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Background: Antiparkinson medication and subthalamic nucleus deep brain

stimulation (STN-DBS), two common treatments of Parkinson’s disease (PD),

effectively improve skeletomotor movements. However, evidence suggests that

these treatments may have differential effects on eye and limb movements,

although both movement types are controlled through the parallel basal

ganglia loops.

Objective: Using a task that requires both eye and upper limb movements, we

aimed to determine the effects of medication and STN-DBS on eye and upper

limb movement performance.

Methods: Participants performed a visually-guided reaching task. We collected

eye and upper limb movement data from participants with PD who were tested

both OFF and ON medication (n = 34) or both OFF and ON bilateral STN-DBS

while OFF medication (n = 11). We also collected data from older adult healthy

controls (n = 14).

Results: We found that medication increased saccade latency, while having no

effect on reach reaction time (RT). Medication significantly decreased saccade

peak velocity, while increasing reach peak velocity. We also found that bilateral

STN-DBS significantly decreased saccade latency while having no effect on reach

RT, and increased saccade and reach peak velocity. Finally, we found that there

was a positive relationship between saccade latency and reach RT, which was

unaffected by either treatment.
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Conclusion: These findings show that medication worsens saccade performance

and benefits reaching performance, while STN-DBS benefits both saccade and

reaching performance. We explore what the differential beneficial and detrimental

effects on eye and limb movements suggest about the potential physiological

changes occurring due to treatment.

KEYWORDS

Parkinson’s disease, antiparkinsonmedication, levodopa, subthalamic nucleus deep brain
stimulation, saccade, reaching

1. Introduction

Two common treatments for Parkinson’s disease (PD) are
antiparkinson medication and subthalamic nucleus deep brain
stimulation (STN-DBS). While both treatments effectively improve
the motor signs of PD, the mechanisms by which treatment
improves behavior may be different. An indirect way to assess
these mechanisms is to determine the treatment effects on different
effectors, such as the eyes and upper limbs. This will help elucidate
how treatments are affecting multiple neural circuits. However,
treatment effects on eye and upper limb performance have typically
been assessed in separate experiments with different tasks. We
aimed to assess and better understand how the different treatments
of PD affect both eye and upper limb movements during the same
movement task using comparable outcomes. We focused on two
aspects of eye and upper limb movement: latency/reaction time
(RT) and peak velocity.

The results from separate eye only and upper limb only
movement tasks suggest that antiparkinson medication may have
differential effects on the eyes and upper limbs. We have recently
shown that medication increased saccade latency (Munoz et al.,
2022), confirming the findings of previous studies (Müller et al.,
1994; Michell et al., 2006; Hood et al., 2007; Dec-Ćwiek et al.,
2017; Lu et al., 2019; Waldthaler et al., 2019). However, other
studies have reported that medication does not have a significant
effect on saccade latency (Gibson et al., 1987; Rascol et al., 1989;
Temel et al., 2009; van Stockum et al., 2012; Cubizolle et al.,
2014; Bakhtiari et al., 2020), which could be due to suboptimal
medication doses (Munoz et al., 2022). Conversely, the medication
effect on simple RT tasks evaluating upper limb movement has
typically lacked statistical significance, however, there has been a
consistent pattern of medication decreasing simple RT within all
(Velasco and Velasco, 1973; Bloxham et al., 1987; Pullman et al.,
1988, 1990; Starkstein et al., 1989; Jahanshahi et al., 1992; Fern-
Pollak et al., 2004; Ingram et al., 2021) but one study (Müller
and Harati, 2020). Additionally, one study found this decrease in
latency with medication to be statistically significant (Montgomery
and Nuessen, 1990). Overall, these findings suggest that medication
significantly increases saccade latency and decreases upper limb
simple RT, but not significantly.

During the visually-guided saccade task, medication typically
decreased saccade peak velocity, either significantly (Munoz et al.,
2022) or not significantly (Dec-Ćwiek et al., 2017; Lu et al.,
2019). Conversely, studies reported that medication typically
increased the peak velocity of simple upper limb movements during

reach-to-grasp tasks (Castiello et al., 2000; Negrotti et al., 2005;
Schettino et al., 2006), arm abduction to match a target (Baroni
et al., 1984), wrist flexion (Berardelli et al., 1986; Johnson et al.,
1994), elbow flexion (Robichaud et al., 2002; Vaillancourt et al.,
2004), and reach- or point-to-target tasks (Kelly et al., 2002;
Camarda et al., 2005). Similarly, medication has improved finger
tapping speed and pronation-supination speed (Brzezicki et al.,
2023). Taken together, previous literature suggests that medication
will decrease saccade peak velocity but increase upper limb peak
velocity. However, the effects of medication on both eye and limb
movements have not been tested using a single task and cohort of
participants with PD.

