
to obtain the ISC value (Hasson et al., 2004; Simony et al., 2016).
GLM is an analysis method that statistically examines how well
the observed signal data can be fitted with a design matrix model
(Friston et al., 1994). We fitted component y1 that multiplied the
EEG data of one subject X1 by the weight w as the design matrix
to component y2 that multiplied the EEG data of one subject X2
by the weight w. When the component data of the modeled subject
was y1, GLM was used in the following equation and described the
same component data y2 of other subjects:

y2 = y1β+ e, (5)

Frontiers in Human Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1225377
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1225377 August 14, 2023 Time: 13:40 # 6

Ueno and Shimada 10.3389/fnhum.2023.1225377

where β is the model parameter, and e is the error term. How well
the observed EEG data (y2) can be fitted by the design matrix (y1),
that is, whether the data (y2) can be explained by the model (y1)
with sufficient accuracy, depends on whether this error term is
sufficiently small. The least squares estimator b of β was obtained
as follows:

b =
(
yT1 y1

)−1
yT1 y2 (6)

To test this estimation, the squared error between the estimated and
actual values was determined:

R(�) = (y2 − y1b)T(y2 − y1b) (7)

We examined the significance of specific effects to see how
significantly the model parameter β explained the actual variation.
This is tested with the t statistic using contrast c = [1 0 0 ...] of
the parameter estimates b. The significance of a particular linear
compound of effects is tested with:

t = cb/ε, (8)

where:
ε2 = (R(�)/r) c

(
y1Ty1

)−1
cT. (9)

Where the degree of freedom of t is r:

r = N − rank(y1) (10)

N is the number of component data of y2. In this way, the t-values
obtained by calculating the GLM using data of the same component
among each subject were used as the ISC values. We followed
previous research (Dmochowski et al., 2014) and defined the ISC
value as the sum of the first through third principal components.

Finally, we performed clustering of brain activity components
to examine the relationship between the brain activity components
common to the subjects and the factors in the subjects’ evaluation
of the music and the characteristics of the music. Based on the
three-dimensional map with the first three principal components
extracted by CorrCA (x-axis: first principal component, y-axis:
second principal component, z-axis: third principal component),
we conducted clustering for all 21 pieces of music using the
k-means algorithm (MacQueen, 1967). The process of the k-means
method is described as follows: (i) randomly assign a cluster to each
point, (ii) calculate the center of gravity for the points assigned to
each cluster, (iii) calculate the distance from the center of gravity
calculated in (ii) for each point and reassign it to the cluster with
the closest distance, (iv) process (ii) and (iii) until the clusters
to be assigned stop changing. The process is complete when the
clusters no longer change and converge. The number of clusters was
determined by the elbow method and silhouette analysis to find the
appropriate number of clusters.

In short, EEGs were measured while 17 participants (not
selected by musical training or ability and not professional
musicians) listened to 21 pieces of music selected from the
2017 Billboard Japan Hot 100, which was used as a measure of
preferences reflecting engagement or interest of a large population.
Participants were also asked to rate each piece of music on an 11-
point scale from −5 to 5 for subjective evaluations (preference,
enjoyment frequency of listening, and arousal level). ISC analysis
was then performed on the acquired data using the first to third

components of the EEG extracted by CorrCA, and ISC values were
calculated. Then, a t-test was conducted on the ISC values of 10
higher-ranked and 10 lower-ranked pieces of music to examine
whether music with high preferences that reflected the engagement
and interest of large population had higher ISC values. In addition,
a cluster analysis was conducted on all 21 pieces of music using
the first three principal components of EEG as the feature values
in three clusters. Then, a one-way factorial analysis of variance
(ANOVA) and Tukey’s honest significant difference (HSD) post-
hoc test were performed on the EEG principal component values
and the subject’s subjective evaluation for each cluster. We also
analyzed each clustered music piece’s characteristics (tonality and
tempo). By doing so, we investigated which emotional and musical
characteristics influenced the ISC values.

