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Introduction: The brain-computer interface (BCI) allows individuals to control

external devices using their neural signals. One popular BCI paradigm is motor

imagery (MI), which involves imagining movements to induce neural signals

that can be decoded to control devices according to the user’s intention.

Electroencephalography (EEG) is frequently used for acquiring neural signals from

the brain in the fields of MI-BCI due to its non-invasiveness and high temporal

resolution. However, EEG signals can be a�ected by noise and artifacts, and

patterns of EEG signals vary across di�erent subjects. Therefore, selecting themost

informative features is one of the essential processes to enhance classification

performance in MI-BCI.

Methods: In this study, we design a layer-wise relevance propagation (LRP)-based

feature selection method which can be easily integrated into deep learning (DL)-

based models. We assess its e�ectiveness for reliable class-discriminative EEG

feature selection on two di�erent publicly available EEG datasets with various

DL-based backbone models in the subject-dependent scenario.

Results and discussion: The results show that LRP-based feature selection

enhances the performance for MI classification on both datasets for all DL-based

backbonemodels. Based on our analysis, we believe that it can broad its capability

to di�erent research domains.

KEYWORDS

brain-computer interface, feature selection, layer-wise relevance propagation, motor

imagery classification, electroencephalography, analysis

1. Introduction

Brain-computer interface (BCI) enables individuals to connect with their surroundings

by establishing communication channels between the brain and external devices using their

neural signals (McFarland and Krusienski, 2012). The BCI systems have been developed

for a variety of applications including communications, healthcare, military services, and

rehabilitative technologies (Daly andWolpaw, 2008; Mcfarland andWolpaw, 2010; Van Erp

et al., 2012; Biasiucci et al., 2018; Belkacem et al., 2020). One popular paradigm in BCI

research is motor imagery (MI), which involves imagining specific movements without

actually performing them such as movements of arms or other body parts to generate

neural signals that can be decoded to control the devices (Jeannerod, 1994; Zhang et al.,

2021b). To perform MI tasks, participants are usually guided by predefined conditions and

time intervals, with visual or auditory cues provided throughout the task to help them

imagine the movements during specific time periods (Lotte et al., 2018). It is known that
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MI produces identical neural responses on the motor and

sensorimotor regions (Jeannerod, 1995; Lotze and Halsband, 2006;

Vyas et al., 2018). This capability that measures the human

intention of specific actions enables to transfer desired signals into

BCI systems, which will also lead to a variety of future applications.

Electroencephalography (EEG) is a common measurement used in

theMI-BCI field to obtain the electrical signals of the brain through

electrodes placed on the scalp (Blankertz et al., 2010; Millán et al.,

2010). EEG signals have the advantage of the non-invasive nature

and high temporal resolution (Collinger et al., 2014; Lotte et al.,

2018), and also capture motion-related information across the

spatial, temporal, and spectral domains (Dai et al., 2020). The

research on EEG-based motor imagery classification contributes to

unraveling the neural mechanism (Pfurtscheller and Neuper, 2001)

and paves the way to develop more sophisticated systems in areas

such as real-time BCI controls, stroke rehabilitation, and assistive

technologies for paralyzed individuals (Ang et al., 2011; Leeb et al.,

2011; Pichiorri et al., 2015; Shin et al., 2022; Forenzo et al., 2023).

Deep learning-based approaches have been a growing trend

in EEG-based motor imagery classification, especially adopting

convolutional neural networks (CNN) (Tabar and Halici, 2016;

Schirrmeister et al., 2017; Lawhern et al., 2018; Li et al., 2019;

Zhang et al., 2019; Altuwaijri and Muhammad, 2022; Chen et al.,

2022; Huang et al., 2022; Lee et al., 2022; An et al., 2023;