Unlike studies examining the effects of medication, the
previous literature evaluating the effects of STN-DBS suggest that
bilateral STN-DBS may have similar effects on eye and upper limb
movements. Using the visually-guided saccade task, most studies
have shown that STN-DBS decreased saccade latency compared to
OFF stimulation, typically significantly (Fawcett et al., 2007, 2010;
Sauleau et al., 2008; Temel et al., 2008, 2009; Yugeta et al., 2010;
Antoniades et al., 2012a,b, 2015; Dec-Ćwiek et al., 2017; Goelz
et al., 2017; Bakhtiari et al., 2020), but occasionally not significantly
(Rivaud-Péchoux et al., 2000; Lohnes and Earhart, 2012; Pinkhardt
et al., 2012; Nilsson et al., 2013). Similarly to saccade latency,
studies found that bilateral STN-DBS decreased upper limb RT
during a simple RT task, either significantly (Brown et al., 1999;
Temel et al., 2006; Antoniades et al., 2012b) or trending toward
significance (Kumru et al., 2004). Additionally, one study compared
the effect of STN-DBS on visually-guided saccade latency and
button press RT. They found that STN-DBS decreased both latency
and RT (Antoniades et al., 2012b), but other aspects of movement,
such as peak velocity, were not evaluated. Overall, these findings
suggest that bilateral STN-DBS will decrease both saccade latency
and reach RT.

Previous studies using the visually-guided saccade task
reported that bilateral STN-DBS increased saccade peak velocity,
either significantly (Nilsson et al., 2013) or not significantly
(Pinkhardt et al., 2012; Dec-Ćwiek et al., 2017). Similarly, STN-
DBS has repeatedly been found to increase peak velocity of upper
limb movements, such as reach-to-grasp (Dafotakis et al., 2008),
finger tapping (Dafotakis et al., 2008; Tamás et al., 2016), repetitive
pointing (Dafotakis et al., 2008), hand grasping (Tamás et al., 2016),
elbow flexion (Vaillancourt et al., 2004), pronation/supination
(Tamás et al., 2016), and cued upper limb joint movements (Joundi
et al., 2012). This would be expected as STN-DBS is a common
treatment of PD because it has been proven to improve motor
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function (Limousin et al., 1995; Pollak et al., 1996; Krack et al.,
1998; Brown et al., 1999; Thobois et al., 2002; Rodriguez-Oroz et al.,
2005). Taken together, previous literature suggests that STN-DBS
will increase saccade and upper limb peak velocity. However, the
effects of STN-DBS on eye and upper limb movements have mostly
been evaluated separately, limiting direct comparisons.

This study investigated the effects of antiparkinson medication
and bilateral STN-DBS on the oculomotor and skeletomotor
systems during a task requiring both eye and upper limb
movement. First, we determined the effect of medication on
saccade and reach latency/RT and peak velocity. We hypothesized
that medication would increase saccade latency while having no
effect on or decreasing reach RT and would decrease saccade
peak velocity while increasing reach peak velocity. Second, we
determined the effect of bilateral STN-DBS on saccade and
reach latency/RT and peak velocity. We hypothesized that STN-
DBS would decrease both saccade latency and reach RT and
would increase both saccade and reach peak velocity. Third, we
determined the relationship between saccade latency and reach RT
for a cohort of people with PD tested OFF and ON medication,
a cohort of people with PD tested OFF and ON STN-DBS, and
healthy controls to evaluate whether treatment has an impact on
this relationship.

2. Materials and methods

2.1. Participants

Northwestern University and Rush University Medical
Center Institutional Review Boards approved this study, and
all experiments were completed in accord with the Helsinki
Declaration of 1975. We obtained informed consent from all
participants. Participants with PD were recruited from the
movement disorder clinics at both institutions. Participants with
PD were examined by a movement disorders neurologist and met
the United Kingdom PD Society brain bank clinical diagnostic
criteria (Hughes et al., 1992a,b; Berardelli et al., 2013) but had no
neurological comorbidities, while healthy controls had no reported
history of any neurological disorders. All participants had (1)
normal or corrected-to-normal visual acuity, (2) no eye movement
abnormalities, such as blepharospasm, double vision, and/or eyelid
opening apraxia, and (3) the ability to understand and perform the
experimental task during intake. All participants were right-hand
dominant, as confirmed by the Edinburgh Handedness Inventory
(Oldfield, 1971).

To examine the medication effect, 34 individuals with PD (28
males, 6 females) who were treated with antiparkinson medication
completed testing of the visually-guided reaching task (Table 1).
To examine the STN-DBS effect, we recruited 14 individuals with
PD who had high-frequency bilateral STN-DBS. Three participants
were unable to complete testing OFF STN-DBS. Therefore, the
STN-DBS effect analysis included 11 individuals with PD (11
males) who were treated with bilateral STN-DBS (Table 1).
Individuals were tested 8 months post-surgery on average (range:
6–12 months). Finally, we also tested 17 older adult healthy
controls, but 3 were excluded due to a high Movement Disorder
Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)

Part III motor score (>12), a low Montreal Cognitive Assessment
(MoCA) score (<18), or fatigue preventing the participant from
successfully completing the task. The final healthy control group
included 14 participants (12 males, 2 females) (Table 1).

