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Objective: Headache is among the most frequent symptoms after coronavirus

disease 2019 (COVID-19), so-called long COVID syndrome. Although distinct

brain changes have been reported in patients with long COVID, such reported

brain changes have not been used for predictions and interpretations in a

multivariate manner. In this study, we applied machine learning to assess whether

individual adolescents with long COVID can be accurately distinguished from

those with primary headaches.

Methods: Twenty-three adolescents with long COVID headaches with the

persistence of headache for at least 3 months and 23 age- and sex-matched

adolescents with primary headaches (migraine, new daily persistent headache,

and tension-type headache) were enrolled. Multivoxel pattern analysis (MVPA)

was applied for disorder-specific predictions of headache etiology based

on individual brain structural MRI. In addition, connectome-based predictive

modeling (CPM) was also performed using a structural covariance network.

Results: MVPA correctly classified long COVID patients from primary headache

patients, with an area under the curve of 0.73 (accuracy = 63.4%; permutation

p = 0.001). The discriminating GM patterns exhibited lower classification weights

for long COVID in the orbitofrontal and medial temporal lobes. The CPM using

the structural covariance network achieved an area under the curve of 0.81

(accuracy = 69.5%; permutation p = 0.005). The edges that classified long COVID

patients from primary headache were mainly comprising thalamic connections.

Conclusion: The results suggest the potential value of structural MRI-based

features for classifying long COVID headaches from primary headaches. The

identified features suggest that the distinct gray matter changes in the

orbitofrontal and medial temporal lobes occurring after COVID, as well as altered

thalamic connectivity, are predictive of headache etiology.

KEYWORDS

long COVID headache, multivoxel pattern analysis, connectome-based predictive
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Introduction

The 2020–2022 period was marked by a severe pandemic due to
a novel coronavirus, namely, COVID-19. In addition to respiratory
symptoms, headache is one of the most frequent features
accompanying COVID-19 and is described by approximately a
quarter of patients (Planchuelo-Gómez et al., 2022). Moreover,
some people who recover from acute COVID-19 still exhibit a
spectrum of symptoms persisting for weeks and even months, so-
called long COVID (Tana et al., 2022). Headache is one of the
most disabling symptoms of long COVID, however, there is limited
knowledge and currently no consensus about the definition of the
syndrome known as long COVID (Tana et al., 2022).

Overall, knowledge of long COVID headache is limited;
however, interestingly, specific patterns of neuroimaging findings
using a mass-univariate approach are continuously being reported
in COVID patients. These changes include structural and
functional brain changes as well as connectivity alterations
(Douaud et al., 2022; Planchuelo-Gómez et al., 2022; Voruz et al.,
2022). For example, one of the pioneering study using the UK
biobank observed gray matter reduction in patients with COVID-
19, specifically in orbitofrontal cortex and parahippocampal gyrus
(Douaud et al., 2022). These findings are reported not only
in comparison to healthy controls but also against migraineurs
(Planchuelo-Gómez et al., 2022).

Despite these neurobiological signs, accurate diagnosis of
long COVID headache remains a challenge and based largely
on subjective clinical measures, which are often unreliable, with
diagnostic variability between clinicians. Headache accompanying
COVID has a phenotype that combines the features of tension-
type headache and migraine, making it difficult to discriminate
(Tana et al., 2022). It would be clinically valuable to identify
biomarkers that improve diagnostic discrimination of long COVID
headache from primary headache. In addition, it is difficult
for a child to accurately describe the type of headache or
accompanying symptoms; therefore, diagnosis may be delayed
(Kim, 2022).