Wang et al., 2023b), as it takes advantages to learn more robust

features that are not restricted to specific feature domains (Hertel

et al., 2015). The CNN-based architectures can capture the spatial,

temporal, and spectral features of EEG signals through several

convolutional blocks, in which the general feature representation is

essential when training neural networks. Specifically, Schirrmeister

et al. (2017) have utilized CNN variants such as DeepConvNet

and ShallowConvNet to decode EEG signals for MI classification

through general feature representations. Lawhern et al. (2018) have

proposed EEGNet, another generalized deep learning architecture

for EEG-based applications using separable convolutions and

depthwise convolutions. Li et al. (2019) and Zhang et al. (2019)

have also proposed hybrid neural networks with CNN variants

and other deep learning frameworks for MI classification. Even in

recent studies, CNN-based methods still remain dominant in MI-

BCI (Altuwaijri and Muhammad, 2022; Chen et al., 2022; Huang

et al., 2022; Lee et al., 2022; An et al., 2023; Wang et al., 2023b).

However, the use of all extracted EEG features from the

well-known models does not always ensure high performance

(Chatterjee et al., 2019). EEG has a low signal-to-noise ratio and

high intra-variability of responses within subjects (Rakotomamonjy

et al., 2005), which may result in classification errors. Therefore,

selecting class-discriminative features from the extracted features

is essential to improve classification performance (Luo et al.,

2016). Selecting the class-discriminative features could also

remove irrelevant or redundant features, resulting in more

robust classifiers. Several studies have investigated various feature

selection strategies for EEG-based MI-BCI in spatial, spectral,

and temporal domains. Specifically, Zhang et al. (2021a) have

extracted time-frequency features through wavelet transformation

and selected crucial EEG channels via squeeze-and-excitation

blocks. In addition, recent studies focusing on EEG feature

selection have been actively considering various combinations of

the spatial, temporal, and spectral domains through a range of

approaches (Abbas and Khan, 2018; Liu et al., 2022; Sadiq et al.,

2022; Tang et al., 2022; Luo, 2023; Meng et al., 2023).

Our recent work (Nam et al., 2023) has also conducted feature

selection for EEG-based motor imagery classification based on

Layer-wise relevance propagation (LRP) (Bach et al., 2015). LRP is a

method designed to analyze and understand how amodel processes

information or makes decisions by providing the importance of

input features through the decomposition of the prediction output

backward (Bach et al., 2015). There has been a growing interest

in utilizing LRP in BCI, where Sturm et al. (2016) and Bang

et al. (2021) found neurophysiologically significant patterns with

LRP-based generated heatmaps. This is because the interpretation

of neural networks through LRP has proven consistent with

corresponding domain knowledge in various fields (Lomazzi et al.,

2023; Majstorović et al., 2023; Wang et al., 2023a). In addition,

Nagarajan et al. (2022) also performed channel selection using

relevance scores for each channel to improve the performance

of MI classification. Capitalizing on these advantages, we have

explored the potential of LRP for effective EEG feature selection

on spatial, temporal, and spectral domains for motor imagery

classification in our recent study. However, the prior work has only

explored the feasibility of LRP-based feature selection using a single

backbone network and a single dataset.

In this study, we take a further step and demonstrate the

effectiveness of our LRP-based feature selection method on various

backbone networks and datasets, as well as further comprehensive

analysis that can identify performance improvement according

to the feature selection. Given the transparency and the high

level of interpretability of the LRP, we show that employing

the LRP-based feature selection will lead to not only enhanced

performance but also an intuitive and explainable feature selection

process. Moreover, our study highlights the potential of applying

our LRP-based feature selection approach to various cognitive

and personal value EEG processes beyond motor imagery

classification, extending its applicability to emotion recognition,

attention monitoring, and BCI for meditation or relaxation. The

development of more accurate and efficient methods for these

processes could contribute to improving the quality of life for

individuals through personalized technology solutions tailored to

their specific needs and preferences. Thus we believe that the

insights gained from our investigation emphasizes the broad impact

of our research findings across different research domains.

2. Materials and methods

2.1. Dataset and preprocessing

To analyze the effectiveness of the LRP-based feature selection,

we have evaluated our proposed method on two publicly available

MI-EEG datasets, i.e., BCI Competition IV-2a dataset (Brunner

et al., 2008) and KU-MI dataset (Lee et al., 2019). A brief summary

of each dataset is described in the Table 1.