2.2. Experimental conditions

To determine the medication effect, data collection took place
over 3 days: 1 day for intake and 2 days for testing. During
intake, participants with PD were consented, were administered the
MoCA, and practiced the experimental tasks while ON medication.
Testing occurred over the next 2 days: 1 day OFF medication and
1 day ON medication, with the order of medication condition
randomized across participants. For OFF medication testing,
participants withdrew from all antiparkinson medications for at
least 12-h before the start of testing (Langston et al., 1992). For ON
medication testing, participants took their medications as usual.
To verify that participants were in the “off state” or “on state,” the
experimenter confirmed with the participant that they felt “off” or
“on” before testing began. MDS-UPDRS Part III was administered
right before testing each day.

To determine the bilateral STN-DBS effect, data collection took
place over 5 days: 1 day for intake and 4 days for testing. Intake
was completed ON medication and ON bilateral STN-DBS and
otherwise was identical to the intake day of the medication effect
participants. Testing occurred over the next 4 days: 1 day OFF STN-
DBS, 1 day with only the left stimulator on, 1 day with only the
right stimulator on, and 1 day ON bilateral stimulation with the
order of STN-DBS condition randomized across subjects. Only data
from the OFF STN-DBS and ON bilateral STN-DBS conditions
are presented in this manuscript. Stimulators were turned OFF
at least 3-h prior to testing (Temperli et al., 2003). ON bilateral

TABLE 1 Characteristics of participants with Parkinson’s disease in the
medication and STN-DBS effect analyses and healthy controls.

Medication
effect

(n = 34)

STN-DBS
effect

(n = 11)

Healthy
controls
(n = 14)

Sex (M/F) 28/6 11/0 12/2

Age (years) 65.88 ± 3.86 66.64 ± 3.17 65.43 ± 4.24

Disease duration
(years)

7.12 ± 4.30 10.27 ± 4.84 .

Time since surgery
(months)

. 8.27 ± 1.74 .

MoCA 27.68 ± 1.92 27.00 ± 2.00 27.21 ± 1.63

MDS-UPDRS Part III

Off meds 43.24 ± 15.06 . 2.93 ± 2.30

On meds 32.03 ± 11.55 . .

Off meds, Off DBS . 50.55 ± 14.27 .

Off meds, On DBS . 19.55 ± 8.17 .

Levodopa equivalent
daily dose (mg)

790.00 ± 658.46 405.45 ± 288.92 .

Values are mean ± standard deviation. DBS, deep brain stimulation; MDS-UPDRS,
Movement Disorder Society-Unified Parkinson’s Disease Rating Scale; mg, milligrams;
MoCA, Montreal Cognitive Assessment.
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stimulation testing was completed on clinical stimulation settings
(Table 2). All testing was completed OFF medication after at least
12-h overnight withdrawal (Langston et al., 1992). MDS-UPDRS
Part III was administered right before testing each day.

For healthy controls, intake and testing were completed in
1 day. Testing for all participants included a series of 6 different
eye and upper limb movement tasks, but only data from one, the
visually-guided reaching task, is reported in this manuscript.

2.3. Instrumentation

Participants sat upright in a height-adjustable chair with their
chin placed on a chin rest to minimize head movement. We
recorded binocular eye movements at 500 Hz using an infrared
camera-based eye-tracking system (Eyelink II, SR Research Ltd,
Ottawa, ON, Canada). We recorded head, upper limb, and robotic
arm movements at 240 Hz using a three-dimensional motion
capture system (Optotrak 3020, Northern Digital, Waterloo, ON,
Canada). To capture head and upper limb movements, participants
had infrared light-emitting diodes (iLED) attached to the eye
tracking system on the head and another iLED attached to their
right index finger adjacent to their fingernail. To capture the robotic
arm movements, another iLED was attached to the end of the
robotic arm. Eye, head, upper limb, and robotic arm movements
were synchronized, after down-sampling the eye-tracking data to
240 Hz, and stored using The MotionMonitor (Innovative Sports
Training, Chicago, IL, USA).

The task was presented using 3 mm green LEDs (70 mcd),
the first as the central fixation LED mounted on a central fixation
stand and the second as the peripheral target LED, which was
attached to the tip of a robotic arm (Thermo CRS, Burlington,
ON, Canada). The central fixation LED was positioned at eye level,
42 cm away from the chin rest and participant. The task was
completed in the dark.