Recently, multivariate predictive modeling has become a
central method for the analysis of neuroscientific data, replacing
classical univariate methods (Hebart and Baker, 2018). Specifically,
multivariate modeling aims to develop brain models that are tightly
coupled with target outcomes using pattern recognition techniques
(or “machine learning”) (Woo et al., 2017). In contrast to the mass-
univariate approach, which focuses on permitting the inference
that altered region R is responsible, conditional on symptom S
(i.e., long COVID headache), and assesses the probability P(R|
S), a new trend of multivariate modeling has recently emerged to
address the reverse inference that symptom S must have occurred
given altered region R being related to P(S| R) (Woo et al.,
2017).

In this study, we applied a multivariate modeling approach
to discriminate long COVID headache from various primary
headaches of migraine, daily headache, and tension-type headache.
We used structural MRI scans which is routinely available in
clinical settings, and is less expensive, and less burdensome
to patients compared to other imaging modalities, such as
Positron Emission Tomography or functional MRI (Rubin-
Falcone et al., 2018). Specifically, we hypothesize that gray matter

and connectivity alterations found in previous mass-univariate
approach would aid classify long COVID from primary headache.

Materials and methods

Participants

This retrospective study was approved by the Institutional
Review Board of Kangnam Sacred Heart Hospital (IRB No.
HKS 2022-05-026), and informed consent was waived. We
retrospectively enrolled 116 consecutive adolescents aged 8–
18 years who visited the pediatric headache clinic at the Kangnam
Sacred Heart Hospital between May 2022 and December 2022.
During the period, the Omicron variant accounted for over 99%
of all COVID-19 cases in Korea (Park et al., 2023). We used
the patient’s headache profile as well as structural MRI. We did
not include a control group of adolescents without headache to
focus on our research purpose; to help discriminate the etiology
of headache. To date, long COVID headache does not have a
specific clinical presentation, therefore the diagnosis is mainly a
diagnosis of exclusion (Tana et al., 2022). We used the inclusion
criteria for the long COVID headache (CH) patients adapted
from previous studies (Planchuelo-Gómez et al., 2022; Tana et al.,
2022), as follows: (1) microbiologically confirmed COVID-19
diagnosis based on a real-time reverse transcriptase-polymerase-
chain-reaction (RT–PCR) assay using respiratory tract samples
or by the presence of anti-SARS-CoV-2 IgM + IgA antibodies,
following World Health Organization protocols; (2) new-onset
headache presenting during the acute phase of COVID-19, fulfilling
criteria for acute headache attributed to systemic viral infection
according to International Classification of Headache Disorders,
3rd edition (ICHD-3) (Arnold, 2018); and (3) persistence of
headache for at least 3 months after the acute phase of COVID-19.
Because we assumed that sufficient long-term deterioration from
long COVID is needed to cause a brain morphological change
(Rezaeyan et al., 2022), persistence for a 3-month period was
selected as a criterion (National Institute for Health and Care
Excellence [NICE], 2020). The diagnosis of patients with primary
headache (PH) was based on ICHD-3 criteria (Arnold, 2018), and
those were consisted of the migraine, new daily persistent headache,
tension-type headache and chronic daily headache.

Four participants were excluded for having brain lesions that
may affect accurate processing: two for arachnoid cysts and two for
cavernous malformations. Then, propensity scores were matched
using age and sex as parameters (“matchit” R package in R
version 4.1.1 (R core team, R foundation for statistical computing,
Vienna, Austria) (Stuart et al., 2011; R Core Team, 2013). The
propensity score is the estimated probability for each individual
in the study to be assigned to the group of interest conditional on
all observed confounders. Propensity score matching can effectively
adjust for confounders in a retrospective observational study, thus
facilitating comparability between patient groups (Baek et al.,
2015). Ultimately, 46 age- and sex-matched patients (23 per group)
were enrolled. Figure 1 summarizes the patient selection process.
For between-group statistical analyses, independent samples t-tests
were used for continuous variables and Fisher’s exact tests for
categorical variables. For statistical tests we used an α-level of 0.05.
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FIGURE 1

Patient selection procedure for multivariate classification of long
COVID headache.