The BCI Competition IV-2a dataset (Brunner et al., 2008)

contains EEG recordings from nine healthy subjects performing

four different motor imagery tasks as part of a cue-based MI-BCI
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TABLE 1 A brief description of the BCI Competition IV-2a (Brunner et al., 2008) and KU-MI (Lee et al., 2019) datasets.

Dataset # Subject # Class # Session # Trial per session # Electrode Sampling rate (Hz) MI duration (s)

BCI

Competition

IV-2a

9 4 2 288 22 250 4

KU-MI 54 2 2 200 62 1,000 4

paradigm. The tasks involve imagining the movements of the left

hand, right hand, feet, and tongue, respectively. A total of two

sessions on separate days were conducted for each subject, and each

session includes six runs with short intervals in between. A single

run consists of 48 trials (i.e., 12 trials for each task), resulting a total

of 288 trials per session. The EEG recordings were generated using

22 Ag/AgCl electrodes according to the international 10–20 system

(Homan et al., 1987). The signals contain 4-s MI that were recorded

in a monopolar configuration, with the reference electrode placed

on the left mastoid and the ground electrode on the right mastoid.

The data were sampled with 250 Hz and bandpass-filtered between

0.5 and 100 Hz.

The KU-MI dataset (Lee et al., 2019) comprises of a large

number of EEG recordings across 54 healthy subjects, where each

subject participated in two different sessions. The dataset consists

of two classes, which are 4-s left or right hand MI, where each

session comprises 200 trials, with 100 trials for the left hand and

100 trials for the right hand. The EEG signals were captured using

62 Ag/AgCl electrodes with a sampling rate of 1,000 Hz according

to the international 10–20 system.

For each dataset, we used 4.5-s EEG signals ranging from 0.5

s before the start cue to 4 s after the start cue. We then applied

band-pass filtering to the signals, keeping the frequencies in the

range of 0.5–40 Hz. This can be attributed to the fact that the most

useful information from motor imagery signals can be found in the

mu and beta frequency bands of the EEG, rather than in higher

frequency bands (Dornhege et al., 2007; Kirar and Agrawal, 2018).

We also have standardized the continuous EEG data via

exponential moving standardization to filter out noisy fluctuations.

For the KU-MI dataset, we downsampled the EEG signals from

1000Hz to 250Hz. These preprocessing steps resulted in a two-

dimensional EEG data format, with the number of electrodes (or

channels) and time points represented as the dimensions (e.g., 22

× 1,125 for the BCI Competition IV-2a dataset and 62 × 1,125

for the KU-MI dataset). These measures were taken to ensure

that both datasets were comparable and could be used for fair

experimentation.

2.2. Proposed method

2.2.1. Spatio-spectral-temporal feature extraction
Figure 1 illustrates the overview of our LRP-based feature

selection framework. It involves three well-known CNN-based

backbone networks, EEGNet (Lawhern et al., 2018), DeepConvNet

(Schirrmeister et al., 2017), and ShallowConvNet (Schirrmeister

et al., 2017). They all can be described as a general model

across EEG-based BCI paradigms, and have been shown good

performance in MI classification tasks (Zhu et al., 2022). Each

network is composed of a feature extractor (F) and a classifier

(C), respectively. In each backbone network, the feature extractor

F is trained with a series of spatial and temporal convolutional

layers to learn spatio-spectral-temporal feature representations of

the input EEG signals from various perspectives. The classifier C,

which consists of a fully-connected layer, produces predicted class

labels with their probability values by taking the extracted features

from F as input.

More specifically, DeepConvNet (Schirrmeister et al., 2017)

consists of four convolution blocks with max-pooling operations

and a dense layer for classification. The first convolution block

is specially designed to handle raw EEG signals, which enables

to extract features from various perspectives. ShallowConvNet

(Schirrmeister et al., 2017) comprises two convolution blocks with

average pooling operations and a dense layer for classification.