2.4. Visually-guided reaching task

Each trial began with the participant fixating their eyes on the
central LED and their right index finger resting on the central
fixation stand for a time interval between 2000 and 3000 ms,
after which the central LED was extinguished. After a 200 ms
gap, a peripheral target LED was presented to the right along the
horizontal plane. The participant was instructed to “look and touch
the target LED as accurately as possible at a comfortable speed.” The
target LED was presented for 2000 ms at a 10◦ or 15◦ visual angle
(7.41 or 11.25 cm) from the central LED at random, but only trials
with the 15◦ target were analyzed in this manuscript for simplicity.
We chose a 15◦ visual angle due to equipment limitations for
accurate eye-tracking and we used the 10◦ visual angle to introduce
a choice to prevent memorization of the target location. We chose
to analyze only the 15◦ target trials because these trials were more
difficult than the 10◦ target trials, making them likely more sensitive
to differences in behavior. Participants performed one block of 20
trials, 10 trials for each target LED location, to prevent fatigue while
having enough trials to reach statistical significance according to
pilot testing. Participants were given a short break after 10 trials and
the lights were turned on to limit adaptation to the dark. Before the
block of 20 trials, all participants completed practice trials until they
could confidently perform the task correctly.

2.5. Data processing

The eye and upper limb data were processed using a custom
MATLAB script (The MathWorks Inc., Natick, MA, USA). Eye
and upper limb position data were filtered using a 20 Hz low-pass
second-order, zero-phase Butterworth filter. The filtered position
data were differentiated to calculate velocity. Tangential velocity
was calculated in 2 dimensions for the eye movement data and in 3
dimensions for upper limb movement data.

TABLE 2 Clinical stimulation settings for the participants in the STN-DBS effects analysis.

ID Left stimulator clinical settings Right stimulator clinical settings

Amp
(V or mA)

Freq
(Hz)

PW
(µs)

+

Contact
−

Contact
Amp

(V or mA)
Freq
(Hz)

PW
(µs)

+

Contact
−

Contact

1 3.0* 130 60 1 0 4.0* 130 60 10 9

2 2.4 130 60 Case 2abc 2.2 130 60 Case 10abc

3 3.0* 125 60 1 2 3.2* 125 60 Case 9

4 2.5* 130 60 0 2, 3 2.9* 130 90 11 9

5 2.9 160 90 Case 3ac 2.0 130 60 Case 10abc

6 2.4 130 60 Case 3abc 3.2 130 90 Case 10abc

7 2.9 130 60 Case 3abc 2.9 130 60 Case 10abc

8 3.0 130 60 Case 2abc 3.1 130 60 Case 10ab

9 2.1 130 60 Case 2c 2.7 130 60 Case 10c

10 3.8 130 60 Case 2c, 4 2.8 130 60 Case 10abc

11 3.6 130 60 Case 2c 2.5 180 60 Case 10abc

The above left and right settings were used for bilateral STN-DBS testing.
* Indicates that the participant had constant voltage stimulation and the amplitude value is in volts. All other participants had constant current stimulation and the amplitude value is
in milliamperes. Amp, amplitude; Freq, frequency; Hz, hertz; µs, microsecond; mA, milliamperes; − Contact, negative contact; + Contact, positive contact; PW, pulse width; V, volts. Those
with constant current stimulation had segmented electrodes, which are represented by the segment names a, b, and c.
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Using the eye and upper limb position data and the tangential
velocity data, an approximate estimate of the eye and upper limb
movement onset and offset was marked using visual inspection to
create a region of interest in time. We computed eye and upper limb
peak velocities within this region of time. From the peak velocities,
we identified the first time point when velocity went below 5%
of the peak velocity, which was defined as the eye or upper limb
movement onset. Saccade latency and reach RT were defined as the
time difference between target LED onset and the algorithmically
identified movement onset of the saccade or reach. During visual
inspection, if it was clear the trial was not performed correctly, it
was marked invalid. For instance, if the participant moved their
eyes or upper limb prior to the presentation of the target LED or
if they did not complete the reach in the allotted time. All trials
marked invalid were excluded.

After visual inspection, trials were further excluded based on
predetermined criteria: (1) saccade latency was < 90 ms (Munoz
et al., 1998) or >1000 ms, (2) reach RT was < 200 ms or >1000 ms,
or (3) reach RT occurred >500 ms before saccade latency. Based
on visual inspection of the data, trials were excluded as outliers if
reach peak velocity was >1 m/s or reach end point error was >5 cm.
Our outcome variables were saccade latency, reach RT, saccade peak
velocity, and reach peak velocity.

2.6. Statistical analysis

Linear mixed-effect regression models were used to assess
each of the saccade and reach outcomes. For the medication
analysis, the fixed effect was medication condition (OFF and ON
medication). For the STN-DBS analysis, the fixed effect was STN-
DBS condition (OFF and ON bilateral STN-DBS). The random
effect was participant in both analyses. To meet the distributional
assumptions for mixed modeling, if the observed data was right
skewed, the data was transformed using a log function. This
occurred for saccade latency, reach RT, and reach peak velocity. If
the observed data was left skewed, the data was transformed using
a squared function. This was the case for saccade peak velocity.
The statistics presented are in log or squared scales, along with
the estimated difference transformed back to the original scale (Est
diffBT). The relationship between saccade latency and reach RT was
assessed across medication conditions, across STN-DBS conditions,
and in the healthy controls using mixed-effect regression models.
Mixed models were also used to assess the interaction between the
treatment and saccade latency effects on reach RT. The significance
of the results was identical between the original scale and the log
transformation scale, so we present the data and statistics in the
original scale for ease of interpretation. All statistical analyses were
performed using SAS R© (version 9.4, SAS Institute, Cary, NC, USA).