3. Results

The weighting maps of the first three principal components
extracted by CorrCA are shown in Figure 1. These are the top
three principal components out of 30 that are highly correlated
across subjects, indicating the weight of the common brain activity
components across subjects.

Inter-subject correlation analysis was performed on the data
calculated using the weights described above. As mentioned earlier,
it has been suggested that commercials with high preference of
large population have higher values of ISCs (Dmochowski et al.,
2014); thus, we assumed that songs with high preference by a
large population (higher-ranked music) would also have higher
ISC values. In addition, one previous study conducted t-tests on
the surprise evoked by higher-ranked versus lower-ranked music
on the Billboard chart to examine whether music with higher
preference by a large population evokes greater surprise (Miles
et al., 2017). In the present study, to investigate whether music
with high preference reflecting engagement or interest of a large
population has a high ISC value, a t-test was conducted on the ISC
values of the 10 higher-ranked and 10 lower-ranked pieces of music.
As a result, there was a significant difference between the mean
ISC values of the 10 higher-ranked pieces of music (1.73 ± 10.4,
mean± SD) and the mean ISC values of the 10 lower-ranked pieces
of music (−0.27 ± 10.3, mean ± SD) [t(542) = −1.97, p = 0.0025;
Figure 2].

In terms of the subjects’ evaluation of the preference,
enjoyment, frequency of listening, and arousal of each piece of
music, there was no significant difference in all items between the
means of the 10 higher-ranked and 10 lower-ranked pieces of music

FIGURE 1

Weighting maps of the first three principal components extracted
by correlated component analysis.
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FIGURE 2

Inter-subject correlation (ISC) values for higher- and lower-ranked
music on the chart. There was a significant difference between the
mean ISC values of the higher-ranked music and the mean values
of the lower-ranked music (p < 0.05). There were 10 pieces of
music in the higher-ranked category and lower-ranked category,
respectively.

[preference: t(18) = −0.164, p = 0.436; enjoyment: t(18) = −1.127,
p = 0.863; frequency of listening: t(18) = −0.899, p = 0.19; arousal:
t(18) =−0.215, p = 0.416; Supplementary Figure 1].

We also investigated whether there was a relationship between
subjects’ evaluation of each piece of music and ISC values. At first,
all pieces of music were re-ranked based on the average of the
values of music evaluations (preference, enjoyment, frequency of
listening, and arousal) of all subjects. Then, the mean ISC values
of the 10 higher-ranked and 10 lower-ranked pieces of music were
calculated according to that ranking. There was no significant
difference between them in all items [preference: t(542) = −0.551,
p = 0.291; enjoyment: t(542) = 1.524, p = 0.936; frequency of
listening: t(542) = 0.842, p = 0.8; arousal: t(542) = 2.788, p = 0.997;
Supplementary Figure 2].

These results suggest that ISC values may reflect preferences
reflecting engagement or interest of a large population rather than
subject preferences.

We performed clustering using the values of the first
three principal components extracted from CorrCA with three
clusters determined by the elbow method and silhouette analysis
(Figure 3). Seven pieces of music were categorized in each cluster
(Supplementary Table 2). We then examined the characteristics of
each cluster, focusing on three features: values of each principal
component, subjects’ evaluation, and music features. One-way
factorial ANOVA and Tukey’s HSD post-hoc test were used
to analyze the characteristics of the clusters of each principal
component and subjects’ evaluation.

The characteristics of the brain activity of each cluster are
shown in Figure 4. There was a significant difference in the first
principal component values in the three clusters, as shown by one-
way factorial ANOVA between the three clusters [F(2,20) = 32.0,
p = 0.000001]. Tukey’s HSD post-hoc test analysis showed that the
first principal component value in Cluster 3 was significantly lower
than those in Cluster 1 and Cluster 2 (Cluster 1-Cluster 3: p < 0.01,
Cluster 2-Cluster 3: p < 0.01). There was a significant difference
in second principal component values in the three clusters, as
shown by one-way factorial ANOVA between the three clusters
[F(2,20) = 5.689, p = 0.00122]. Tukey’s HSD post-hoc test analysis
showed that the second principal component value in Cluster 2 was
significantly higher than those in Cluster 1 and Cluster 3 (Cluster

FIGURE 3

Clustering by the values of each piece of music’s top three principal
components for all 21 pieces of music.

