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Introduction: Transcranial Magnetic Stimulation (TMS) is a noninvasive technique 
that uses pulsed magnetic fields to affect the physiology of the brain and central 
nervous system. Repetitive TMS (rTMS) has been used to study and treat several 
neurological conditions, but its complex molecular basis is largely unexplored.

Methods: Utilizing three experimental rat models (in vitro, ex vivo, and in vivo) 
and employing genome-wide microarray analysis, our study reveals the extensive 
impact of rTMS treatment on gene expression patterns.

Results: These effects are observed across various stimulation protocols, in diverse 
tissues, and are influenced by time and age. Notably, rTMS-induced alterations in 
gene expression span a wide range of biological pathways, such as glutamatergic, 
GABAergic, and anti-inflammatory pathways, ion channels, myelination, 
mitochondrial energetics, multiple neuron-and synapse-specific genes.

Discussion: This comprehensive transcriptional analysis induced by rTMS 
stimulation serves as a foundational characterization for subsequent experimental 
investigations and the exploration of potential clinical applications.
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Introduction

Transcranial Magnetic Stimulation (TMS) is a noninvasive technique that uses pulsed 
magnetic fields to affect the physiology of the brain and the central nervous system (Wagner et al., 
2007). Repetitive TMS (rTMS) has been shown to alter higher-order biological processes including 
neuronal plasticity (Ferreri and Rossini, 2013), cortical excitability (Cavaleri et al., 2017), and 
cognition (Cheng et al., 2017). rTMS has been used in the study and treatment of neurological 
conditions including stroke (Smith and Stinear, 2016; McDonnell and Stinear, 2017), epilepsy 
(Chen et al., 2016), dystonia (Lozeron et al., 2016), schizophrenia (Kaskie and Ferrarelli, 2017), 
multiple sclerosis (Simpson and Macdonell, 2015), Parkinson’s (Chung and Mak, 2016) and 
Alzheimer’s disease (Nardone et al., 2014; Weiler et al., 2020), as well as other neurological and 
non-neurological disorders (Weiler et al., 2021), and was approved for clinical use for treatment-
resistant depression by the FDA in 2008.
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Remarkably, given its extensive clinical application, the complex 
molecular basis of rTMS remains largely unexplored. Only a limited 
number of transcripts and proteins have been previously reported 
altered following rTMS (Lee et al., 2014; Wang et al., 2014; Cirillo 
et al., 2017) including Fos (Legrand et al., 2018), Caspase-3 (Grehl 
et al., 2015), Gfap (Grehl et al., 2015), the MAPK signaling pathway 
(Cui et al., 2019), and the miR-409-3p/CTR3/AMPK/Sirt1 axis (Wu 
et al., 2022). However, a systematic genome-wide transcriptional 
analysis has not been performed to date (Ikeda et al., 2017, 2018), 
and the underlying molecular basis of the clinical effects of rTMS 
treatment remains unknown.

Here, using three experimental models in rats, in vitro, ex vivo, 
and in vivo, using genome-wide microarray analysis, we show that 
rTMS treatment results in broad-based alterations in gene 
expression patterns using different stimulation protocols, in 
different tissues, over time, and with age. Gene expression was 
altered due to rTMS stimulation in numerous biological pathways 
including glutamatergic and GABAergic pathways, ion channels, 
myelination, mitochondrial energetics, cellular tight junction gene 
expression, as well as in multiple neuron and synapse-specific 
genes. Strikingly, in some circumstances rTMS had strong anti-
inflammatory effects with broad down regulation of pathways 
involved in the classical complement cascade, Toll-like receptors, 
and other inflammatory pathways. This global transcriptional 
analysis induced by rTMS stimulation provides a baseline 
characterization for further experimental analysis and exploring 
potential clinical applications.

Materials and methods

Animals

Long–Evans rats (Charles River Laboratories), used for the ex 
vivo and in vivo experiments, were individually housed and 
maintained under specific pathogen-free conditions on a 12-h light/
dark cycle at the National Institute on Aging/National Institute on 
Drug Abuse (NIA/NIDA) animal facilities in the Biomedical 
Research Center (Baltimore, MD). Standard rat chow and water 
were available ad libitum throughout the experiments. All 
procedures were approved by the Animal Care and Use Committee 
of the Intramural Research Program of the NIA.

Background behavioral characterization

To establish the baseline cognitive status of the animals used in 
the ex vivo experiment, rats were tested in a ‘place’ version of the 
Morris water maze task, as previously described (Gallagher et al., 
1993). The Morris water maze is a widely recognized tool for 
investigating spatial memory and learning in rodents, and the 
procedure used here has been extensively validated as a test for 
neurocognitive aging (Rapp et al., 1987; Rapp and Gallagher, 1996; 
Haberman et al., 2012; Gallagher et al., 2015; Tomás Pereira and 
Burwell, 2015).

Training continued over 8 consecutive days, three training trials 
per day. Every other day, the third trial was a probe in which the 

platform was inaccessible for 30 s. A learning index score was 
calculated for each animal from their average proximity to the 
escape platform during training; lower scores indicate better task 
performance. Aged rats that performed on par with young animals 
were denoted aged unimpaired (AU), while rats that scored greater 
than the young were classified as aged impaired (AI; Spiegel et al., 
2013; Supplementary Figure  1). To control for non-mnemonic 
deficits, rats were tested in a single session of a hippocampus-
independent cued water maze protocol the following day. No 
animals that performed outside the normal range on this version of 
the task were included in the present experiments.

Tissue preparation

In vitro
Primary cultures of hippocampal neurons were prepared using 

hippocampi collected from E18 Sprague Dawley rats as previously 
described (Mazucanti et al., 2018). Dissociated cells were counted and 
plated (106 cells/dish) in polyethyleneimine (Sigma-Aldrich) 
pre-coated coverslips on 35 mm dishes (zero days in vitro). Neurons 
were maintained in Neurobasal medium (GIBCO) supplemented with 
B27 (GIBCO), 2 mM glutamine, 100 U/ml penicillin, 100 μg/ml 
streptomycin, and 0.25 μg/ml amphotericin B. The cultures were 
placed in an incubator with extra insulation to prevent CO2 loss and 
decrease in temperature. The plates were placed centered directly on 
the inverted coil and received either 1 Hz, intermittent Theta Burst 
Stimulation (iTBS), or sham stimulation. Stimulation intensity was set 
at 15% of the machine’s maximum output (stimulation intensity for in 
vitro and ex vivo experiments was chosen as the average intensity for 
all groups in the in vivo experiment, detailed below). Neuronal 
cultures received either 1 Hz, iTBS, or sham stimulation. For the sham 
treatment, the plate was placed in the incubator with the coil 
approximately 20 cm away. Following stimulation, the plates were 
returned to the home incubator without the coil. RNA was isolated at 
0, 2, 8 24, and 48 h after the end of stimulation.