MRI acquisition, quality control, and
preprocessing

A Siemens Magnetom Vida 3-Tesla scanner was used to
acquire all images. Structural scans of the brain were acquired for
each participant using a T1-weighted three-dimensional sagittal
magnetization prepared rapid gradient-echo (MP-RAGE) sequence
with the following parameters: 176 slices, repetition time = 2020 ms,
echo time = 3.05 ms, slice thickness = 0.8 mm, and in-plane
resolution of 0.35 × 0.35 mm. Quality checks of images were
performed visually and quantitatively with the options “Display
slices” and “Check sample homogeneity” in the CAT12 toolbox
(Gaser et al., 2022). Moreover, the image “grade” that summarizes
measures of image quality by the CAT12 toolbox1 was employed to
identify images with poor quality and incorrect preprocessing. All
of the acquired images achieved a grade of “A-” or above.

Image data preprocessing was conducted using SPM122 and
the CAT12 toolbox in the MATLAB 2022b environment.3 We
performed the preprocessing steps using the CAT12 toolbox
with the default settings to improve reproducibility. Briefly, all
3D T1-weighted MRI scans were normalized using an affine
function followed by non-linear registration, corrected for bias
field in homogeneities, and segmented into gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF) components.
We created an age- and sex-specific tissue probability map
using TOM8 Toolbox,4 following the CAT12 manual (Uusitalo
et al., 2021). The Diffeomorphic Anatomic Registration Through
Exponentiated Lie Algebra algorithm (DARTEL) was used to
normalize the segmented scans into a standard MNI space. Finally,
each participant’s modulated and normalized GM tissue segments
were smoothed with an 8-mm full width for the half-maximum
Gaussian filter.

1 http://www.neuro.uni-jena.de/cat/

2 http://www.fil.ion.ucl.ac.uk/spm/

3 www.mathworks.com

4 https://neuro-jena.github.io/software.html#tom

Multivoxel pattern analyses

Figure 2 summarizes the two multivariate classifications we
conducted. For multivoxel pattern analysis (MVPA), the binary
support vector machine (SVM) algorithm was carried out using
PRoNTo software [Pattern Recognition for Neuroimaging Toolbox
version 3,5 (Schrouff et al., 2013)]. According to the manual,
PRoNTo uses the linear kernel method to handle the high
dimensionality of neuroimaging data. Each preprocessed gray
matter image was considered one data point in a high-dimensional
space defined by the GM volume (GMV) value. In this high-
dimensional space, the linear decision boundaries classify brain
scans based on their class label (i.e., the CH and PH groups).
We employed 10-fold partitioning of subjects from each group at
a time to assess classifier generalizability. Specifically, in each of
the 10 cross-validation runs, 10% of the subjects in each group
were put aside to test the classification performance, and the
remaining 90% of the subjects were used to develop the classifier
with all subjects used as testing data at some stage (Figures 2B, D).
The SVM finds what is known as the maximum margin decision
boundary (Supplementary Figure 1), which is the hyperplane
that is furthest from the least discriminating features of the to be
discriminated categories, namely the CH and PH groups (Schnyer
et al., 2017). When training classifiers using SVM with a linear
kernel a default cost parameter of 1 was used. Classification
performance was evaluated using the classification accuracy and
receiver operating characteristic (ROC) curve analyses derived
from probabilistic classifications (Mahmoudi et al., 2012). Accuracy
is the total number of correctly classified samples divided by the
total number samples. A ROC curve compares the classifier’s true
positive rate and false positive rate as the decision threshold varies.
The area under the curve (AUC) is thus a summary measure of the
performance of the classifier across all decision thresholds, whereby
a classifier with perfect classification would achieve an AUC of 1
and a classifier guessing at chance-level an AUC of 0.5 (Lim et al.,
2013). A permutation test (permutations = 1000 times) was applied
to determine the statistical significance of AUC values (Mahmoudi
et al., 2012). Finally, to provide insight into which features drive the
classifications, we acquired the average discrimination weight map
showing global spatial patterns that best discriminated the group.