3. Results

3.1. Medication effect

Medication significantly increased saccade latency [Est
diffBT = 25.98 ms; F(1,542) = 17.50; p < 0.001; Figure 1A] but had
no statistically significant effect on reach RT [Est diffBT = 13.96 ms;

FIGURE 1

The medication effect on saccades and reaching. The observed
medication effect on (A) saccade latency, (B) reach RT, (C) saccade
peak velocity, and (D) reach peak velocity. The plots show the mean
medication effect and standard errors, with observed means from
healthy controls presented for reference (dashed line). * Indicates
that the medication effect was statistically significant (p < 0.05).

F(1,542) = 2.96; p = 0.086; Figure 1B] compared to OFF medication.
Additionally, medication significantly decreased saccade peak
velocity [Est diffBT = −0.04 m/s; F(1,542) = 4.75; p = 0.030;
Figure 1C] but significantly increased reach peak velocity [Est
diffBT = 0.03 m/s; F(1,542) = 23.00; p < 0.001; Figure 1D] compared
to OFF medication. Observationally, with medication, the mean
saccade latency and peak velocity became further from healthy
control means, while mean reach peak velocity became closer to
healthy control means.

3.2. Bilateral STN-DBS effect

Bilateral STN-DBS significantly decreased saccade latency [Est
diffBT = −38.89 ms; F(1,159) = 7.75; p = 0.006; Figure 2A] but had no
statistically significant effect on reach RT [Est diffBT = −29.93 ms;
F(1,159) = 2.91; p = 0.090; Figure 2B] compared to OFF STN-DBS.
Additionally, bilateral STN-DBS significantly increased saccade
peak velocity [Est diffBT = 0.09 m/s; F(1,159) = 4.20; p = 0.042;
Figure 2C] and significantly increased reach peak velocity [Est
diffBT = 0.03 m/s; F(1,159) = 6.48; p = 0.012; Figure 2D] compared
to OFF STN-DBS. Observationally, all three statistically significant
findings resulted in performance changes with STN-DBS that
became closer to healthy control performance.

3.3. Saccade latency effect on reach RT

Since the direction of change in mean reach RT followed the
change in mean saccade latency for both treatments, we wanted
to determine the relationship between saccade latency and reach
RT. Saccade latency had a significant positive relationship with
reach RT across the OFF and ON data of the participants in the
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FIGURE 2

The bilateral STN-DBS effect on saccades and reaching. The
observed STN-DBS effect on (A) saccade latency, (B) reach RT, (C)
saccade peak velocity, and (D) reach peak velocity. The plots show
the mean STN-DBS effect and standard errors, with observed
means from healthy controls presented for reference (dashed line).
Participants were OFF medication during OFF and ON bilateral
STN-DBS testing. * Indicates that the bilateral STN-DBS effect was
statistically significant (p < 0.05).

medication analysis [ß = 0.452; estimated intraclass correlation
coefficient (ICC) = 30.58%; p < 0.001; Figure 3A] and of the
participants in the STN-DBS analysis [ß = 0.389; ICC = 43.26%;

p < 0.001; Figure 3B]. To determine if this relationship was
affected by treatment, we also determined whether there was an
interaction between the treatment and saccade latency effects on
reach RT. There was no interaction between either medication
condition and saccade latency (p = 0.171) or STN-DBS condition
and saccade latency (p = 0.211). Finally, the positive relationship
between saccade latency and reach RT was also seen in the healthy
controls (ß = 0.484; ICC = 65.74%; p < 0.001; Figure 3C).
In the vast majority of trials, saccade initiation occurred before
reach initiation for the participants in the medication analysis
(Figure 3D), participants in the STN-DBS analysis (Figure 3E), and
healthy controls (Figure 3F).

4. Discussion

We investigated the effects of antiparkinson medication and
bilateral STN-DBS on visually-guided saccades and reaching
movements during a visually-guided reaching task. Notably, this
is the first report of both the medication and STN-DBS effects
on the eye and upper limb movements during the same task. We
have three key findings. First, antiparkinson medication had an
adverse effect on saccade performance and a beneficial effect on one
aspect of reach performance. Antiparkinson medication increased
saccade latency, decreased saccade peak velocity, and increased
reach peak velocity. Second, STN-DBS had a beneficial effect on
saccade performance and a beneficial effect on one aspect of
reach performance. Bilateral STN-DBS decreased saccade latency,
increased saccade peak velocity, and increased reach peak velocity.

