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The accurate detection of the gait phase is crucial for monitoring and diagnosing

neurological and musculoskeletal disorders and for the precise control of

lower limb assistive devices. In studying locomotion mode identification and

rehabilitation of neurological disorders, the concept of modular organization,

which involves the co-activation of muscle groups to generate various motor

behaviors, has proven to be useful. This study aimed to investigate whether

muscle synergy features could provide a more accurate and robust classification

of gait events compared to traditional features such as time-domain and wavelet

features. For this purpose, eight healthy individuals participated in this study,

and wireless electromyography sensors were attached to four muscles in each

lower extremity to measure electromyography (EMG) signals during walking.

EMG signals were segmented and labeled as 2-class (stance and swing) and

3-class (weight acceptance, single limb support, and limb advancement) gait

phases. Non-negative matrix factorization (NNMF) was used to identify specific

muscle groups that contribute to gait and to provide an analysis of the functional

organization of the movement system. Gait phases were classified using four

different machine learning algorithms: decision tree (DT), k-nearest neighbors

(KNN), support vector machine (SVM), and neural network (NN). The results

showed that the muscle synergy features had a better classification accuracy

than the other EMG features. This finding supported the hypothesis that muscle

synergy enables accurate gait phase classification. Overall, the study presents a

novel approach to gait analysis and highlights the potential of muscle synergy as

a tool for gait phase detection.
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1. Introduction

Human gait is a complex cyclical activity, involving a coordinated interaction between
the central nervous system, muscles, and bones of the lower limb (Charalambous, 2014). In
human locomotion analysis, the gait cycle is defined as the period between the initial contact
of one foot and the subsequent occurrence of the same event with the same foot. Several
partitioning models have been proposed based on distinct clinical objectives. Typically, gait
partitioning models consist of two primary phases: swing and stance (Jasiewicz et al., 2006;
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Catalfamo et al., 2008; Formento et al., 2014); however, some
models include three or more phases (Abaid et al., 2013; Agostini
et al., 2014; Taborri et al., 2014, 2015). Accurate detection of the
gait phase is essential for precise and accurate control of lower
limb assistive devices, such as prostheses (Kumar et al., 2022),
exoskeletons (Nazari et al., 2021), or other walking assistive devices
(Nahavandi et al., 2022). Furthermore, these techniques are crucial
in the domain of monitoring and diagnosing diverse neurological
and musculoskeletal disorders, such as Parkinson’s disease, stroke,
and cerebral palsy (Handelzalts et al., 2019).

A variety of wearable sensors, including accelerometers
(Sant’Anna and Wickström, 2010; Rueterbories et al., 2014;
Boutaayamou et al., 2015), gyroscopes (Mannini et al., 2014;
Gouwanda and Gopalai, 2015; Taborri et al., 2015), and inertial
measurement units (IMUs) (Kotiadis et al., 2010; Mariani et al.,
2013; Hundza et al., 2014), have been used in previous studies
to perform gait phase detection. However, wearable sensor-based
kinematic analysis has limitations in analyzing the effects of
muscle compensation during abnormal gait (Tan et al., 2020).
In contrast, electromyography (EMG) signals have the potential
advantage of being more closely related to the underlying neuronal
control mechanisms involved in normal and pathological walking
(Chvatal and Ting, 2013; Frère, 2017). However, although EMG
signals offer basic information into muscle activation patterns,
they do not directly reveal the modular organization of the
neuromuscular system. Furthermore, the high dimensionality and
complexity of EMG signals present challenges in interpreting the
underlying motor control mechanisms. Thus, investigating the
modular control of muscles is essential for a deeper understanding
of the neuromuscular system’s role in gait.

Muscle activity during gait has been observed to cluster into
sets of co-activated muscles, referred to as muscle synergies or
modules (Clark et al., 2010). The muscle synergy approach has been
widely used to monitor the alterations in the EMG characteristics
of patients with gait disorders (Singh et al., 2018). Although
the specific mechanism by which muscle synergies reflect the
process of central nervous system control of distal motor function
is still under debate, the consensus is that modularization of
muscle activity can lower the computational complexity involved
in selecting motor coordination strategies. Identifying muscle
synergies during a gait reveals how the central nervous system
coordinates the recruitment of different muscle groups (Hagio
et al., 2015). In previous studies for healthy individuals, it
was investigated whether muscle synergies vary depending on
walking speed and walking environment, such as flat ground,
underwater, and slope walking (Yokoyama et al., 2016; Saito et al.,
2018a; Dewolf et al., 2020). From a rehabilitation perspective,
some studies have observed that kinematic coordination is
restored through changes in neuromuscular coordination in
musculoskeletal patients (Routson et al., 2013; Ardestani et al.,
2019).