Ex vivo
Four young (5–6 months), 4 AU, and 4 AI (24–25 months) male 

Long-Evans rats were sacrificed. Under RNase-free conditions, brains 
were removed, and the hippocampi were isolated and placed in cold, 
artificial cerebrospinal fluid (aCSF; 120 mM NaCl, 2.5 mM KCl, 1 mM 
NaH2PO4, 26 mM NaHCO3, 1.3 mM MgSO4, 10 mM D-Glucose, 
3.3 mM CaCl2) saturated with 100% O2. The hippocampi were then 
quickly cut into approximately 7 to 9, 1 mm-thick slabs using a 
McIlwain tissue chopper (Pt#: MTC/2E; The Mickle Laboratory 
Engineering Co.), yielding approximately 15–18 hippocampal slices 
for each brain. Serial slices were distributed equally into 3 separate 
dishes (1 Hz, iTBS, sham) and incubated in fresh aCSF for 1 h at 32°C 
before administering rTMS. Hippocampal slices from young, AU, and 
AI rats were arranged 1 cm under the center of the coil and received 
either 1 Hz, iTBS, or sham stimulation, with the stimulation intensity 
set to 15% of the machine’s maximum output. Sham stimulation was 
applied to hippocampal slices arranged 20 cm from the coil. 
Hippocampal slices from one given animal were equally distributed 
across conditions (1 Hz, iTBS, and sham) and rested in aCSF for 2 h 
before RNA collection.
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In vivo
Before rTMS administration, eight aged (26–27 months, 

714–1,150 g) and eight young male rats (6–7 months, 502–788 g) were 
lightly anesthetized with isoflurane to reduce restraint stress and head 
movement during the stimulation procedure. The rats then received 
an intra-muscular injection of Dexmedetomidine (aged: 0.03 mg kg−1 
body weight; young: 0.035 mg kg−1 body weight, the minimum 
required to prevent movement throughout the stimulation period). 
Antisedan (aged: 0.03 mg kg−1 body weight; young: 0.035 mg kg−1 body 
weight) was given after stimulation to reverse the sedation. 
Physiological parameters (heart rate, arterial blood oxygen saturation, 
body temperature) were monitored during anesthesia (Starr Life 
Sciences MouseOx Plus, Starr Life Sciences Corp. Oakmont, PA, USA) 
to ensure light and consistent anesthetic depth throughout stimulation. 
Rats were positioned on a heating pad and body temperature was 
maintained within 2°C of the initial measurement.

Young and aged rats received either iTBS or sham stimulation. 
Similar to procedures described in previous studies (Trippe et al., 
2009; Mix et al., 2010, 2015; Benali et al., 2011; Hoppenrath et al., 
2016), the coil was centered 8 mm above the rat’s skull, oriented with 
the handle to the left of the rat to produce a mediolaterally oriented 
electric field, aimed towards maximally stimulating the axons of the 
corpus callosum. The rat’s head was elevated with a small plastic 
conical ramp to ensure the skull was roughly parallel with the coil base 
and to minimize head movement and off-target body stimulation. 
Stimulator output intensity was adjusted to just below the level that 
elicited muscle twitching in the neck and head [aged: 15.0 ± 0.9% 
(11–17%); young: 15.3 ± 1.4% (12–19%) of maximal stimulator 
output], consistent with earlier preclinical studies in rats (Hoppenrath 
and Funke, 2013; Mix et al., 2015). Sham stimulation was performed 
with the coil 20 cm away from the rats’ heads.

Forty-eight hours post-stimulation animals in all conditions were 
deeply anesthetized with 5% isoflurane and sacrificed. Under RNase-
free conditions, the brains were removed and freshly microdissected 
areas of the neocortex and dorsal hippocampus under the center of 
the TMS coil during stimulation were immediately frozen and stored 
at −80°C.

rTMS protocols

rTMS was applied using a Magstim Rapid2 stimulator with a 
70-mm figure-eight coil (The Magstim Company, Whitland, Dyfed, 
UK). 1 Hz stimulation was applied in 5 blocks of 600 pulses lasting 
10 min repeated at 15-min intervals for a total of 3,000 pulses in 
70 min. iTBS was administered in 5 blocks repeated every 15 min with 
each block consisting of 20 trains of 3 50-Hz pulse bursts repeated at 
5 Hz for 2 s with a 10-s inter-train interval as described elsewhere 
(Huang et al., 2005). Each iTBS block consisted of 600 pulses in 192 s 
for a total of 3,000 pulses delivered in 63.2 min.

Genome-wide gene expression analysis

RNA extraction
Total RNA was extracted by adding frozen individual hippocampi 

or hippocampal sections into prechilled tubes containing 1.0 mm glass 
beads (BioSpec Products, Bartlesville, OK) and RLT buffer and 
homogenized with a single 30 s 5,500 rpm cycle on a Precellys 

24 homogenizer (Bertin Corp., Rockville, MD). The homogenate was 
centrifuged at 10,000 rpm for 10 min, the cleared lysate was transferred 
to a new tube, and RNA was column-purified according to the Qiagen 
RNeasy mini protocol (Qiagen, Germantown, MD). RNA 
concentration and quality were measured by Nanodrop 
(ThermoFisher, Waltham, MA USA) and the Agilent Bioanalyzer 
RNA 6000 Chip (Agilent, Santa Clara, CA).

Agilent microarray experiments
Two-hundred ng total RNA was labeled using the Agilent 

one-color Low-Input QuickAmp Labeling Kit (5190-2305, Agilent, 
Santa Clara, CA), purified on Qiagen columns, and quantified 
according to the manufacturer’s recommendations. A total of 600 ng 
Cy3-labeled cRNA was hybridized for 17 h to Agilent SurePrint G3 
Rat Gene Expression v2 8x60K oligo microarrays (G4858-074036). 
Following post-hybridization rinses, arrays were scanned using an 
Agilent SureScan microarray scanner at 3-micron resolution, and 
hybridization intensity data was extracted from the scanned images 
using Agilent’s Feature Extraction Software. Raw and normalized 
microarray data have been deposited in the GEO data repository as 
SuperSeries GSE230150, with SubSeries GSE230147 (in vitro, N = 56 
samples), GSE230148 (ex vivo, N = 40 samples), and GSE230149 (in 
vivo, N = 56 samples).

Microarray data analysis
The resulting dataset was analyzed with DIANE 6.0, a JMP 

microarray analysis program. The results were normalized with a 
z-score transformation (Cheadle et al., 2003). Z-normalized data were 
then analyzed with principal component analysis and sample 
hierarchical cluster to investigate the possible outliner samples and 
global genotype/treatment effects. To determine the gene expression 
changes within each specific RNA comparison, we first filtered probes 
by ANOVA test, then the pairwise statistical analysis is done by the 
z-test between different investigated groups with multiple comparison 
correction. The significant probes are determined by the cut off 
(Wagner et al., 2007) one way ANOVA p < 0.05 (Ferreri and Rossini, 
2013) the z-test p < 0.05 and false discovery rate < 0.30 (Cavaleri et al., 
2017) |z-ratio| > 1.5 (Cheng et  al., 2017) average z-score for the 
pairwise sample > 0 (Cheadle et  al., 2003). In other words, every 
differential expression effect of rTMS reported throughout this 
manuscript meets these statistical selection criteria.

Network analysis
The entire expression changes (z-ratio) result for each comparison 

are used as input. Gene set analysis using GO gene sets with the 
Parametric Analysis of Gene Set Enrichment (PAGE) algorithm was 
performed as previously described (Kim and Volsky, 2005). Protein 
interaction diagrams were generated from significant differentially 
expressed genes with the STRING interaction database. Functional 
grouping is denoted by colors, network nodes represent proteins and 
edges represent protein–protein relationships.

In addition to gene sets for functional gene groups, gene set 
analysis was also performed using highly specific Gene-Disease 
Associations (GAD) database (De et al., 2010; Zhang et al., 2010), in 
which every gene in each gene set has been statistically associated with 
a specific human disease or disorder through a population-based 
genetic association study. Noteworthy, an increase or decrease in a 
specific disease gene set simply means the aggregate values of the 
genes that have been associated with that disease have increased or 
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decreased in expression, not that the disorder itself has increased or 
decreased or can be altered by rTMS treatment.

Results

In this global microarray-based gene expression analysis we used 
three distinct experimental modalities (Figure 1) to identify gross 
transcriptional changes induced by rTMS, each having specific 
advantages and limitations; (a) in vitro: purified rat embryonal 
hippocampal neuronal cultures allowed identification of 
transcriptional changes over a 48-h time course using two stimulation 
protocols (1 Hz and iTBS); (b) ex vivo: hippocampal slices from a well-
established rat model of aging (Gallagher et al., 1993; Gallagher and 
Rapp, 1997) enabled testing two different stimulation protocols (1 Hz 

and iTBS), in a short-term response model (2 h) across cognitive 
status in the context of complex cellular organization; and (c) in vivo: 
young and aged animals allowed the identification of the global 
transcriptional response to rTMS, in a long-term response model 
(48 h), in two different brain regions (hippocampus and cerebral 
cortex), across age. In this way, we  identified rTMS-induced 
transcriptional changes in multiple contexts. As a starting point for 
hypothesis generation, this report focuses on the effects of rTMS 
within each model and group, rather than on comparisons between 
models, cognitive status, or age groups. Detailed results of the 
transcriptional changes due to rTMS treatment in the context of age, 
cognition, and brain region will be presented elsewhere. Here the 
effects of TMS are evaluated as differential gene expression in contrasts 
between stimulated samples and corresponding sham controls within 
each experimental condition.