EEGNet (Lawhern et al., 2018) is another generalized deep learning

architecture for EEG applications that employ depthwise and

separable convolution blocks. The architecture is composed of

three convolution blocks and a classification layer. Figure 2 shows

the overall architecture of each backbone network.

2.2.2. LRP-based feature selection
We measure the important scores for each extracted feature

based on the layer-wise relevance propagation (LRP) method (Bach

et al., 2015). The LRP is a well-known and commonly used

framework where it helps to explain a neural network’s decision-

making process by decomposing down into relevance scores

attributed to each neuron and enables highlighting important

neurons in each layer toward a specific prediction (Bach et al., 2015;

Montavon et al., 2017).

In a deep neural network, each neuron can be simply described

as the following equation when computing the feed-forward:

x
(l+1)
j = g(

∑

i

x
(l)
i w

(l,l+1)
ij + b

(l+1)
j ),

where x
(l+1)
j indicates j-th neuron at the layer l + 1, and

∑
i runs

over all the neurons at the previous layers connected to the j-

th neuron (Binder et al., 2016). The g(·) represents an activation

function, and the parameters w
(l,l+1)
ij and b

(l+1)
j correspond to the

weights and bias of the neuron, respectively. The final output of the

neural network can be denoted by f (x) and this will become the very

first relevance, which is the starting point for the LRP (Binder et al.,

2016). The LRP method re-distributes the relevance f (x) into the

relevance of the neuron in the preceding layer with the following

rule, satisfying the desired conservation property 6pR
(1)
p = f (x):
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FIGURE 1

An overview of our proposed LRP-based feature selection framework is presented. To validate the framework’s generalized performance, we

evaluated it using three backbone networks on di�erent datasets. The backbone networks include EEGNet (Lawhern et al., 2018), DeepConvNet

(Schirrmeister et al., 2017), and ShallowConvNet (Schirrmeister et al., 2017). We tested the framework on two publicly available motor imagery

datasets: the KU-MI dataset (Lee et al., 2019) and the BCI Competition IV-2a dataset (Brunner et al., 2008). Additionally, we conducted class-specific

and statistical analyses afterward. The framework consists of three main steps: (A) a backbone network extracts EEG features and generates initial

predictions, (B) feature-wise importance scores are calculated using the LRP method, and low-importance pixels in the feature vectors are masked,

and (C) the classifier C is retrained using the selected non-masked features.

FIGURE 2

The structures of backbone networks: (A) EEGNet (Lawhern et al., 2018), (B) DeepConvNet (Schirrmeister et al., 2017), and (C) ShallowConvNet

(Schirrmeister et al., 2017), respectively. Within each section, the feature extraction process of the corresponding model is shown up to the extracted

EEG feature map, followed by the classification process and a schematic illustration of the LRP procedure for a specific input value until the feature

map, that was generated by each backbone network.
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R
(l)
i =

∑

j

zij∑
i′ zi′j + ǫsign(

∑
i′ , zi′j)

R
(l+1)
j (zij = x

(l)
i w

(l,l+1)
ij ).

R
(l)
i indicates the relevance of the neuron i at the layer l, where∑

j runs over all the neurons at preceding layers that are connected

to the neuron i (Binder et al., 2016). The given rule is one of the

variations of the LRP rule with a stabilizing factor ǫsign(
∑

i′ , zi′j)

added to the denominator of the naive LRP rule, which prevents the

denominator from becoming zero (Binder et al., 2016). Note that

when the method reaches to the last layer, it generates a relevance

map (heatmap) that visualizes the importance of each feature.

By applying this rule, we can compute the relevance scores

(or importance scores) of each feature in the extracted feature

map determining the degree of influence that each feature has on

the decisions made by the model. Based on the importance score,

we mask the irrelevant features that have low important scores.

Figure 2 illustrates the overall process of feature extraction and how

the LRP works from a certain output value until the feature map,

that was generated by each backbone network.