FIGURE 4

Values of each cluster’s first three principal components. The white
bar represents the mean of each principal component value of
music in Cluster 1. The gray bar represents the mean of each
principal component value of music in Cluster 2. The black bar
represents the mean of each principal component value of music in
Cluster 3. Error bars represent the standard error.

1-Cluster 2: p < 0.05, Cluster 2-Cluster 3: p < 0.05). There was a
significant difference in third principal component values in the
three clusters, as shown by one-way factorial ANOVA between the
three clusters [F(2,20) = 9.18, p = 0.00178]. The results Tukey’s HSD
post-hoc test showed that the third principal component value in
Cluster 1 was significantly higher than that in Cluster 2 and Cluster
3 (Cluster 1-Cluster 2: p < 0.05, Cluster 1-Cluster 3: p < 0.05).

The subjects’ evaluation characteristics are shown in Figure 5.
There was no significant difference in the value of preference or
enjoyment in the three clusters, as shown by one-way factorial
ANOVA [preference: F(2,50) = 1.432, p = 0.254; enjoyment:
F(2,50) = 0.307, p = 0.738]. There was a significant difference
in the value of frequency of listening in the three clusters, as
shown by one-way factorial ANOVA between the three clusters
[F(2,50) = 8.166, p = 0.0014]. The results of Tukey’s HSD post-hoc
test showed that there was no significant difference in the value
of frequency of listening between Cluster 1 and Cluster 2 (Cluster
1-Cluster 2: p = 0.41), Cluster 1 and Cluster 3 (Cluster 1-Cluster
3: p = 0.688), or Cluster 2 and Cluster 3 (Cluster 2-Cluster 3:
p = 0.102). There was a significant difference in the arousal value in
the three clusters, as shown by one-way factorial ANOVA between
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FIGURE 5

Subjects’ evaluation values (preference, enjoyment, frequency of
listening, arousal). The white bar represents the mean of each
subject’s evaluation value of music in Cluster 1. The gray bar
represents the mean of each subject’s evaluation value of music in
Cluster 2. The black bar represents the mean of each subject’s
evaluation value of music in Cluster 3.

TABLE 1 Music characteristics.

Tonality Tempo
[mean ± standard

deviation (SD)]

Major
key

Minor
key

Cluster 1 6 1 131.6± 31.4

Cluster 2 4 3 105.4± 25.2

Cluster 3 2 5 144.1± 38.8

Mean tempo values did not differ significantly between clusters [F(2,20) = 2.250, p = 0.134].
However, Cluster 2 had a slower tempo than did Cluster 1 and Cluster 3. In terms of
tonality, Cluster 1 had music predominantly in the major key, while Cluster 3 had music
predominantly in the minor key.

the three clusters [F(2,50) = 10.965, p = 0.0002]. Tukey’s HSD
post-hoc test analysis showed that the arousal value in Cluster 2
was significantly higher than in Cluster 1 and Cluster 3 (Cluster
1-Cluster 2: p < 0.05, Cluster 2-Cluster 3: p < 0.05).

The characteristics of the music are shown in Table 1. Mean
tempo values did not differ significantly in the three clusters, as
shown by one-way factorial ANOVA between the three clusters
[F(2, 20) = 2.250, p = 0.134]. However, Cluster 1 and Cluster
3 had a faster tempo, while Cluster 2 had a slower tempo than
did Cluster 1 and Cluster 3. In terms of tonality, Cluster 1 had
music predominantly in a major key, while Cluster 3 had music
predominantly in a minor key. In addition, Cluster 1 had only
pop music, while Cluster 2 had many ballad-like pieces of music
(Supplementary Table 2).

These results indicate that brain activity, subjects’ evaluations,
and music characteristics are present in each cluster. Additionally,
the principal components that correlate well across subjects may
represent the subjects’ arousal level and the characteristics of the
music (tonality and tempo).