FIGURE 1

Experimental design of rTMS treatment. (A) In vitro: purified rat embryonal hippocampal neuronal cultures allowed identification of transcriptional 
changes over a 48-h time course using two stimulation protocols (1  Hz and iTBS); (B) ex vivo: hippocampal slices from a well-established rat model of 
aging enabled testing two different stimulation protocols (1  Hz and iTBS), in a short-term response model (2  h) across cognitive status in the context of 
complex cellular organization; (C) in vivo: young and aged animals allowed the identification of the global transcriptional response to rTMS, in a long-
term response model (48  h), in two different brain regions (hippocampus and cerebral cortex), across age. AU: aged unimpaired; AI: aged impaired; 
iTBS: intermittent theta burst stimulation. This figure was in part created with BioRender software (BioRender.com).
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rTMS produces broad transcriptional 
changes

As shown in Table  1, stimulation resulted in hundreds of 
significant transcriptional changes between rTMS and sham-treated 
controls in all experimental models, with both increases and decreases 
in each treatment group. While there are considerable overlaps 
between rTMS treatments, each sample-treatment combination 
produced a complex pattern of transcriptional response (Figure 2). 
This was evident in the in vitro, ex vivo, and in vivo experimental 
models. The transcriptional response was quite dynamic, often with 
both increases and decreases in the same gene and gene families with 
time, stimulation protocol, and relative to brain region. The complete 
set of statistically significant transcriptional changes due to rTMS can 
be found here (Supplementary Table 1).

rTMS alters the transcription of genes 
involved in complex neural processes

Table 2 (in vitro), Table 3 (ex vivo), and Table 4 (in vivo) show 
groups of selected genes with altered transcription (|z-ratio| > 1.5) 
implicated in complex neuronal processes in all three models tested. 

The categories of these genes include neurotransmission, synaptic 
function, inflammation, myelination, and cell–cell adhesion among 
other functional gene classes.

With the in vitro model using rat hippocampal neuronal cultures, 
genes involved in inhibitory and excitatory neurotransmission were 
altered, both upregulated and downregulated (Table  2), which 
included multiple GABA (Figure  3A) and glutamate receptors 
(Figure  3B) such as Gabbr1,2; Grik1,4; Grm3-7, and Gabra4 
(Heidelberg et al., 2013) as well as genes involved in learning and 
memory-related plasticity. In addition, the transcriptional response 
was altered in oxidative phosphorylation pathways including shared 
genes involved in Huntington’s, Alzheimer’s, and Parkinson’s disease 
(Figures 4A,B). In the ex vivo and in vivo models (Tables 3, 4) altered 
transcription of additional neuronal genes was shown to include genes 
involved in neurotransmission [Ptk2b (Brys et  al., 2013), Slc6a13 
(Christiansen et al., 2007)]; choline transport [Slc5a7 (Ribeiro et al., 
2006), Ryr2 (Abu-Omar et al., 2017), Chrna5 (Proulx et al., 2014)]; 
synaptic function [Grin3a (Glun3a; Perez-Otano et  al., 2016)]; 
plasticity (Arc; Tomas Pereira et al., 2015, Cnp; Barmashenko et al., 
2014); learning and memory [Arc; Morin et al., 2015; Tomas Pereira 
et al., 2015), Grin2d, (Glun2d; Jacobs et al., 2014)], and cognition 
(Ryr2; Liu et al., 2012, Arc; Morin et al., 2015, Sorl1; Li et al., 2017), 
among others.

Coordinate transcriptional upregulation occurred in a cohort of 
myelin regulatory genes at 2 h post-rTMS stimulation in the ex vivo 
model (Table 3). These include increases in Mobp, Mog, Cnp, Erbb3 
Klk6, Cadm4, and transferrin (Tf). However, the myelin regulatory 
factor Sox10 was downregulated in the iTBS-stimulated ex vivo 
samples. Myelin-related transcriptional induction was not 
statistically significant at 48 h for in vivo or at 2 h for in vitro cultures. 
Moreover, gene expression from nine Claudin family members was 
both increased and decreased in the ex vivo model (Table  3). 
Claudins mediate cell–cell contact and blood–brain barrier integrity. 
A shared protein domain network showing interrelationships 
between the TMS transcriptionally altered Claudins is shown in 
Figure 5.

rTMS results in a broad-based 
anti-inflammatory transcriptional response

rTMS produced a substantial reduction in transcripts involved in 
immune and inflammatory processes in the ex vivo and in vivo 
samples. Most striking was the coordinate downregulation of many 
members of the classical complement pathway in the ex vivo rTMS 
model with both 1 Hz and iTBS (Table 3) stimulation after 2 h. In 
addition, the expression of complement factors C1s and C2 was 
reduced in the in vivo model in the young hippocampus at 48 h 
(Table 4). In contrast, C1qb, C1qc, C2, C3, C4a, and C4b were increased 
in the AI hippocampus using iTBS in the ex vivo model (Table 3). 
Although generally thought of as mediators of innate immunity, 
members of the complement cascade have also been shown to 
be important in synaptic remodeling (Presumey et al., 2017), and have 
been associated with schizophrenia (Nimgaonkar et  al., 2017), 
age-related macular degeneration (Lu et al., 2018), and Alzheimer’s 
disease (Torvell et al., 2021).

Additional inflammatory genes that were transcriptionally 
repressed by rTMS included Il1b, Il1rn, Cd74, and Il12b in the ex 

TABLE 1 Number of genes changed in each rTMS group compared to its 
respective sham group.

Group Upregulated Downregulated

In vitro

0 h 1 Hz 498 564

2 h 1 Hz 765 1,080

8 h 1 Hz 297 287

24 h 1 Hz 1,121 84

48 h 1 Hz 580 668

0 h iTBS 661 486

2 h iTBS 147 217

8 h iTBS 271 248

24 h iTBS 447 441

48 h iTBS 1,115 1,283

Ex vivo

Young 1HZ 676 391

Young iTBS 593 436

AU 1HZ 532 433

AU iTBS 350 254

AI 1HZ 476 833

AI iTBS 687 432

In vivo

Young cortex 

iTBS 78 253

Young hipp iTBS 229 165

Aged cortex iTBS 9 29

Aged hipp iTBS 34 21

iTBS, intermittent theta burst stimulation; AU, aged unimpaired; AI, aged impaired.
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vivo model following iTBS (Table 3), and Tlr3, Cd74, and RT1-Da 
in the in vivo model (Table 4). Moreover, the gene for S100b, a 
marker of neuroinflammation and neuronal damage, was markedly 
downregulated by rTMS in all in vivo samples (Table 4). Importantly, 
immune regulatory molecules as a group were not significantly 
altered by rTMS in the in vitro model using purified neuronal 
cultures suggesting that modulation of immune transcripts in both 
ex vivo and in vivo models (both complex tissue intact samples) 
were from non-neuronal cells including resident glial 
cell populations.

rTMS affects the transcription of genes 
implicated in disorders for which it is used 
clinically

