AUTHOR=Zhong Chupeng , Ding Yulong , Qu Zhe TITLE=Distinct roles of theta and alpha oscillations in the process of contingent attentional capture JOURNAL=Frontiers in Human Neuroscience VOLUME=17 YEAR=2023 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2023.1220562 DOI=10.3389/fnhum.2023.1220562 ISSN=1662-5161 ABSTRACT=Introduction

Visual spatial attention can be captured by a salient color singleton that is contingent on the target feature. A previous study reported that theta (4–7 Hz) and alpha (8–14 Hz) oscillations were related to contingent attentional capture, but the corresponding attentional mechanisms of these oscillations remain unclear.

Methods

In this study, we analyzed the electroencephalogram data of our previous study to investigate the roles of capture-related theta and alpha oscillation activities. Different from the previous study that used color-changed placeholders as irrelevant cues, the present study adopted abrupt onsets of color singleton cues which tend to elicit phase-locked neural activities. In Experiment 1, participants completed a peripheral visual search task in which spatially uninformative color singleton cues were inside the spatial attentional window and a central rapid serial visual presentation (RSVP) task in which the same cues were outside the spatial attentional window. In Experiment 2, participants completed a color RSVP task and a size RSVP task in which the peripheral color singleton cues were contingent and not contingent on target feature, respectively.

Results

In Experiment 1, spatially uninformative color singleton cues elicited lateralized theta activities when they were contingent on target feature, irrespective of whether they were inside or outside the spatial attentional window. In contrast, the same color singleton cues elicited alpha lateralization only when they were inside the spatial attentional window. In Experiment 2, we further found that theta lateralization vanished if the color singleton cues were not contingent on target feature.

Discussion

These results suggest distinct roles of theta and alpha oscillations in the process of contingent attentional capture initiated by abrupt onsets of singleton cues. Theta activities may reflect global enhancement of target feature, while alpha activities may be related to attentional engagement to spatially relevant singleton cues. These lateralized neural oscillations, together with the distractor-elicited N2pc component, might consist of multiple stages of attentional processes during contingent attentional capture.