4. Discussion

In this study, we investigated whether the ISCs of EEGs
during music listening represents a preference for music reflecting
engagement or interest of a large population in music. The results

showed that the ISC values of the higher-ranked music, which
are considered to have high preferences reflecting engagement
or interest of a large population, were significantly higher than
those of lower-ranked music (Figure 2). By contrast, there was
no significant difference in ISC values between the higher- and
lower-ranked music based on subjects’ subjective evaluation of
their preferences (Supplementary Figure 2). This suggests that
ISC values reflect the preferences reflecting engagement or interest
of a large population rather than the subjects’ preferences. This
is consistent with the results of Dmochowski et al. (2014), who
suggested that ISC values could predict the preferences of large
audiences rather than subjects’ own preferences for commercials.
This study showed similar results for music rather than videos such
as commercials.

One reason for this finding is that subjective evaluations
of music vary widely among individuals, an aspect that has
fostered musical diversity. On the contrary, brain activity reflects
unconscious information processing. It is thought that collectively
shared aspects of music information processing can be extracted,
although they do not necessarily correspond to subjective
evaluation. Previous studies found that self-reports of ratings of
music are influenced by bias (Rosenman et al., 2011) and limited
by listeners’ ability to self-evaluate (Madsen et al., 1993), but,
like neural responses, time-changing ISC measures of engagement
suggest that engagement during music listening can be objectively
indexed (Kaneshiro et al., 2021).

It has been suggested that ISCs during music listening may
be driven by melodic and tonal expectation formation (facing and
processing novel content) and expectation processing (especially
expectation violation) (Kaneshiro et al., 2020). Additionally, it
has been suggested that viewers’ ISCs while watching a movie
reflect engagement (Dmochowski et al., 2012), emotional arousal
(Nummenmaa et al., 2012), and immersion in the movie (Cohen
et al., 2017). Dmochowski et al. (2014) found that top-down
modulation, in which individual preferences may alter the person’s
attention and engagement, may affect the strength of neural
responses associated with stimulus-locked neural processing and
ISC. However, if individual preferences guide the modulation
of sensory processing, it may be that the ISC will reflect the
subject’s preference rather than the group’s preference. However,
an individual’s preference for a stimulus may be strongly driven
by the narrative that stimulus in the brain and such bottom-up
influences well reflect preferences of large population. Nonetheless,
this sensory processing may be masked by individual preferences
and biases (Dmochowski et al., 2014). This means that the results
of the present study, may indicating that ISC values reflect
preference reflecting engagement or interest of a large population
rather than subject preferences, suggest that the ISC reflects
subjects’ unconscious, inward sensory processing influenced by
the narrative nature of the music (bottom-up). Accordingly, as
brain activity during music listening (ISC values) may represent
unconscious responses (emotions) shared by the large population,
no relationship was found between ISC values and subjects’
subjective evaluations.

In addition, Dmochowski et al. (2014) used ratings of
preferences for commercials by over 7,000 participants as an
indicator of preferences of large populations. However, in this
study, we used the Billboard Japan Hot 100 chart as an indicator of
preference reflecting engagement or interest, which is a composite
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index that refers not only to CD sales and music downloads, but
also to video views on YouTube and other media and the number
of tweets mentioning the song and artist name. Thus, we cannot
assume with certainty that people purchased or played the song or
tweeted the song and the artist’s name because they necessarily liked
the song. Furthermore, based on our observations above, as ISC
values may represent unconscious responses, it is more appropriate
to interpret this result as simply indicating interest, rather than that
ISC values represent preference reflecting engagement or interest of
a large population.

Therefore, these ISC values can be considered to represent the
interest of a large population in music, which is subconsciously
aroused in people by music listening.

We also investigated which emotional and musical
characteristics influenced the ISCs of EEGs during music
listening. Specifically, a cluster analysis was conducted using the
EEG correlation components between subjects as features, which
were used to calculate ISC values. The results showed that brain
activity, subjects’ evaluations, and music features were present in
each cluster (Figures 3–5; Table 1).