Notably, expression was altered among multiple genes that have 
been studied in disorders for which rTMS is used clinically, 
including depression [Slc6a4 (Lam et al., 2018), S100b (Schroeter 
et al., 2014), Il18 (Prossin et al., 2011; Bufalino et al., 2013; Kim 
et al., 2017), Il1b (Bufalino et al., 2013), Htr2c (Brummett et al., 
2014), Gabra6 (Inoue et al., 2015)], epilepsy [Grin2d (GluN2D; Li 
D. et al., 2016), Gabra6 (Prasad et al., 2014), Scn1b (Ramadan et al., 
2017), Scn3a (Lamar et  al., 2017), Kcnt1 (Evely et  al., 2017)], 
schizophrenia [Rgs4 (Schwarz, 2017), Grin1 (Zhao et al., 2006), 
Grm5 (Matosin et  al., 2017), Pde10a (Boden et  al., 2017), C4a 
(Nimgaonkar et al., 2017)], bipolar disorder [Pde10a (McDonald 
et  al., 2012); S100b (da Rosa et  al., 2016)], Parkinson’s disease 
[Nr4a2 (Liu et al., 2017)], Alzheimer’s disease and other dementias 
[Ptk2b (Li Y. Q. et  al., 2016), Ttr (Silva et  al., 2017), Nr4a2 
(Montarolo et al., 2016), Ryr2 (Briggs et al., 2017), Mobp (Irwin 
et al., 2014), Cd40 (Giunta et al., 2010), Grn (Sudre et al., 2017), 
Hmo1 (Sung et al., 2016), Arc (Bi et al., 2017)], stroke [Lgals3 (Gal3; 
He et al., 2017), Ace (Wei et al., 2017), Cd40 (Huang et al., 2017), 

Cxcl12 (Shen et al., 2017), Hmgb1 (Choi et al., 2017)], as well as 
substance abuse [Slc6a4 (Bauer et al., 2015), Penk (Moeller et al., 
2015), Rgs4 (Ho et al., 2010), Chrna5 (Lassi et al., 2016; Olfson 
et al., 2016)]. Overlap between the complex functional processes, 
disorders, and genes mentioned here highlights a central role of 
shared fundamental neuronal pathways in multiple processes and 
distinct neurological disorders (Brainstorm et  al., 2018; Gandal 
et al., 2018).

Moreover, TMS altered the expression of genes studied in other 
disorders, suggesting additional potential clinical applications of 
TMS. These include hereditary motor neuropathy [Slc5a7 (Barwick 
et  al., 2012)], congenital myasthenic syndrome (Slc5a7; Bauche 
et al., 2016), age-related hearing loss (Gabra6; Sun et al., 2014), 
Canavan disease (Gabra6; Surendran et al., 2003), gout (Abcg2; Yu 
et  al., 2017), pancreatitis (Cldn2; Giri et  al., 2016), as well as 
numerous genes involved in inflammatory and immune disorders. 
Additionally, TMS alters the transcription of many genes of 
unknown function. These can be found in Supplementary Table 1.

Gene set analysis of rTMS transcriptional 
changes

Gene set analysis is based on gene expression changes in 
functionally related groups of genes, as opposed to individual 
genes, resulting in statistically significant aggregate scores for 
each gene group. Figure 6 displays a marked reduction in Gene 
Ontology (GO) inflammatory gene sets in the ex vivo young 
hippocampus using 1 Hz stimulation versus the unstimulated 
sham. These include reductions in Innate Immune Response, 
Complement pathways, as well as Chemokine and Cytokine GO 
gene sets. Broad-based immune suppression was found in the ex 
vivo young hippocampus model using iTBS versus sham as well, 
including gene sets for Inflammatory Response, Chemotaxis, 

FIGURE 2

Heat map of gene expression changes due to rTMS treatment in three experimental models. Expression changes for individual genes were considered 
significant if they met four criteria: z-ratio  >  1.5 or below −1.5; false detection rate  <  0.30; a p-value statistic for z-score replicability <0.05; and mean 
background-corrected signal intensity > than zero. Red denotes higher relative expression and black to green are lower relative expression. This 
analysis suggests that rTMS treatment produces strikingly different patterns of gene expression across conditions within each model compared to their 
respective sham treatments.
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TABLE 2 In vitro model selected genes of rTMS induced alterations.

Gene 
symbol

1  Hz 
0  h

1  Hz 
2  h

1  Hz 
8  h

1  Hz 
24  h

1  Hz 
48  h

iTBS 
0  h

iTBS 
2  h

iTBS 
8  h

iTBS 
24  h

ITBS 
48  h

Gene name

GABA signaling

Gabbr1 −1.5 −2.8 −0.4 5.3 0.9 0.1 −1.2 −4.3 0.5 −0.4 Gamma-aminobutyric acid type B receptor subunit 1

Gabbr2 1.1 −1.7 1.0 1.5 1.8 1.2 −0.5 1.0 8.7 −1.3 Gamma-aminobutyric acid type B receptor subunit 2

Gabra4 −1.0 −1.0 1.0 1.7 2.5 −0.8 −4.1 1.1 2.3 0.6

Gamma-aminobutyric acid type A receptor alpha4 

subunit

Gabrb1 −2.1 −0.4 1.6 −0.6 −2.5 −0.9 1.0 0.9 1.9 −7.9 Gamma-aminobutyric acid type A receptor beta 1 subunit

Gabrd −5.0 −1.3 1.0 2.1 −11.4 −1.0 −2.3 0.3 34.6 −33.2 Gamma-aminobutyric acid type A receptor delta subunit

Gabrq 0.3 −1.1 1.7 −4.0 −4.5 2.6 −0.2 −2.9 1.1 11.9 Gamma-aminobutyric acid type A receptor theta subunit

Gabrg2 −1.2 −8.2 1.0 0.9 0.2 −2.1 −1.0 0.4 0.8 −15.7

Gamma-aminobutyric acid type A receptor gamma 2 

subunit

Gabarapl1 1.9 −0.2 1.5 5.7 −5.9 −1.0 0.0 2.6 −0.1 −2.8 GABA type A receptor associated protein like 1

Gabarapl2 3.4 0.4 0.4 0.6 11.9 −1.4 0.4 −0.2 −0.9 −0.2 GABA type A receptor associated protein like 2

Atg4b 0.2 −1.2 1.6 −1.0 −3.0 0.5 0.0 0.4 5.3 −3.5 Autophagy related 4B, cysteine peptidase

Glutamate signaling

Grik1 −4.0 −2.8 1.3 3.5 −0.6 −3.3 0.0 0.1 3.7 −2.5 Glutamate ionotropic receptor kainate type subunit 1

Grik4 −1.3 −4.0 2.9 0.3 −1.0 −1.3 −0.3 0.6 14.9 −0.7 Glutamate ionotropic receptor kainate type subunit 4

Gria3 2.7 −0.8 −0.4 1.3 0.9 −0.8 −2.3 0.7 3.0 −1.1 Glutamate ionotropic receptor AMPA type subunit 3

Grin1 0.0 −0.3 0.3 −2.0 −1.3 3.3 0.5 0.0 0.7 2.1 Glutamate ionotropic receptor NMDA type subunit 1

Grin2a −0.4 3.8 −0.6 1.1 1.3 −0.9 −0.4 1.8 0.9 4.7 Glutamate ionotropic receptor NMDA type subunit 2A

Grin2c −1.4 −1.9 −0.5 5.6 −2.0 −2.2 −1.0 −0.2 −0.7 −0.1 Glutamate ionotropic receptor NMDA type subunit 2C

Grin2d −1.3 −1.5 7.9 −0.8 −4.5 0.6 0.5 1.2 0.4 −1.3 Glutamate ionotropic receptor NMDA type subunit 2D

Grm3 −0.5 −2.1 8.4 29.0 1.4 −1.8 −3.7 2.9 0.8 2.2 Glutamate metabotropic receptor 3

Grm5 −3.2 −0.5 1.8 0.6 0.8 −2.2 0.2 1.1 1.3 5.2 Glutamate metabotropic receptor 5

Grm6 −0.4 4.1 0.4 −1.3 2.9 4.0 0.7 −1.2 −1.1 5.8 Glutamate metabotropic receptor 6

Grm7 0.6 −11.0 −0.3 3.5 −0.1 −1.8 −1.6 0.1 0.4 −3.2 Glutamate metabotropic receptor 7