2.2.3. Classifier retraining
In order to improve the performance and accuracy of our

model, we employ a strategy where we re-train the classifier C

that we have used previously, using the masked feature vectors

obtained during the training process. Retraining the classifier with

masked feature vectors allows it to effectively capitalize on the most

critical features while disregarding less relevant ones, ultimately

contributing to better classification performance. To accomplish

this, we intentionally freeze the feature extractor F within the

backbone network architecture. By doing so, we prevent any

updates or modifications to the learned features and solely focus on

refining the classifier’s ability to make accurate predictions based on

the existing feature representations.

3. Results

3.1. Experimental settings

The backbone networks utilized in the experiment include

EEGNet (Lawhern et al., 2018), DeepConvNet (Schirrmeister et al.,

2017), and ShallowConvNet (Schirrmeister et al., 2017). These

networks were selected for their extensive use in the BCI field

as general-purpose architectures, where comparative evaluation of

their performance have been already conducted in existing works

to assess their effectiveness (Zhu et al., 2022). For evaluation, we

followed the original structure of these networks as outlined in their

respective papers, including pooling modes, activation functions,

and kernel sizes, adhering to the specific recommendations

provided by the authors. For instance, in EEGNet, we adjusted the

kernel size of the temporal convolutional layer to half of the input

data’s sampling rate (1 × 125), and the kernel size of the depthwise

convolutional layer tomatch the number of channels in our dataset,

with sizes of (22× 1) for the BCI Competition IV-2a dataset and (62

× 1) for the KU-MI dataset, respectively. T
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TABLE 3 The performance comparison table presents average accuracy ±

standard deviation, based on five random seeds, for di�erent backbone

networks with and without the proposed LRP-based feature selection

applied to the KU-MI dataset.

Comparison methods Mean

EEGNet
Backbone 65.94± 0.28

Proposed 66.65 ± 0.34
∗∗

DeepConvNet
Backbone 65.73± 0.46

Proposed 65.91 ± 0.37

ShallowConvNet
Backbone 61.40± 0.75

Proposed 63.64 ± 0.86
∗∗

A t-test was employed to assess statistical significance (Student, 1908) (∗ : p < 0.05, ∗∗ : p <

0.01). The highest results for each subject, from both the original backbone network and our

proposed method, are highlighted in boldface.

In the backbone network training process, we applied different

hyper-parameter settings to have as the best performance as we can

on each dataset, respectively. Specifically, for the BCI Competition

IV-2a dataset, we adopted the Adam optimizer with a learning

rate of 0.002 and the cosine annealing scheduler (Loshchilov and

Hutter, 2016), and set the batch size of 72. For the KU-Mi dataset,

we applied the RMSProp optimizer with a learning rate of 0.001

and the exponential scheduler (Li and Arora, 2019) with a batch

size of 5.

For generalization in the classifier retraining process, we have

given the networks the same hyper-parameter settings regardless

of the datasets, by adopting the Adam optimizer with the learning

rate of 0.002 and the cosine annealing scheduler. We set the batch

size to be one-fourth of the total numbers of samples on each

dataset, i.e., 72 and 50 for BCI Competition IV-2a and KU-MI

datasets, respectively. In the LRP-based feature selection process,

we masked 10% of the extracted features from each backbone

network, respectively.

3.2. Performance evaluation

To access the efficacy of our feature selection technique, we

have compared three different CNN-based backbone networks and

our proposed feature selection method applied to each network on

two publicly available datasets. As previously mentioned, the three

backbone networks EEGNet (Lawhern et al., 2018), DeepConvNet

(Schirrmeister et al., 2017), and ShallowConvNet (Schirrmeister

et al., 2017) are used for the evaluation. The datasets we have used

are the BCI Competition IV-2a dataset (Brunner et al., 2008) and

KU-MI dataset (Lee et al., 2019), both of which consist of two

sessions. The first session of each dataset was utilized as the training

set, while the second session from each dataset served as the test set

for analysis, following the subject-dependent scenario. To ensure

the reliability of our results, we performed all experiments with five

random seeds and measured the average accuracy of the seeds for

each method.