FIGURE 3

Relationship between saccade latency and reach reaction time. The relationship was significant for the data analyzed for the (A) medication group,
(B) STN-DBS group, and (C) healthy controls. The plots depict the model-estimated relationship (solid black line) and 95% confidence interval (gray
shaded area). The observed trial-level data are overlaid onto the plots (gray filled circles). The histograms show the difference in time between the
reach RT and saccade latency for the (D) medication group, (E) STN-DBS group, and (F) healthy controls. All values over zero show that saccade
initiation occurs before reach initiation.
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Third, we confirmed that there was a positive relationship between
saccade latency and reach RT across treatment groups and healthy
controls, in which saccade initiation preceded limb initiation.
Importantly, the positive relationship remained unaffected by
treatment. Finally, we discuss the possible parallel mechanisms
underlying the similar effects of medication and STN-DBS on reach
peak velocity and the possible unique mechanisms underlying
the differential effects of medication and STN-DBS on saccade
performance.

4.1. Differential effects of medication on
saccade and reach performance

We found that antiparkinson medication adversely impacted
saccade performance and benefitted one aspect of reach
performance (Figure 1). Our findings confirmed our prediction
that antiparkinson medication would increase saccade latency.
Our recent study and other previous studies have shown that
medication increases saccade latency during a saccade only
task (Müller et al., 1994; Michell et al., 2006; Hood et al., 2007;
Dec-Ćwiek et al., 2017; Lu et al., 2019; Waldthaler et al., 2019;
Munoz et al., 2022). The effect of medication on saccade peak
velocity has been less established. Three previous studies have
found no statistically significant effect on saccade peak velocity
(Rascol et al., 1989; Dec-Ćwiek et al., 2017; Lu et al., 2019),
but, observationally, 2 of the 3 showed a slight decrease in peak
velocity with medication during the visually-guided saccade task
(Dec-Ćwiek et al., 2017; Lu et al., 2019). The third study did not
show a slight decrease, possibly because of the small medication
dosage given to the participants (Rascol et al., 1989). Our recent
study found a statistically significant decrease in peak velocity
with medication on the visually-guided saccade task (Munoz et al.,
2022). In the present study, we extended previous saccade findings.
Medication increases saccade latency and decreases saccade peak
velocity not only during a saccade task, but also in a task requiring
eye-hand coordination.

Additionally, our findings confirmed our hypothesis that
antiparkinson medication would significantly increase reach peak
velocity, while increasing reach peak velocity. The beneficial
medication effects on upper limb velocity are well known, and
we replicate this beneficial effect (Baroni et al., 1984; Berardelli
et al., 1986; Johnson et al., 1994; Castiello et al., 2000; Kelly et al.,
2002; Camarda et al., 2005; Negrotti et al., 2005; Schettino et al.,
2006). This finding, in addition to a clear increase in MDS-UPDRS
Part III score, made it clear that a 12-h withdrawal period was
sufficient for our participants to be in an “off state,” even those
on longer-acting medications, like dopamine agonists. Together,
these findings suggest that medication has a differential effect on
the oculomotor and skeletomotor systems.

4.2. Similar effects of bilateral STN-DBS
on saccade and reach performance

We found that bilateral STN-DBS improved both saccade
performance and one aspect of reach performance (Figure 2).

Our findings confirmed our hypotheses that bilateral STN-DBS
would significantly decrease saccade latency and increase saccade
peak velocity compared to OFF stimulation. Previous studies have
also reported that bilateral STN-DBS decreased saccade latency
(Fawcett et al., 2007, 2010; Sauleau et al., 2008; Temel et al.,
2008, 2009; Yugeta et al., 2010; Antoniades et al., 2012b,a, 2015;
Dec-Ćwiek et al., 2017; Goelz et al., 2017; Bakhtiari et al., 2020)
and increased saccade peak velocity (Nilsson et al., 2013) in a
saccade only task. In addition, bilateral STN-DBS has improved
saccadic eye movements during a more complex visual searching
task (Tokushige et al., 2018). In the current study, we extend these
findings and demonstrate that STN-DBS also has beneficial effects
on saccades during a task requiring eye-hand coordination.

Additionally, we confirmed our prediction that STN-DBS
would significantly increase reach peak velocity. This is similar
to previously reported improvements in upper limb peak velocity
(Vaillancourt et al., 2004; Dafotakis et al., 2008; Joundi et al.,
2012; Tamás et al., 2016). However, it was surprising that we did
not see a larger effect of STN-DBS on reach peak velocity. This
was likely because our participants were instructed to move “at a
comfortable speed” instead of as fast as possible. This guidance was
necessary to prevent participants from hitting the robotic arm that
presented the target. Another potential explanation is that the target
amplitude was relatively small, only 15◦ or 11.25 cm away from
center, meaning the reach was small. A smaller movement limits
how fast a participant can move, even with the beneficial effects
of stimulation. Overall, our data suggests that bilateral STN-DBS
acts similarly on the oculomotor and skeletomotor systems. The
effects of STN-DBS on these systems seem to be beneficial as
stimulation brings performance of participants with PD closer to
healthy control levels.

