AUTHOR=Degirmenci Murside , Yuce Yilmaz Kemal , Perc Matjaž , Isler Yalcin TITLE=Statistically significant features improve binary and multiple Motor Imagery task predictions from EEGs JOURNAL=Frontiers in Human Neuroscience VOLUME=17 YEAR=2023 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2023.1223307 DOI=10.3389/fnhum.2023.1223307 ISSN=1662-5161 ABSTRACT=
In recent studies, in the field of Brain-Computer Interface (BCI), researchers have focused on Motor Imagery tasks. Motor Imagery-based electroencephalogram (EEG) signals provide the interaction and communication between the paralyzed patients and the outside world for moving and controlling external devices such as wheelchair and moving cursors. However, current approaches in the Motor Imagery-BCI system design require effective feature extraction methods and classification algorithms to acquire discriminative features from EEG signals due to the non-linear and non-stationary structure of EEG signals. This study investigates the effect of statistical significance-based feature selection on binary and multi-class Motor Imagery EEG signal classifications. In the feature extraction process performed 24 different time-domain features, 15 different frequency-domain features which are energy, variance, and entropy of Fourier transform within five EEG frequency subbands, 15 different time-frequency domain features which are energy, variance, and entropy of Wavelet transform based on five EEG frequency subbands, and 4 different Poincare plot-based non-linear parameters are extracted from each EEG channel. A total of 1,364 Motor Imagery EEG features are supplied from 22 channel EEG signals for each input EEG data. In the statistical significance-based feature selection process, the best one among all possible combinations of these features is tried to be determined using the independent