First, Cluster 1 was characterized by subjects’ infrequent
listening and frequent use of music in a major key, with particularly
high values for the third principal component. A previous study
conjectured that major chords, frequently used in music in
major keys, induce significant activity in the left middle temporal
gyrus (Suzuki et al., 2008). Therefore, these results indicate that
listening to music in major keys increased the activity of the left
middle temporal gyrus, which is prominent in the third principal
component.

Cluster 2 was characterized by subjects’ high preference,
especially high arousal, and relatively slow-tempo balladic music,
with particularly high values for the second principal component.
Previous studies have suggested that the amygdala is more active
when listening to pleasant music (Mueller et al., 2011; Koelsch et al.,
2013). It has also been suggested that the right temporal lobe is
more active and the right frontal lobe is less active when listening
to emotional music (Alfredson et al., 2004). Therefore, given the
strong influence of the second principal component in this result,
it is assumed that the activity of the OFC, which is influenced
by the activity of the amygdala, became more active when the
subjects listened to highly favorable music. In addition, listening to
sentimental, relatively slow-tempo music that uplifted the subject’s
mood enhanced activity in the right temporal lobe and suppressed
activity in the right frontal lobe.

Finally, Cluster 3 was characterized by subjects’ high listening
frequency and frequent use of music in minor keys, with
particularly low values for the first principal component (and low
values for the second and third principal components). Previous
studies have suggested that minor chords, often used in music
in minor keys, show significant activity in the right striatum
(Suzuki et al., 2008) and that the amygdala, vastus posterior cortex,
brainstem, and cerebellum are more active compared to major
chords (Pallesen et al., 2005). However, the results suggest that
listening to music in a minor key did not affect activity in the
aforementioned brain regions.

In this study, music with lyrics was utilized as the stimulus
due to the use of a Billboard chart as a measure of preference
reflecting engagement or interest of a large population. Previously,
Brattico et al. (2011) investigated the impact of lyrics on emotional

processing of music using fMRI to measure brain responses while
subjects listened to happy music (featuring a high usage of major
chords) and sad music (featuring a low usage of major chords).
The findings revealed that sad music with lyrics activated brain
regions such as the parahippocampal gyrus, amygdala, claustrum,
putamen, precentral gyrus, medial and IFG, and auditory cortex to
a greater extent compared to sad music without lyrics. Additionally,
happy music without lyrics activated the limbic system and the
right pars opercularis of the IFG, whereas happy music with lyrics
primarily elicited responses in the auditory cortex. Behavioral
assessments also indicated that happy music without lyrics evoked
stronger positive emotions than happy music with lyrics. These
findings suggest that lyrics may indeed influence emotions and
brain responses during music listening.

However, it is important to note that although the results of the
current study revealed that Cluster 1 was characterized by frequent
use of music in major keys and particularly high values for the
third principal component while Cluster 3 was characterized by
frequent use of music in minor keys and particularly low values for
the first principal component (as well as low values for the second
and third principal components), considering the previous studies
mentioned above, it cannot be definitively concluded that lyrics had
an influence in this particular analysis.

From these findings, the principal components with
high correlation among subjects used to calculate the ISC
values are considered to represent the subjects’ arousal level
and the characteristics of the music (tonality and tempo),
influencing ISC values.

Previous studies have investigated the relationship between
the ISCs of EEGs and the stimulus-response correlation (SRC)
while subjects were experiencing audiovisual stimuli (Dmochowski
et al., 2018). SRC represents the extent to which temporally varying
stimulus features are correlated with the evoked EEG response and
has been calculated to measure how strongly a stimulus drives
individual neural responses; both ISC and SRC have been suggested
to increase with heightened attention and to decrease with reduced
attention (Ki et al., 2016, 2020; Dmochowski et al., 2018). In
addition, Dmochowski et al. (2012) showed that peak values of
neural correlates during movie viewing corresponded significantly
with the exciting moments of the movie, such as scenes in which
the protagonist is holding a gun (highly suspenseful, tense, and
surprising) and tense scenes in movies related to hands. Moreover,
Nummenmaa et al. (2012) conjectured that subjects’ arousal ratings
during movie viewing positively correlated with ISC in the visual
cortex, somatosensory cortex, bilateral intraparietal sulcus, and
frontal eye area. They suggested that ISC reflects emotional arousal
to narrative stimuli (Dmochowski et al., 2012; Nummenmaa et al.,
2012). Therefore, previous studies also suggest that ISC values are
affected by arousal levels.