4.3. The relationship between saccade
latency and reach RT

We found a positive relationship between saccade latency and
reach RT in the medication group, the STN-DBS group, and in
our healthy controls (Figure 3). This relationship was unaffected
by medication and STN-DBS. The positive relationship between
saccade latency and reach RT has previously been seen in reports
on healthy populations (Prablanc et al., 1979; Herman et al., 1981;
Biguer et al., 1982; Gielen et al., 1984; Fischer and Rogal, 1986).
Specifically, the eyes typically lead the hands (Biguer et al., 1982). In
the current study, the initiation of the saccade to the target preceded
the initiation of the reach in over 96% of trials for the medication
group and over 94% of trials for the STN-DBS group. Therefore, the
previously reported positive relationship between saccade latency
and reach RT in healthy controls persists in people with PD and
remains unaffected by treatment.

The fact that the current study uses a task requiring eye-hand
coordination may explain why we found a non-significant increase
in reach RT with medication, whereas previous studies have shown
a decrease. Simple RT studies have consistently reported that
medication significantly (Montgomery and Nuessen, 1990) or non-
significantly decreases RT (Velasco and Velasco, 1973; Bloxham
et al., 1987; Pullman et al., 1988, 1990; Starkstein et al., 1989;
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Jahanshahi et al., 1992; Fern-Pollak et al., 2004; Ingram et al., 2021).
Even in more complex reaching tasks, in which upper limb RT
was measured before a reach to one of multiple targets, medication
still decreased RT either significantly (Zappia et al., 1994) or not
significantly (Girotti et al., 1986). However, these previous studies
did not require explicit eye-hand coordination to complete the task,
whereas our task required eye-hand coordination to look and reach
to a visual target. As saccade latency was prolonged by medication,
it would follow that reach RT would be unable to decrease.

4.4. Potential mechanisms underlying the
beneficial effects of medication and
STN-DBS on upper limb peak velocity

We found that both medication and bilateral STN-DBS
improved upper limb peak velocity, as would be expected. The two
common pathophysiological models of PD, the rate model and the
oscillation model, can both explain this benefit to upper limb peak
velocity (David et al., 2020).

Without treatment, PD is characterized by slowness of
movement, which is thought to be due to the loss of dopaminergic
neurons in the substantia nigra pars compacta projecting to the
striatum (Brooks et al., 1990). This results in decreased activity
of the basal ganglia direct pathway and increased activity of the
indirect pathway (Albin et al., 1989). Combined, the imbalance
between the basal ganglia pathways increases the inhibitory activity
of the basal ganglia output nuclei, the globus pallidus internus
(GPi) and substantia nigra pars reticulata (SNr) (Albin et al.,
1989). Therefore, there is excessive inhibition from the basal
ganglia output nuclei to downstream targets, such as thalamus,
which then results in decreased activation of cortical areas (Albin
et al., 1989) and disruption of the motor network (Bologna
et al., 2020). It is thought that both antiparkinson medication
and STN-DBS reduce the excessive inhibition from the basal
ganglia onto the thalamus and reduce the resulting decreased
cortical activation, with medication restoring dopamine levels in
the striatum and STN-DBS decreasing the overactivity of the
indirect pathway. In support of this, positron emission tomography
(PET) studies looking at the effects of medication (Jenkins et al.,
1992; Rascol et al., 1992, 1994) and STN-DBS (Limousin et al.,
1997; Ceballos-Baumann et al., 1999; Grafton et al., 2006) have
found that both treatments increase metabolic activity in the
motor cortices, especially the supplementary motor cortex. The
increased activation of supplementary motor cortex has been
correlated with improvement in akinesia with medication (Jenkins
et al., 1992) and STN-DBS (Limousin et al., 1997; Ceballos-
Baumann et al., 1999), which could explain our beneficial effect on
peak velocity.

Additionally, without treatment, PD is also characterized by
excessive beta band synchronization throughout the motor loop
at rest, both between neurons and in local field potentials (Brown
et al., 2001; Levy et al., 2002; Hammond et al., 2007). A proposed
explanation of the motor dysfunction in PD is that the excessive
tonic beta synchronization prevents the phasic beta suppression
that is needed to execute a planned movement (Brittain and Brown,
2014). Medication has been reported to suppress this excessive beta
band synchronization at rest (Brown et al., 2001; Levy et al., 2002;

Priori et al., 2004; Kühn et al., 2006; Ray et al., 2008), which has
been associated with improvement in bradykinesia, akinesia, and
rigidity (Kühn et al., 2006; Ray et al., 2008). STN-DBS has also been
reported to suppress excessive beta band synchronization at rest
in the STN (Eusebio et al., 2011) and throughout the motor loop
(Brown et al., 2004; Silberstein et al., 2005). STN-DBS improvement
in bradykinesia and rigidity correlates with beta suppression at the
cortex during STN-DBS (Silberstein et al., 2005) and following the
cessation of STN-DBS (Kühn et al., 2008). The similar mechanistic
effects of medication and STN-DBS associated with the beneficial
motor effects could also contribute to the reported increase in upper
limb peak velocity.