Cacng3 −1.6 −1.5 4.4 −1.9 −3.5 0.1 −0.1 −1.3 1.1 1.4 Calcium voltage-gated channel auxiliary subunit gamma 3

Calm1 5.0 −0.8 0.7 1.1 2.1 −2.6 −0.4 2.2 2.3 3.0 Calmodulin 1

Camk2b −0.3 −4.6 1.9 7.3 −2.1 −0.2 −2.2 1.6 2.5 −0.5 Calcium/calmodulin-dependent protein kinase II beta

Camk2g 4.0 −6.7 −0.6 82.1 −0.7 −1.9 −1.5 1.1 −0.3 −3.6 Calcium/calmodulin-dependent protein kinase II gamma

Ppp3ca −0.2 −0.8 1.0 0.1 1.2 −0.3 −0.7 0.4 1.8 4.1 Protein phosphatase 3 catalytic subunit alpha

Kegg: learning and memory

Casp3 −1.0 −9.4 2.4 −3.9 −4.5 −5.1 −0.1 2.0 0.4 0.7 Caspase 3

Comt −4.4 −4.3 1.7 −0.5 0.6 0.0 −0.5 7.2 2.0 2.4 Catechol-O-methyltransferase

Creb1 1.1 0.9 −6.4 1.9 1.8 1.4 −0.4 −1.0 −0.7 −1.8 cAMP Responsive element binding protein 1

Fgf13 3.2 −0.8 5.1 0.7 −0.5 −1.6 0.1 1.8 −0.9 −1.6 Fibroblast growth factor 13

Gpi −0.8 −2.4 4.7 −0.4 −4.8 −1.1 0.6 1.5 0.7 1.5 Glucose-6-phosphate isomerase

Igf1 0.5 2.7 1.8 −7.8 1.4 5.4 0.8 −3.7 1.3 1.6 Insulin-like growth factor 1

Ngf 1.1 3.5 0.5 −1.5 −4.7 5.0 0.3 0.1 0.5 6.0 Nerve growth factor

Prkca 0.1 1.2 −2.0 1.7 0.0 −0.4 0.1 0.5 27.2 −4.9 Protein kinase C, alpha

Prkcz 0.1 −3.2 0.8 −0.5 1.5 0.3 1.0 −1.1 −1.5 1.0 Protein kinase C, zeta

Ptprz1 −0.4 −1.5 −2.9 −0.5 0.3 −1.5 −1.3 −1.3 0.8 10.9 Protein tyrosine phosphatase, receptor type Z1

Reln 6.3 −8.3 −2.1 2.1 −0.8 0.0 −0.1 1.2 −0.1 −1.5 reelin

Shank3 1.1 −3.0 −0.4 −0.5 −6.9 1.0 1.7 1.2 −3.9 6.0 SH3 and multiple ankyrin repeat domains 3

Th 1.5 1.7 −0.3 −9.4 −1.1 3.7 0.3 −3.2 0.2 2.0 Tyrosine hydroxylase

(Continued)
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Antigen Processing and Presentation, Immunoglobulin Mediated 
Immune Response, among others (Figure  7). In addition to 
marked immune suppression, upregulated GO gene sets in the 
iTBS ex vivo model included a theme of mitochondrial and 
energy-related GO gene groups. Immune suppression is evident 
in the in vivo model in the cortex after iTBS stimulation: GO gene 
sets such as Immune Response, Complement Activation, and 
Chemokine activity, among others, were downregulated, and 
upregulated gene sets included Synaptic Vesicle, Synaptic 
Transmission, and Neurite Development (Figure 8). In the in vivo 
model in the hippocampus, a theme of translation and ribosomal-
related gene sets were upregulated after iTBS (Figure 9). For the 
in vivo iTBS model, alterations in GAD sets for inflammatory 
disorders such as Scleroderma, Crohn’s disease, and Lupus, were 
found in both cortex and hippocampus, as well as disorders 
specifically relevant to TMS treatment including mood disorders, 
seasonal affective disorders, attention-deficit/hyperactivity 
disorder, schizophrenia, substance use related disorders, among 
others (Supplementary Figures 2–5).

Discussion

The last decade has witnessed a significant increase in 
pre-clinical and clinical research on rTMS as a therapeutic tool 
to treat several neuropsychiatric conditions. However, the 
molecular basis of rTMS effects remains largely unexplored. 
Here, using three experimental rat models, we  show that the 
transcriptional response to rTMS treatment is complex and 
dynamic. Widespread transcriptional responses were apparent in 
the neuronal in vitro culture model, in the ex vivo hippocampal 
slice model, and in different brain regions in the in vivo model. 
Our results have implications for both research and clinical 

settings focused on the use of rTMS as a treatment for 
neurological conditions.

Alterations in glutamatergic and GABAergic 
signaling pathways following rTMS are 
specifically relevant to neuropsychiatric 
disorders

Using rat hippocampal neuronal cultures, we  observed that 
rTMS regulated the expression of genes involved in inhibitory and 
excitatory neurotransmission mediated in part by glutamatergic and 
GABAergic synapses. The evidence supporting this argument can 
be found in Table 2 and Figures 3A,B. In Table 2, we present results 
highlighting the specific genes that exhibit alterations following 
rTMS. These findings demonstrate that rTMS had a notable impact 
on the expression of various glutamatergic and GABAergic genes. In 
addition, Figures  3A,B depict the changes in gene expression 
induced by rTMS. These figures illustrate the specific genes in the 
glutamatergic and GABAergic pathways that are significantly 
modulated by rTMS. The observed alterations support the suggestion 
that rTMS is positioned to potently influence inhibitory and 
excitatory neurotransmission.

Alterations in the glutamatergic system can promote 
excitotoxic cell death, comprising a potential mechanism of 
neurodegeneration in Alzheimer’s disease (Mufson et al., 2008; 
Wang and Reddy, 2017). Early aberrant excitatory 
neurotransmission is frequently observed in both animal models 
of Alzheimer’s disease (Palop et al., 2007) and patients (Scott et al., 
2002), and blocking the action of glutamate and targeting 
excitatory synapses has been exploited as a potential 
pharmacological treatment for the disease. Altered oscillatory 
rhythmic activity and network hypersynchrony are also features of 

TABLE 2 (Continued)

Gene 
symbol

1  Hz 
0  h

1  Hz 
2  h

1  Hz 
8  h

1  Hz 
24  h

1  Hz 
48  h

iTBS 
0  h

iTBS 
2  h

iTBS 
8  h

iTBS 
24  h

ITBS 
48  h

Gene name

Trpm7 0.3 6.1 0.5 −3.6 0.9 6.0 1.0 −5.1 0.4 3.0 Transient receptor potential cation channel, subfam M, 7

Kegg: Alzheimer’s disease

Apbb1 −2.2 −17.3 4.0 2.8 1.3 1.2 0.4 −0.2 −0.7 4.4 Amyloid beta precursor protein binding family B member 

1

Apoe −1.8 −2.0 1.2 2.3 −34.5 −1.8 −1.7 1.9 0.2 −1.2 Apolipoprotein E

Atf6 0.6 7.5 −3.0 1.9 0.9 0.0 −1.4 1.3 4.4 −4.5 Activating transcription factor 6

Atp2a2 0.0 0.3 −2.2 1.2 −12.8 1.3 −0.1 −1.8 5.7 −1.5 ATPase sarcoplasmic/endoplas. Retic. Ca2+ transporting 2

Bad −0.3 −0.7 1.3 −0.3 −0.2 2.3 −0.2 0.4 −1.2 −2.0 BCL2-Associated agonist of cell death

Casp3 −1.0 −9.4 2.4 −3.9 −4.5 −5.1 −0.1 2.0 0.4 0.7 caspase 3

Eif2ak3 −0.2 3.9 −0.8 0.5 −0.9 −0.2 −2.6 1.0 1.2 −9.5 Eukaryotic translation initiation factor 2 alpha kinase 3

Gsk3b −0.9 −0.5 4.0 −1.1 −0.9 −0.2 1.4 0.9 −0.1 0.9 Glycogen synthase kinase 3 beta

Mapt 2.8 −3.8 1.3 2.4 0.7 6.6 −0.5 3.9 −5.9 −3.6 Microtubule-associated protein tau

Ppp3cb −0.5 −0.5 0.4 4.9 0.7 −0.5 −7.7 1.2 0.4 2.8 Protein phosphatase 3 catalytic subunit beta

Psen2 −1.6 −3.5 −1.5 0.0 −12.5 0.1 −1.0 −0.1 2.5 −1.2 Presenilin 2

Tnfrsf1a 0.3 0.3 −2.7 −0.4 0.8 11.4 −4.1 −0.1 3.5 −2.1 TNF receptor superfamily member 1A

In bold, genes with z-ratio > 1.5, p value < 0.3 (false discovery rate correction), p value statistic for z-score replicability below 0.05, and mean background-corrected signal intensity > 0. Bold 
values represent z-ratio.
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TABLE 3 Ex vivo model selected genes of rTMS induced alterations.