An fMRI study to examine the neural basis of acoustic features
of naturalistic music stimuli revealed that tonal and rhythmic
components showed significant ISCs (Alluri et al., 2012). Besides,
Kaneshiro et al. (2020) researched ISCs and SRC while listening
to original musical stimuli that retained basic musical features
such as rhythm and melody and phase-scrambled and time-
scrambled (measure shuffle) stimuli. Results have shown that SRC
correlates with ISC (Dmochowski et al., 2018), and both ISC
and SRC are significantly correlated at beat-related frequencies
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(Kaneshiro et al., 2020). Therefore, previous studies suggest that
the characteristics of music influence ISC values.

To summarize, it is suggested that the ISC values in this
study may represent the subconsciously aroused interest of a
large population in music. Furthermore, the principal components
highly correlated across subjects used to calculate the ISC values
represent the subjects’ arousal level and characteristics of the music,
suggesting that they influence the ISC values. Thus, the use of charts
that refer not only to the extent to which people purchase music,
but also to their reactions to music in online networks, and the
selection of songs from that chart as a way of evaluating behavioral
responses of large populations toward music. Hence, our study
adds novelty to the field of study regarding ISC engagement in
that ISC engagement may represent “the interest aroused in large
population, influenced by subjects’ arousal level and characteristics
of the music.”

To establish the relationships observed in this study, we initially
speculated based on previous research findings. First, studies have
indicated that specific acoustic features of music, such as timbre,
tempo, and dissonance, are associated with particular emotional
responses like anger, happiness, and arousal (Juslin and Laukka,
2000; Gabrielson and Juslin, 2003; Koelsch et al., 2006; Gomez and
Danuser, 2007; Trost et al., 2015). Therefore, it is possible that the
acoustic features of the music used in this study induced arousal in
the subjects and influenced the calculated ISC values. Additionally,
as previous research suggests that repeated exposure to music
increases preference (Madison and Schiölde, 2017), it is plausible
that more frequent listening to music subconsciously increased
interest, which could be reflected in the ISC values. However,
the results of this study did not indicate a direct relationship
between the principal components that exhibited high correlation
across subjects and the frequency of listening. Hence, it cannot be
concluded that listening frequency directly affected the interest in
music of large population or ISC values. Consequently, we inferred
from the results of this study that ISC values might be closely
associated with the experience of musical pleasure resulting from
prediction errors. The underlying reasons for this inference are
discussed below.

Kaneshiro et al. (2020) also showed that while the unedited
original stimuli were subjectively evaluated as the most pleasant,
the highest ISC values were found for the time-scrambled
(measure-shuffled) stimuli. This result is thought to represent
a situation in which the measure-level beat structure strongly
evokes a sense of temporal cohesion. At the same time,
the lack of contextual connection between measures subtly
betrays expectations of melody and tonality and increases
listening attention (Kaneshiro et al., 2020). Thus, it has been
suggested that ISCs during music listening may be driven by
expectation formation (facing and processing novel content)
and expectation processing (especially expectation violation)
(Kaneshiro et al., 2020).

Additionally, Madsen et al. (2019) interpreted the slope of ISC
change across repeats during repeated listening to music as the
persistence of interest in the music. The results of our study did
not indicate that frequency of music listening affected interest in
music, but as discussed below, this may be because some songs
increase ISC values with repeated listening, while others decrease
ISC values. Madsen et al. (2019) showed that music with increasing
ISC values contains large changes in volume and introduces new

instruments and timbres, and flourishes as the passage progresses,
avoiding the predictability that occurs in many other pieces of
music. In contrast, music with steeper ISC drops also contains large
volume changes, but the same patterns are often repeated, making
the music predictable. It has been suggested that the reason for this
is that as subjects listen to the same patterns over and over again,
the surprise effect disappears, and the ISC may decrease as the
EEG response (P300, mismatch negativity, error-related potentials)
(Escera and Corral, 2007), which is thought to indicate novelty,
decreases (Madsen et al., 2019).