Table 2 shows the performance comparison on the BCI

Competition IV-2a dataset. The comparison results show that

our proposed LRP-based feature selection method contributes

to improving the performances when applied to all backbone

networks. Specifically, our proposed method achieved a

performance improvement of 0.86% [p < 0.05, Wilcoxon’s

signed-rank test (Wilcoxon, 1992)] in EEGNet, 0.37% (p = 0.1)

in DeepConvNet, and 1.45% (p < 0.01) in ShallowConvNet,

respectively, in terms of mean accuracy across all subjects.

Table 3 also indicates that our proposed method helps achieve

performance improvement for the backbone networks on the

KU-MI dataset. In particular, the improvements for EEGNet,

DeepConvNet, and ShallowConvNet are 0.71% (p < 0.01), 0.18%

(p = 0.196), and 2.24% (p < 0.01), respectively.

Table 4 demonstrate the performance of our LRP-based feature

selection method in comparison to conventional feature selection

methods for each backbone network on the BCI Competition

IV-2a dataset. The comparison methods include analysis of

variance (ANOVA)-based feature selection (Salami et al., 2017;

Miah et al., 2020), minimum-redundancy-maximum-relevance

(mRMR)-based feature selection (Peng et al., 2005; Jenke et al.,

2014; Al-Nafjan, 2022), and recursive feature elimination (RFE)-

based feature selection (Cai et al., 2018; Jiang et al., 2020; Al-

Nafjan, 2022). The Wilcoxon signed-rank test was applied to assess

differences between each competitive method and our LRP-based

feature selection (Wilcoxon, 1992). While our LRP-based feature

selection method performed comparably to other conventional

methods across different backbone networks, statistical analysis

showed no significant differences between the methods. More

detailed discussions about these results can be found in the

discussion section.

4. Discussion

Figure 3 illustrates the feature maps extracted by one of

the backbone networks, EEGNet, on the BCI Competition IV-

2a dataset. The extracted feature maps, representing the average

of all trials for each subject, are shown on the left side of

each subfigure, while the corresponding LRP score heatmaps are

displayed on the right. According to Figure 3, the patterns of each

featuremap and their corresponding heatmap differ across subjects.

This variation might be related to the dynamics of event-related

synchronization (ERS) and event-related desynchronization (ERD)

during the imagery tasks as some studies have reported transient

desynchronization patterns occurring in the brain and recovering

to baseline levels within a specific time frame (Pfurtscheller et al.,

1997; Pfurtscheller andDa Silva, 1999; Bartsch et al., 2015). This can

emphasize the importance of recognizing subject-specific patterns

and conducting appropriate feature selection accordingly.

To validate the reliability of LRP-based feature selection,

we trained two additional classifiers derived from the EEGNet

architecture: one with only the 10% of EEG features with the

lowest importance scores, and the other with exclusively the 10%

of features with the highest importance scores for training. Of note,

the classifier in our model takes the features masked with a position

corresponding to the importance scores in the bottom 10%, i.e.,

it is trained with 90% of features with the highest importance

scores. Figure 4 shows the comparative performance of the two

classifiers and the classifier in our proposed method in terms of

accuracy on the BCI Competition IV-2a dataset. The comparison
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results show that the model with the 10% lowest features achieved

accuracies around 25% close to the chance rate of randomly picking

one from four classes over all the subjects while the model with

10% highest features remarkably outperformed the former model

for all subjects. Thereby we can assume that the features with

the lowest importance scores are mostly class-irrelevant and the

features with high importance scores are significantly informative

for MI classification. However, more importantly, our model still

excels in the two classifiers for all subjects, which can be interpreted

that the rest features which have importance scores between the

10% lowest and 10% highest importance scores also contribute to

classification for further performance improvement.

For a more comprehensive analysis, we evaluated the confusion

matrix on each backbone network without and with our proposed

feature selection method on the BCI Competition IV-2a dataset,

displayed in Figure 5. The results show that our method helps

classify most of the MI classes in backbone networks more clearly.