Gene 
symbol

Y 1HZ Y iTBS AU 1HZ AU iTBS AI 1HZ AI iTBS Gene name

Complement

C1qc −2.29 −3.15 0.13 1.02 0.14 1.59 Complement C1q C chain

C1qb −2.25 −1.96 −0.15 −0.60 −0.42 2.06 Complement C1q B chain

C2 −2.58 −3.36 −0.18 0.73 0.68 2.92 Complement C2

C3 −1.19 −3.75 −0.33 1.12 0.19 3.01 Complement C3

C3ar1 −1.90 −2.26 0.49 0.81 −0.33 −0.34 Complement C3a receptor 1

C4a −3.96 −3.62 −0.37 1.05 −0.03 2.68 Complement C4A

C4b −3.69 −3.57 −0.02 0.56 −0.14 2.94 Complement C4B

Cfhr1 −1.97 −1.34 −0.48 −1.13 2.17 −1.27 Complement factor H-related 1

Inflammatory

Il12b −3.83 −3.60 −0.17 0.55 1.19 2.72 Interleukin 12B

Il1b −3.71 −5.54 −0.24 −1.53 −0.25 1.42 Interleukin 1 beta

Il1rn −3.22 −4.00 −0.03 0.42 −0.24 0.80 Interleukin 1 receptor antagonist

Il1a −2.17 −3.76 0.16 −0.77 −0.43 0.71 Interleukin 1 alpha

Cd74 −3.79 −5.01 −0.45 1.98 1.03 4.65 CD74 Molecule, MHC class II invariant chain

Cd68 −3.31 −3.52 −0.19 0.05 0.10 2.51 Cd68 Molecule

Cxcl13 −2.89 −4.01 −1.25 −1.51 −1.72 3.46 C-X-C Motif chemokine ligand 13

Tnfsf9 −2.84 −3.13 0.28 −0.78 1.57 2.07 TNF Superfamily member 9

Myelination

Mobp 2.05 −0.05 0.09 1.15 −0.01 −0.43 Myelin-associated oligodendrocyte basic protein

Mog 1.77 −0.65 −0.15 1.06 0.80 −0.29 Myelin oligodendrocyte glycoprotein

Cnp 1.61 −0.49 1.81 3.00 0.55 −0.76 2′,3′-Cyclic nucleotide 3′ phosphodiesterase

Sox10 0.91 −3.23 0.39 1.14 0.34 −0.21 SRY box 10

Erbb3 1.42 0.02 0.34 1.62 0.90 −0.42 Erb-b2 receptor tyrosine kinase 3

Tf 1.53 0.32 0.67 1.14 0.26 0.18 Transferrin

Cadm4 0.49 2.29 −0.61 −0.67 0.25 −0.15 Cell adhesion molecule 4

Klk6 1.90 −0.04 0.52 1.34 0.95 −0.43 Kallikrein related-peptidase 6

Claudins

Cldn2 1.55 1.16 0.14 1.19 −0.03 −0.99 Claudin 2

Cldn4 3.21 2.38 −0.18 0.61 2.00 −1.93 Claudin 4

Cldn6 3.62 0.65 −1.38 −2.19 2.85 1.77 Claudin 6

Cldn7 0.33 0.34 0.79 0.37 2.03 2.53 Claudin 7

Cldn11 2.17 0.24 0.51 1.28 0.47 0.08 Claudin 11

Cldn14 −0.65 −0.80 1.13 1.50 0.20 1.24 Claudin 14

Cldn16 −0.22 3.13 −1.29 −3.42 −0.87 0.16 Claudin 16

Cldn20 1.73 −0.15 0.91 1.01 −1.69 −1.43 Claudin 20

Cldn23 −1.53 1.70 0.18 −0.03 0.42 −2.95 Claudin 23

Neuronal genes

Gabra6 −0.97 1.96 0.90 0.37 0.16 1.97 Gamma-aminobutyric acid (GABA) A receptor, alpha 6

Sv2b −0.12 1.71 2.01 0.16 1.92 0.48 Synaptic vesicle glycoprotein 2b

Grin3a −1.85 2.19 2.33 −0.46 −0.62 −0.48 Glutamate receptor, ionotropic, N-methyl-D-aspartate 3A

Chrna5 −1.52 1.83 −0.75 −0.84 0.43 −0.59 Cholinergic receptor, nicotinic, alpha 5 (neuronal)

Slc6a13 0.29 1.79 −0.61 −0.38 −0.08 −0.83 Solute carrier family 6 (neurotransmitter transporter), member 13

Slc5a7 −2.67 −5.00 −0.98 0.34 3.00 3.25 Solute carrier family 5 (sodium/choline cotransporter), member 7

(Continued)
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Alzheimer’s disease (Koch et  al., 2022) and may contribute to 
cognitive impairment (Busche and Konnerth, 1700; Palop and 
Mucke, 2016). However, while a major emphasis in prior research 
has focused on dysfunction of the glutamatergic system, 
accumulating evidence links inhibitory GABAergic interneurons 
to excitatory/inhibitory imbalance as a potential early contributor 
to cognitive impairment in both aging (Oh et al., 2010; Gallagher 
et al., 2019) and disease (Li Y. et al., 2016; Govindpani et al., 2017).

Disruption in excitatory/inhibitory balance has also been 
associated with other neuropsychiatric and neurological conditions 
such as chronic stress (Varga et  al., 2017), major depression 
disorder (Pehrson and Sanchez, 2015; Fee et al., 2017; Fogaca and 
Duman, 2019), autism spectrum disorder (Schur et  al., 2016), 
bipolar disorder (Bialer, 2012), epilepsy (Ye and Kaszuba, 2017; 
Losi et al., 2019) and schizophrenia (Metzner et al., 2019), and 
normalizing altered inhibitory function represents a promising 
target for therapeutic intervention. rTMS has been identified as a 
modifier of GABAergic (Trippe et al., 2009; Jazmati et al., 2018) 
and glutamatergic (Yang et  al., 2014) systems previously and 
preventing or reversing disease-related imbalance by targeting 
either system with rTMS could be  of both symptomatic and 
disease-modifying value.