Furthermore, recent studies suggest that predictive
mechanisms may drive musical pleasure (Salimpoor et al.,
2015; Gold et al., 2019; Koelsch et al., 2019). It has been suggested
that uncertainty when predicting how the next acoustic feature will
change during listening to music and the surprise response when
the music actually deviates from the prediction activates the brain’s
reward system and causes pleasant sensations (Cheung et al., 2019;
Leahy et al., 2021).

The results of this study suggest that subjects’ arousal values
during music listening and music characteristics affect ISC values
and that ISC values may represent the interest in music of large
population. Previous studies have suggested that ISCs during music
listening may be driven by expectation formation and expectation
violation due to changes in music features (Kaneshiro et al., 2020)
and may be related to interest in music and surprise effects (Madsen
et al., 2019). Consequently, the results of this study, together
with the findings in previous studies about musical pleasure and
predictive mechanisms (Salimpoor et al., 2015; Cheung et al., 2019;
Gold et al., 2019; Koelsch et al., 2019; Leahy et al., 2021), suggest
that ISC values are closely related to musical pleasantness due to
prediction error.

Several limitations of this study need to be considered. First,
the use of music with lyrics for experimental stimuli introduced
potential confounding (Brattico et al., 2011) and could have
influenced the results. As noted earlier, this study’s results do
not indicate any influence from lyrics. However, several previous
studies, such as Madsen et al. (2019), avoided this confounding
by using instrumental music as stimuli, and Kaneshiro et al.
(2020) used music whose lyrics were composed in Hindi as
stimuli, which were difficult for participants to understand, thus
avoiding confounding. Therefore, for future studies, it will be
necessary to utilize stimuli such as music without lyrics, music
with lyrics in a foreign language that is difficult for participants to
understand, or music in which only the singing voice is replaced
with instrumental sounds using music production and editing
software. This approach will help isolate the influence of lyrics
on the observed effects. Second, while this study focused on
analyzing tonality and tempo as acoustic features of the music and
demonstrating their influence on ISC, further analysis is needed
to explore the impact of other acoustic features on ISC. Given
the use of primarily pop songs in this study, future research
should consider using a variety of music genres as stimuli, as
acoustic features are likely to differ across different types of
music. Detailed analysis of acoustic features using MATLAB’s
MIRtoolbox can provide further insights into the influence of
these features on ISC. Third, as ISC values were calculated and
examined for each piece of music during the listening session,
it remains unclear how ISC values change over time within a
specific piece of music. Therefore, in future studies, analyzing
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ISC values for multiple musical stimuli in time-series data would
allow for the exploration of the temporal dynamics of ISC and
its relationship with acoustic features and emotional responses. By
addressing these considerations in future research, we can further
enhance our understanding of the influence of different stimuli,
acoustic features, and temporal dynamics on ISC and its relation
to emotional processing during music listening.

Future studies combining these proposed methods will shed
more light on how ISC reflects the unconsciously aroused interest
in music under the combined influence of arousal level and
acoustic features, as well as on the mechanisms by which music
induces pleasure.

5. Conclusion

This study aimed to clarify whether the ISCs of EEGs during
music listening represent music preferences reflecting engagement
or interest of a large population. Our results suggest that the ISC
values calculated represent the subconscious interest in music of a
large population. Furthermore, the principal components, highly
correlated across subjects, used to calculate ISC values represent
subjects’ arousal levels and characteristics of the music. Hence,
the findings of this study suggest that subjects’ arousal values
during music listening, as well as the specific characteristics of the
music itself, influence the calculated ISC values. Furthermore, ISC
values may serve as a representation of the interest in music of a
large population.
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