Construction of gray matter structural
networks

To construct subjectwise structural networks based on GM
volumetric features, we used the open-source python toolbox
“graynet” (Raamana and Strother, 2018).6 Briefly, 116 cortical
and subcortical regions were obtained from the Automated
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002);
the modulated, voxelwise GM volumetric distribution (with
“mwp1” in CAT12 output) in a given region was converted
to a histogram, and the pairwise edge weight was calculated
as the histogram correlation between two regions (Tijms et al.,

5 http://www.mlnl.cs.ucl.ac.uk/pronto/

6 https://github.com/raamana/graynet

Frontiers in Human Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1202103
http://www.neuro.uni-jena.de/cat/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.mathworks.com
https://neuro-jena.github.io/software.html#tom
http://www.mlnl.cs.ucl.ac.uk/pronto/
https://github.com/raamana/graynet
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1202103 May 25, 2023 Time: 14:2 # 4

Kim et al. 10.3389/fnhum.2023.1202103

FIGURE 2

Schematic diagram for multivariate classification of long COVID headache. Two multivariate classifications were conducted using the gray matter
volume (A,B) and the structural covariance matrix (C,D).

2012; Raamana and Strother, 2017). In this way, a symmetric
116 × 116 structural covariance matrix for each subject was
constructed.

Multivariate classification using
structural covariance matrix

To classify CH and PH patients using a structural covariance
matrix, we used connectome-based predictive modeling (CPM), an
established data-driven protocol for developing predictive models
from the brain network (Shen et al., 2017). We modified the
CPM by replacing its core learning algorithm with a linear
support vector machine (SVM) (Song et al., 2021). The CPM-SVM
prediction procedure was done as follows. Across all subjects in
the training set, each edge in the structural covariance matrices
correlated to the subjects’ group label (i.e., whether each subject
was CH or PH) and was considered to be a significant edge
if the correlation was below the threshold p-value of 0.0005.
Next, for each subject, the identified edges were then summed
into two predictive variables (i.e., the edges correlating positively
and negatively with CH), and the SVM model was trained and
tested (Yang et al., 2021). Similar to the MVPA, we used a 10-
fold partitioning of subjects from each group at a time and the
classification accuracy AUC to evaluate classification performance.
A 1000 permutations test was used to determine the significance of
our model performance.

For interpretation purposes, we identified edges constantly
selected during the cross-validation, namely, “consensus edges.”
The edges were visualized using BrainNet Viewer (Xia et al., 2013).

TABLE 1 Clinical and demographic characteristics of adolescents with
long COVID headache and primary headache.

COVID-19
headache
(n = 23)

Primary
headache
(n = 23)

Statistical
test

Sex (male/female) 12/11 12/11 p = 1

Age (years) 11.56 ± 2.66 11.65 ± 2.52 t = 0.11, p = 0.91

Headache frequency
(days/week)

4.86 ± 2.20 4.61 ± 2.48 t = 0.37, p = 0.71

Total intracranial
volume (mm3)

1524.8 ± 95.82 1462.3 ± 126.27 t = 1.89, p = 0.07

Data are the mean ± standard deviation. Independent sample t-test for continuous variables
and the Fisher’s exact test for categorical variables.

Results

Table 1 summarizes the characteristics of the study population.
There were no significant differences with respect to age or sex in
those matched by propensity scoring. The PH patients comprised
7 cases of migraine with aura, 10 cases of migraine without aura, 2
cases of new daily persistent headache and 4 cases of tension-type
headache. Among the migraineurs, 15 were episodic migraine while
the others were chronic.