4.5. Potential mechanisms underlying the
opposing effects of medication and
STN-DBS on saccade latency and peak
velocity

We found that medication worsened saccade performance
by increasing latency and decreasing peak velocity, while STN-
DBS improved saccade performance by decreasing latency and
increasing peak velocity. In previous studies showing that STN-
DBS improves visually-guided saccade performance, the proposed
mechanisms are similar to those thought to underlie the
improvement in the skeletomotor system after STN-DBS (Sauleau
et al., 2008; Temel et al., 2009; Fawcett et al., 2010; Yugeta et al.,
2010; Nilsson et al., 2013; Goelz et al., 2017). The worsened
visually-guided saccade performance in PD is thought to be due
to excessive inhibition on the superior colliculus (Albin et al.,
1989; Terao et al., 2011) from the SNr (Hikosaka et al., 2000).
STN-DBS reduces the activity of the SNr (Benazzouz et al., 1995;
Maltête et al., 2007), which suggests that the superior colliculus
would be released from this excessive inhibition. The benefit to
saccade performance could also be explained by STN-DBS reducing
the excessive beta band oscillations in the basal ganglia, returning
the superior colliculus to normal activity levels, and facilitating
eye movement (Yugeta et al., 2010). Previous studies have argued
that the oscillation model better describes the observed changes in
saccade performance in PD and with STN-DBS compared to the
rate model (Yugeta et al., 2010). However, as discussed previously,
it has been reported that medication also reduces the beta band
synchronization in the STN (Brown et al., 2001; Levy et al., 2002;
Priori et al., 2004; Kühn et al., 2006; Ray et al., 2008). Therefore,
other mechanisms must be contributing to this difference in
saccade performance.

It is possible that medication is also acting on other brain
areas to counteract the normalization of beta oscillations. As we
suggested in a prior publication (Munoz et al., 2022), medication
may impair visually-guided saccadic function by overdosing
dopaminergic brain regions that are not dopamine depleted in
PD. One potential region is the superior colliculus, which has
been found to receive dopaminergic projections from the zona
incerta and have D2-expressing neurons (Bolton et al., 2015).
When dopamine was washed onto the D2-expressing superior
colliculus neurons, neuronal activity was suppressed (Bolton et al.,
2015). In a different animal model, similar superior colliculus
activity suppression resulted in inhibited behavioral responses, such
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as decreased orientation to stimuli (Glagow and Ewert, 1997).
Relatedly, a study examining posterior subthalamic area DBS (PSA
DBS) found that, unlike STN-DBS, saccade amplitude and peak
velocity were decreased with stimulation (Bangash et al., 2019). It
was likely that the zona incerta was being stimulated with PSA
DBS (Bangash et al., 2019), which could subsequently inhibit the
downstream superior colliculus potentially via an excessive release
of dopamine onto the superior colliculus. Taken together, these
studies suggest the possibility that the dopamine overdose of the
superior colliculus, via medication or stimulation of the zona
incerta, could result in worsened saccade performance. Another
potential overdosed region is the prefrontal cortex, resulting in
increased inhibition from the prefrontal cortex onto the superior
colliculus (Hood et al., 2007). Increased dopamine levels in the
prefrontal cortex have been shown to result in prolonged saccade
latency (Cameron et al., 2018). Additionally, increased inhibition
from the frontal cortex has been suggested to inhibit reflexive
saccades to allow for sufficient processing time to make a planned
saccade (Terao et al., 2013) or to detrimentally increase the
focusing of attention, making attention shifting more difficult
(Cameron et al., 2018). Conversely, it has been suggested that
bilateral STN-DBS may improve visual attention (Tokushige et al.,
2018). Dopamine overdose of both the superior colliculus or the
frontal cortex could result in an increase in visually-guided saccade
latency and a decrease in saccade peak velocity. The overdosing of
subcortical and cortical regions is not mutually exclusive and could
be occurring simultaneously.

5. Conclusion

Using a visually-guided reaching task requiring eye and
upper limb movements, we demonstrate that antiparkinson
medication adversely impacts saccade performance, while it
improves reaching performance. Additionally, we demonstrate
that bilateral STN-DBS improves both saccade and reaching
performance. Our findings highlight the importance of assessing
multiple effectors simultaneously to evaluate how the parkinsonian
brain may be affected by treatment. Crucially, the similar
and differential effects of antiparkinson medication and STN-
DBS on the oculomotor and skeletomotor systems suggest
parallel and unique mechanisms of action of antiparkinson
medication and STN-DBS. While medication and STN-DBS may
impact the basal ganglia circuitry similarly, medication may
also overdose other dopaminergic areas resulting in worsened
saccade performance.
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