Transcriptional changes related to 
immunosuppression are relevant to 
inflammatory effects in depression and 
Alzheimer’s disease

A major insight from our analysis is the broad transcriptional 
change related to immunosuppression, observed as early as 2 h 
after stimulation in hippocampal slices. Neuroinflammation has 
emerged as a key feature in the pathogenesis of Alzheimer’s disease, 
potentially playing a causative role rather than simply as a 
secondary consequence of the pathological cascade (Sheng et al., 
2003). Given the failure of amyloidogenic drugs to provide 
therapeutic benefit, scientific interest has shifted to other features 
of neurodegeneration including neuroinflammation (Castello 
et  al., 2014). Similarly, major depressive disorder has been 
associated with increased activation of the immune system (Lee 
and Giuliani, 2019), and many front-line pharmaceutical 
treatments for depression have been shown to reduce inflammatory 
activation and lower circulating cytokine levels (Galecki 
et al., 2018).

rTMS has proven effective in animal models as a therapeutic tool 
targeting the inflammatory response (Sasso et al., 2016). Our results 
are consistent with a potential anti-inflammatory benefit, 
demonstrating that stimulation-induced downregulation of genes 
related to immunosuppression in young hippocampal slices 48 h 
following treatment. Strikingly, however, while decreased 
neuroinflammatory gene transcription was the predominant effect in 
young, rTMS had the opposite effect in hippocampal slices from aged 
animals with cognitive impairment (AI), inducing a potential 
proinflammatory transcriptional response. Given that aging itself is 
associated with chronic increases in circulating levels of inflammatory 
markers (Singh and Newman, 2011) – a phenomenon exacerbated by 
age-associated diseases (Chung et al., 2009) – our results suggest that 
rTMS might exacerbate age-related pathological immune activity. 
Thus, rTMS treatments with demonstrated anti-inflammatory 
benefits in young adults may have unanticipated effects in older 
recipients. Future studies focusing on the neuroinflammatory effects 
of rTMS specifically in the context of aging will be needed to move 
this technology forward in the clinical setting.

Although the mechanisms that mediate neuroinflammation are 
not fully understood, it is well-accepted that microglia play a key role 
(DiSabato et al., 2016; Dokalis and Prinz, 2019). In our study, the 
comparative analysis of purified hippocampal neuronal culture 
preparations versus the ex vivo or in vivo complex tissue samples, 
where glial cells are present, suggests that the observed influence on 
inflammatory response genes likely arises from the non-neuronal 
compartment. Taking advantage of the unique dataset generated in 
these experiments, future analyses directly comparing the 
transcriptional response to rTMS as a function of experimental 
preparation, temporal kinetics, age, and cognitive status will provide 
a rich source of insight into the complex molecular consequences 
underlying the phenotypic response to intervention.

Our ex vivo experiments provide an 
approach to systematically test 
rTMS-drug interactions

Although FDA-approved as a stand-alone treatment for 
non-responsive major depressive disorder, in clinical practice rTMS 
is typically used as a supplementary therapy, together with 
psychotropic medication. A therapeutic benefit of combined rTMS 
and adjunctive drug treatment for major depression has been 
confirmed previously (Wei et al., 2017), but evidence fully exploring 

TABLE 3 (Continued)

Gene 
symbol

Y 1HZ Y iTBS AU 1HZ AU iTBS AI 1HZ AI iTBS Gene name

Other

Plac8 −3.97 −3.17 −1.18 −1.26 0.21 4.46 Placenta-specific 8

Igf2 1.22 2.99 −0.56 −3.73 −0.08 −1.06 Insulin-like growth factor 2

Folr1 3.58 2.71 −4.41 0.11 1.88 −1.55 Folate receptor 1 (adult)

Otx2 6.83 2.35 −1.40 4.57 −1.57 −6.04 Orthodenticle homeobox 2

Slc22a7 −0.75 −1.40 −2.87 0.75 4.11 1.85 Solute carrier family 22 (organic anion transporter), member 7

In bold, genes with z-ratio > 1.5, p value < 0.3 (false discovery rate correction), p value statistic for z-score replicability below 0.05, and mean background-corrected signal intensity > 0. Bold 
values represent z-ratio. Y, Young rats; AU, Aged-unimpaired rats; AI, Aged-impaired rats (for classification criterion, see Background behavioral characterization in Material and Methods).
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TABLE 4 In vivo model selected genes of rTMS induced alterations.

Gene symbol Y CX iTBS A CX iTBS Y HP iTBS A HP iTBS Gene name

Neuronal genes

Gas7 2.13 1.09 1.67 −0.38 Growth arrest specific 7

Grin2d 1.79 1.42 4.54 0.45

Glutamate ionotropic receptor NMDA type 

subunit 2D

Ryr2 2.80 1.58 −0.51 −0.33 Ryanodine receptor 2

Otof 2.55 1.68 −0.58 −0.41 Otoferlin

Sorl1 1.63 0.41 −0.48 0.24 Sortilin related receptor 1

Penk −0.88 3.00 −0.52 0.33 Proenkephalin

Prodh1 0.59 2.51 −0.62 −0.35 Proline dehydrogenase 1

Ptk2b 0.65 2.67 −0.97 1.40 Protein tyrosine kinase 2 beta

Arc 0.11 −3.62 0.32 −1.89 Activity-regulated cytoskeleton-associated protein

S100b −2.92 −3.15 −1.78 −2.95 S100 calcium binding protein B

Htr2c 0.23 −2.84 1.15 −1.68 5-Hydroxytryptamine receptor 2C

Grm2 1.66 1.22 0.62 −0.29 Glutamate metabotropic receptor 2

Rgs4 0.61 0.53 1.39 −3.12 Regulator of G-protein signaling 4

Nxph3 0.68 −0.09 0.67 −3.65 Neurexophilin 3

Complement

C1s −0.05 0.19 −2.02 0.87 complement C1s

C2 −0.94 −0.21 −1.60 1.11 complement C2

Immune

RT1-Da −3.60 −0.53 −3.55 3.19 RT1 class II, locus Da

Cd74 −3.23 0.57 −3.46 2.62 CD74 molecule, MHC class II invariant chain

Tlr3 −3.02 −2.29 −2.77 −0.96 Toll-like receptor 3

Irf7 −0.09 2.43 −0.42 2.34 Interferon regulatory factor 7

Hemoglobin

Hbb −0.98 −1.99 1.33 −2.40 Hemoglobin subunit beta

Hba1 −0.45 −1.64 1.15 −3.00 Hemoglobin, alpha 1

Hbe2 −0.13 −1.81 0.93 −3.03 Hemoglobin, epsilon 2

Hbb-b1 0.56 1.26 3.55 −2.83 Hemoglobin, beta adult major chain

Other

Ttr 4.47 2.61 −2.86 0.56 Transthyretin

Bmp4 −0.40 2.17 −1.01 1.58 Bone morphogenetic protein 4

Klhl14 0.35 −4.93 1.50 −0.84 Kelch-like family member 14

Hook3 −0.63 −3.45 0.65 −2.76 Hook microtubule-tethering protein 3

Rxrg −0.19 −3.06 2.23 −0.70 Retinoid X receptor gamma

Slc27a2 −4.07 −2.92 −0.64 −4.69 Solute carrier family 27 member 2

Abcg2 −4.47 −0.36 −2.50 0.32

ATP-binding cassette, subfamily G (WHITE), 

member 2

Prg2 5.78 −0.28 2.84 −1.16 Proteoglycan 2

Adam7 5.43 1.52 −1.73 −0.67 ADAM metallopeptidase domain 7

Prb1 4.97 1.32 3.46 0.44 Proline-rich protein BstNI subfamily 1

Mrpl43 4.48 −0.15 2.63 0.08 Mitochondrial ribosomal protein L43

Sema6c 1.62 1.64 4.28 0.39 Semaphorin 6C

S100b −1.30 −2.99 −4.01 −2.64 S100 Calcium binding protein B

(Continued)
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the interaction between rTMS and anti-depressants is scarce. 
Psychotropic drugs affect cortical excitability and plasticity 
(Minzenberg and Leuchter, 2019) and medications commonly used 
to treat neurological conditions change neural circuit and network 
activation (Borchert et  al., 2016; Zheng et  al., 2017). The use of 
concomitant medication may impact rTMS treatment outcome 
favorably or unfavorably, depending on the drug category or 
mechanism of action (Hunter et al., 2019). For example, while still in 
their infancy, studies in pharmaco-TMS have shown that medications 
that block voltage-gated sodium channels increase the evoked motor 
threshold to TMS, i.e., a common metric used to normalize and 
titrate stimulation intensity across individuals (a readout for TMS 
dosage; Ziemann, 2004; Ziemann et al., 2015).