Multivoxel pattern analyses

The SVM classifier trained to discriminate between CH and PH
patients achieved an AUC of 0.73 (95% confidence interval = [0.58
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FIGURE 3

(A) Shows receiver operating characteristic (ROC) curves and (B) shows confusion matrix generated for classification of long COVID headache from
primary headache (cyan line, AUC = 0.73, permutation p = 0.001, accuracy = 63.4%; CH class accuracy = 69.5%, PH class accuracy = 56.5%) based
on MVPA using SVM. The shaded area represents the 95% confidence interval. (C) Shows a non-thresholded multivariate (SVM) weight map overlaid
on a T1-weighted MRI image (raw image available at https://neurovault.org/images/795018/). The colors represent relative positive weight
distributions (orange) and negative weight distributions (cyan). Note that the gray matter volume decrease in the orbitofrontal (ellipse) and
parahippocampal (arrows) areas classifies long COVID headaches.

0.87], permutation p = 0.001, accuracy = 63.4%; CH class
accuracy = 69.5%, PH class accuracy = 56.5%, Figure 3 shows
the AUC curve and weight map). In MVPA analysis, we are
generally asking whether the decoding classification accuracies are
significantly greater than what would be expected by chance, and
significant classification accuracy suggests sufficient information
contained in the input feature (e.g., gray matter pattern) to indicate
the subject has long COVID headache (Etzel, 2017; Hebart and
Baker, 2018).

Multivariate classification using
structural covariance matrix

The multivariate classification model using CPM combined
with SVM accurately discriminated individuals with CH from PH
(AUC = 0.81, 95% confidence interval = [0.68 0.93], permutation
p = 0.005, accuracy = 69.5%; CH class accuracy = 73.9%, PH
class accuracy = 65.2%, Figure 4). There were 4 consensus
edges identified during cross-validation: three edges connected the
bilateral thalami to brain regions, and one edge connected regions
in the right occipital lobe.

Discussion

In this study, we conducted MVPA and CPM using a structural
MRI features to classify PH from CH. We show that it is possible

to correctly discriminate adolescents with CH from those with well
as structural covariance PH based on gray matter patterns (AUC
of 0.73, permutation p = 0.001, Figure 3) as matrix (AUC = 0.81,
permutation p = 0.005, Figure 4).

The multivariate decoding approach can be applied for
two main purposes: classifications and interpretation (Tong and
Pratte, 2012; Hebart and Baker, 2018). Multivariate decoding for
classifications aims to identify biomarkers that can be used to carry
out classifications about underlying states, in our case, the etiology
of headache. As mentioned above, diagnosis of long COVID
headache is not yet standardized. The reported phenotypes of long
COVID headaches resemble tension-type headache or migraine-
like symptoms, rendering it difficult to discriminate solely based on
clinical symptoms (Tana et al., 2022). In addition, one can present
with worsening of previously existing headache after COVID.
Such cases make it difficult to discriminate the major etiology of
headache. Using the unique structural brain alteration pattern and
network-wise connectomic alteration, we show that brain images
that can be easily acquired may aid the diagnosis.

Overall, knowledge about long COVID headache is
accumulating, as well as about treatment. For example, there are
ongoing clinical trials examining treatments from sphenopalatine
ganglion block to cognitive behavioral therapy (Tana et al., 2022).
Accurate diagnosis must precede treatment, and our results show
that brain imaging has the potential to aid in diagnosis and tailored
treatment. Our study used twenty plus sample size and achieved
AUC of 0.73 to 0.81. Those numbers are comparable to previous
studies using structural MRI-based MVPA for clinical diagnoses
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FIGURE 4

(A) Shows receiver operating characteristic (ROC) curves and (B) shows confusion matrix generated for classification of long COVID headache from
primary headache using a structural covariance matrix (orange line, AUC = 0.81, permutation p = 0.005, accuracy = 69.5%; CH class
accuracy = 73.9%, PH class accuracy = 65.2%) based on CPM-SVM. The shaded area represents the 95% confidence interval. (C) Shows the identified
“consensus edges”; the edges colored in red and blue are those increased and decreased in long COVID headache, respectively.