For instance, considering ShallowConvNet as one of the three

backbone networks, Figures 5C, F demonstrate that our proposed

feature selection method improved the performance for each

class, with specific improvements in classification outcomes (e.g.,

Class left hand: 1.67%, Class right hand: 2.35%, Class both feet:

0.77%, and Class tongue: 1.01%). Notably, similar performance

improvements were observed across nearly all classes in the other

two backbone models as well, highlighting the effectiveness of our

proposed method.

Considering the results presented in Table 4, one of the

key advantages of our LRP-based feature selection method is

that it provides an end-to-end approach, encompassing feature

extraction, feature selection, and classification. This is in contrast

to traditional conventional methods that often involve separate

steps for these tasks.While our LRP-based feature selectionmethod

achieved the best performance only when ShallowConvNet was

used as a backbone network, the statistical analysis showed that

there were no significant differences between our method and

the conventional methods. Additionally, the LRP method offers

the advantage of allowing for intuitive interpretation of the input

feature map, showing which parts contribute to classification. This

could potentially facilitate further understanding and refinement of

the feature selection process in the BCI fields.

5. Limitations and future work

In our study, one of the limitations is that we only investigated

the potential of LRP-based feature selection for MI classification.

We did not succeed in identifying the optimal proportion of

masking that would vary depending on the subject, nor the ideal

proportion based on the size of the feature map. This resulted in

limited performance improvement compared to the conventional

methods. For future work, we could conduct research to determine

the optimal proportion of features to be masked while varying the

size of the features extracted from the same backbone network

architecture. Additionally, exploring how different sizes of feature

maps may lead to different results could provide valuable insights,

with the ultimate aim to identify the best feature set. Further

improvement of our current study also involves propagating the

Layer-wise Relevance Propagation (LRP) not only up to the feature
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FIGURE 3

The extracted feature maps and corresponding LRP score heatmaps from the EEGNet backbone network for the BCI Competition IV-2a dataset are

depicted. Each subfigure presents the pairs of the average feature map from all trials for each subject (left) and the associated LRP score heatmap

(right). Subfigures (A–I) respectively represent subjects 1 through 9.

map but also to the initial part of the feature extractor. We expect

that this will lead to identifying important features from a more

diverse range of perspectives, such as temporal, spatial, and spectral

domains. Therefore, the subsequent studies will further advance

our understanding and the practical application of LRP-based

feature selection in the field ofMI classification, ultimately resulting
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FIGURE 4

Bar graph showing classification accuracy of EEGNet-based classifiers retrained with two methodologies and our proposed framework on the BCI

Competition IV-2a dataset. The first bar represents the classifier retrained with the lowest 10% of features, while the second bar represents the

classifier retrained with the highest 10%. The last one represents our proposed framework.

FIGURE 5

Confusion matrix for EEGNet, DeepConvNet, and ShallowConvNet on the BCI Competition IV-2a dataset. The top row [subfigures (A–C)] presents

the results for the backbone networks, while the bottom row [subfigures (D–F)] shows the outcomes when our LRP-based feature selection is

applied to the respective networks.
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in enhanced performance. Drawing from the potential and insights

of this study, our research could be also expanded to other BCI

paradigms as well.

6. Conclusion

In conclusion, we have successfully designed and evaluated

the layer-wise relevance propagation (LRP)-based feature selection

for class-discriminative EEG features in MI-BCI by examining

various backbone networks on two different datasets. The

results demonstrated the effectiveness of our proposed LRP-

based feature selection across all backbone networks and datasets.

Furthermore, to determine the true effectiveness of this approach,

we have thoroughly analyzed the LRP-based feature selection using

diverse analysis methods, including experiments comparing high-

importance scored features and low-importance scored features

obtained through LRP, as well as class-specific performance

evaluations. Therefore, we claim that the LRP-based feature

selection not only demonstrated its effectiveness but also allowed us

to identify the most crucial features for classification, as evidenced

by our findings. Furthermore, we believe that our LRP-based

feature selection approach can potentially be applied to other

domains.
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