The idea that the effects of rTMS vary depending on the use of 
concurrent medication aligns with the ‘state-dependency’ concept of 
TMS (Silvanto and Pascual-Leone, 2008). Among the factors that 
might influence the outcomes of TMS, the pharmacological ‘state’ of 
the brain has received relatively limited attention, likely because 
patients treated with rTMS for neuropsychiatric conditions are 
typically receiving concurrent pharmacological treatment. In this 
context, our ex vivo experiments point to one potentially useful 
approach for research aimed at identifying drug-rTMS interactions. 
Overall, while recognizing that the barriers to successful translation 
are substantial, properly designed basic research can nonetheless 
inform therapeutic development toward safer and more effective 
TMS application in a variety of conditions.

TABLE 4 (Continued)

Gene symbol Y CX iTBS A CX iTBS Y HP iTBS A HP iTBS Gene name

Ppp1r16b −2.93 1.95 −2.14 2.17 Protein phosphatase 1, regulatory subunit 16B

Mis18a −3.58 2.72 −3.16 4.22 MIS18 kinetochore protein A

Ranbp3l −2.80 1.03 0.46 3.01 RAN binding protein 3-like

Enpp6 1.65 1.82 0.06 2.83

Ectonucleotide pyrophosphatase/

phosphodiesterase 6

Gpat2 0.35 1.21 2.42 −3.62 Glycerol-3-phosphate acyltransferase 2, 

mitochondrial

Alas2 0.03 −2.07 −0.08 −3.75 5′-Aminolevulinate synthase 2

Apold1 −0.77 −3.41 0.51 −2.58 Apolipoprotein L domain containing 1

In bold, genes with z-ratio > 1.5, p value < 0.3 (false discovery rate correction), p value statistic for z-score replicability below 0.05, and mean background-corrected signal intensity > 0. Bold 
values represent z-ratio. Y, Young rats; A, Aged rats.

FIGURE 3

Selected protein–protein interaction network analysis from rTMS altered differential gene expression in the in vitro model. Networks built from shared 
genes involved in inhibitory and excitatory neuronal functions, including multiple (A) GABA and (B) glutamate receptors. Expression changes for 
individual genes were considered significant if they met four criteria: z-ratio  >  1.5 or below −1.5; false detection rate  <  0.30; a p-value statistic for 
z-score replicability <0.05; and mean background-corrected signal intensity > than zero. Functional or biological grouping is denoted by colors. 
Network nodes represent proteins and edges represent protein–protein relationships.
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The complex transcriptional profiles 
induced by rTMS in the context of age, 
tissue, and cognitive status are relevant to 
the clinical status of individual patients

It has been over a decade since the first rTMS application was 
approved by the FDA for the treatment of major depressive disorder, 
and since then the range of potential applications under investigation 
with rTMS has skyrocketed. The research on rTMS as a therapy 
includes patients with a variety of disorders and pathological 
signatures, from all ages and different cognitive statuses. Recent in 
vivo data points to the potential translational relevance of findings in 
animal models demonstrating effects on behavior and structural 
plasticity (Cambiaghi et al., 2022) and the potential implication for 
clinical application in neurodegenerative diseases (Weiler et al., 2020). 
In our results, we observed that rTMS induced unique gene expression 
profiles in each experiment, all of which reflected a variety of 
biological conditions and different stimulation parameters. In 

addition, the gene expression response following rTMS was highly 
complex. Whereas previous studies investigating the effects of rTMS 
have focused on alterations in only a handful of priori-selected genes 
(Lee et al., 2014; Wang et al., 2014; Grehl et al., 2015; Cirillo et al., 
2017; Legrand et al., 2018; Cui et al., 2019; Wu et al., 2022), our large-
scale analysis of gene expression detected several complex different 
pathways that are altered after stimulation.

Any non-invasive brain stimulation protocol intended to target a 
specific gene set or mechanism in the context of treating a given 
condition may have unexpected consequences in a different context, 
e.g., in other brain regions, or as a function of the cognitive status and 
age of the recipients. For example, clinical trials of rTMS (Turriziani 
et al., 2012) have reported that the same stimulation protocol that 
yields cognitive improvement in some subjects at risk for Alzheimer’s 
disease has detrimental effects in cognitively healthy individuals. 
Likewise, stimulation aiming at targeting a specific pathway or 
mechanism may induce changes in other genes and unintended 
downstream pathways. The findings reported here also highlight that 

FIGURE 4

Selected protein–protein interaction network analysis from rTMS altered differential gene expression in the in vitro model. Networks built from shared 
genes involved in glutamate signaling and neurotransmission. (A) Transcriptional alteration of genes involved in Alzheimer’s disease. (B) Transcriptional 
response was altered in oxidative phosphorylation pathways including shared genes involved in Huntington’s, Alzheimer’s, and Parkinson’s disease. 
Expression changes for individual genes were considered significant if they met four criteria: z-ratio  >  1.5 or below −1.5; false detection rate  <  0.30; a 
p-value statistic for z-score replicability <0.05; and mean background-corrected signal intensity  >  than zero. Functional grouping is denoted by colors. 
Network nodes represent proteins and edges represent protein–protein relationships.
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the transcriptional response can be temporally dynamic, resulting in 
both increases and decreases in the same gene families across time, 
suggesting that a protocol chosen for its acute effects may lead to 
unpredictable long-term changes in expression.

Taken together, our results suggest that patterns of gene expression 
following rTMS are complex, dynamic, and dependent on the brain 
region, age, cognitive status, and potentially many other subject variables 
not examined here. Given the current and growing clinical application of 
rTMS, it is timely that greater attention turns to basic research aimed at 
understanding the underlying basis of reported therapeutic benefits, with 
the goal of optimizing treatment in the context of the individual patient.

The limitations of research on non-invasive brain stimulation 
in experimental animal models are significant. A primary limitation 
from a translational perspective is that, although we  analyzed 
multiple stimulation protocols, we only studied the effects of one 
stimulation session, while clinical rTMS approaches employ 
treatments over the course of days or weeks. Further studies 
investigating the effects of rTMS on a long-term basis should 
be conducted. Another limitation is that although in some cases 
we  used a diverse parametric setting such as different ages and 
cognitive states, our initial report is predominantly focused on the 
effects of rTMS itself. Here, each rTMS-stimulated sample group 
was statistically compared to its own unstimulated sham control, as 
opposed to comparisons across age and between cognitive groups. 
Detailed results of the transcriptional changes due to rTMS 
treatment in the context of age, cognition, and brain region will 
be presented elsewhere.

FIGURE 5

Selected protein–protein interaction network analysis from rTMS 
altered differential gene expression in the ex vivo model. Network 
built from shared genes involved in Claudin family members. 
Expression changes for individual genes were considered significant 
if they met four criteria: z-ratio  >  1.5 or below −1.5; false detection 
rate  <  0.30; a p-value statistic for z-score replicability <0.05; and 
mean background-corrected signal intensity  >  than zero. Functional 
grouping is denoted by colors. Network nodes represent proteins 
and edges represent protein–protein relationships.

FIGURE 6

Gene ontology gene set analysis in the ex vivo model, 1  Hz stimulation protocol, young. Red text highlights gene groups involved in inflammation and 
immune response following 1  Hz stimulation of hippocampal slices from young rats compared to sham treatment. Significantly changed gene sets, 
associated with biological processes, are organized by z-score.
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FIGURE 7

Gene ontology gene set analysis in the ex vivo model, iTBS protocol, young. Text highlighted in red indicates gene groups involved in inflammation and 
immune response, and blue text signifies gene groups involved in mitochondrial/energy processes following iTBS in hippocampal slices from young 
rats compared to sham treatment. Significantly changed gene sets, associated with biological processes, are organized by z-score.
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FIGURE 8

Gene ontology gene set analysis in the in vivo model, cortex, young. Highlighted in red text are gene groups involved in inflammation and immune 
response, and blue text highlights gene groups involved in synaptic growth and synaptic transmission in young rat cortical samples following iTBS 
compared to sham treatment. Significantly changed gene sets, associated with biological processes, are organized by z-score.
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