(Lim et al., 2013; Johnston et al., 2015; Rubin-Falcone et al., 2018),
however, bigger dataset combined with advanced neuroimaging
techniques have potential to improve classification accuracy
(Schwedt et al., 2015).

The multivariate linear model weights can provide some
insights on which features are driven the classifications (Schrouff
and Mourao-Miranda, 2018). The discrimination weight map
achieved in MVPA showed negative weight in the bilateral
orbitofrontal and medial temporal lobes for CH (Figure 3). It can
be interpreted as the gray matter decrease in the orbitofrontal
and medial temporal lobes will make SVM classifier move toward
(or classifies) CH. Interestingly, the regions with negative weights
resembled the results from previous mass-univariate results, that
is, involving the orbitofrontal and medial temporal lobes (Díez-
Cirarda et al., 2022; Planchuelo-Gómez et al., 2022). For example,
Planchuelo-Gómez et al. (2022) reported decreases in gray matter
in anterior areas, including the pars orbitalis, the fusiform gyrus
and the frontal pole, in patients with persistent headache after
COVID-19 resolution. Similar areas have been reported by another
large population-based study investigating COVID-19. In a UK
Biobank-based study, a greater reduction in gray matter thickness
and tissue contrast in the orbitofrontal cortex and parahippocampal
gyrus was repeatedly found (Douaud et al., 2022). It is suggested
that olfactory cells concentrated in the olfactory epithelium are
also particularly vulnerable to coronavirus invasion, and within the
olfactory system, direct neuronal connections from the olfactory
bulb encompass regions of the piriform cortex (the primary

olfactory cortex), parahippocampal gyrus, and orbitofrontal areas
(Douaud et al., 2022). Our results indicate that the gray matter
in the orbitofrontal lobes and medial temporal lobes is not only
decreased but also predictive of long COVID headache. Besides,
prominent negative weights were also found in the right middle
frontal and parietal cortices (the whole weight map).7

With respect to connectivity analysis, the majority of consensus
edges connected the bilateral thalami (Figure 4). Although the
meaning of structural covariance is rather uncertain, distributional
similarities can be used to provide a robust statistical description
of individual gray matter morphology and to investigate individual
network topological properties (Tijms et al., 2012; Luo et al.,
2022). Based on previous studies on the brain, the thalamus is an
important sensory relay hub (Cao et al., 2022). In addition, white
matter connectivity alterations regarding thalamic radiation have
been reported in previous long COVID headache research utilizing
diffusion tensor imaging. We suggest that the thalamus plays a
role in long COVID headache in sensory connectivity alterations
(Planchuelo-Gómez et al., 2022).

There are several study limitations in this study. First, relatively
small sample size. Although the number of subjects was comparable
with that of similar studies (Lim et al., 2013; Johnston et al., 2015;
Rubin-Falcone et al., 2018), replication in a larger study population
is desirable. Second, although the AUC of 0.73 to 0.81 passed the

7 https://neurovault.org/images/795018/
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permutation test, there would still be a relatively large percentage of
incorrectly classified individuals. This may be due to we used simple
linear model to retain interpretability. Also, the heterogeneity of
the PH patients may account for the modest classification result.
Future studies with larger samples may provide better classification
accuracy. Third, we did not include a control group of adolescents
without headache to focus on our research purpose, that is to help
discriminate the etiology of headache. Fourth, about one-third (6
in CH and 7 in PH) of the patients were using acetaminophen
on their own, which may or may not be a confounding factor.
Fifth, we enrolled patients with persistence of headache for at least
3 months after the acute phase of COVID-19, which may limit the
generalizability of the result.

Conclusion

In conclusion, using only structural MRI, we were able
to differentiate adolescents with long COVID headache from
those with primary headache. The discrimination pattern
and connectivity resembled findings with the mass-univariate
approach, supporting that distinct brain gray matter alteration may
serve as a biomarker.
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