Various methods can be implemented for detecting gait
phase by training processed input signals. Lately, artificial neural
networks (ANNs) (Choi et al., 2022) and deep learning (DL)
(Nazari et al., 2022) techniques have seen a marked increase
in popularity, driven by improvements in computational power
and data accessibility. Prominent examples of these techniques
include the convolutional neural network (CNN) (Shi et al.,
2022), long short-term memory (LSTM) (Tran et al., 2021), and

CNN-LSTM (Zhu et al., 2021). However, these models have
many learnable parameters, requiring ample training data for
accurate development. Moreover, these models need labeled data
for learning, which demands data collection in diverse controlled
environment, potentially limiting their applicability (Tran et al.,
2021; Zhu et al., 2021; Shi et al., 2022). In this study, gait phase
classification was performed using machine learning techniques,
with feature values extracted from the EMG signals, addressing the
limitations of the aforementioned models.

The purpose of the study was to investigate whether muscle
synergy can be effectively used as a feature for gait event
classification. We used a machine learning-based approach to
validate the performance of the gait event classification. Specifically,
this study used a support vector machine (SVM) algorithm to
classify gait events and predict phase transition times. Two different
classification schemes (3-class and 2-class) were also used to
evaluate the gait phase classification. Finally, we compared the
performance of the gait phase detection using different feature
extraction methods across different gait events.

2. Materials and methods

2.1. Signal acquisition

Eight healthy individuals (mean ± standard deviation age,
59.25 ± 21.92 years; height, 169.25 ± 8.10 cm; body mass,
75.96 ± 16.90 kg; BMI, 26.34 ± 4.46 kg/m2) were recruited as
subjects to collect gait data. Only volunteers with no history of
neurological or musculoskeletal disorders and with a resting blood
pressure within the range of 90/60 to 170/90 mm Hg were eligible
to participate in this study. The experimental task was approved by
the institutional review board at the Korea Institute of Science and
Technology (IRB 2021−015).

Wireless EMG sensors (Trigno Avanti, Delsys, Natick, MA,
USA) were attached to measure the EMG signals observed in the
lower extremities during walking. EMG sensors were attached to
four muscles in each lower extremity, and these muscles were
tibialis anterior (TA), soleus (SOL), gastrocnemius lateralis (GL),
and rectus femoris (RF). Only the data from each individual’s
dominant leg were used for further analysis. Subjects performed
the gait on a treadmill with built-in force plates (M-gait, Motek,
Amsterdam, Netherlands) to measure the gait cycles and events
(Figure 1). To help the subjects adapt to walking on the treadmill,
they experienced both a gradual increase in speed from a slower
pace and a gradual decrease in speed from a faster pace. Then, the
preferred speed, which the subjects considered to be the same as
their usual walking speed, was measured, and on average, the gait
speed was 0.84± 0.30 m/s. Both the EMG and force plate data were
acquired at 2000 Hz during a 1 min walk at the preferred speed.

2.2. Data preparation

Raw EMG signals were band-pass filtered (zero-lag Butterworth
band-pass filter, cut-off frequency 20−350 Hz) to remove high-
frequency noise and motion artifacts. The filtered signal was
then applied with full-wave rectification. Then, a fourth-order

Frontiers in Human Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1201935
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1201935 May 15, 2023 Time: 11:5 # 3

Park et al. 10.3389/fnhum.2023.1201935

FIGURE 1

Gait experimental environment with attached EMG sensors and treadmill.

Butterworth low-pass filter was used with a cutoff frequency of
5 Hz. The ground reaction force (GRF) was measured from the
force plates to detect the heel strike and toe-off time points, which
were then used for the gait cycle analysis. The GRF signals were
then processed to identify the gait phases. To determine whether
the proposed method can accurately classify walking phases, both
3-class and 2-class dividing methods were adopted. The 3-class gait
phases consist of weight acceptance (WA), single limb support (SS),
and limb advancement (LA). A way to separate the gait phases
into 2-class is to divide them into a stance phase (ST) and a
swing phase (SW).

Electromyography signals were segmented in overlapping
sliding windows, and the windows had an interval of 5 samples
(window interval). Each window was labeled based on the last
five sample (observation window) data. Figure 2 shows the
segmentation method used. Predicting the current gait state
based on past segments is a fundamental principle in real-
time gait intent recognition and gait event detection related
fields. Each EMG window was labeled as WA, SS, and LA
according to the reference gait phases based on the GRF data
in the observation window in the case of the 3-class gait
phases. In the case of the 2-class gait phases, each window
was labeled as ST and SW according to the reference data
of the observation window. When labeling of the different
phases was observed within one observation window, the most
frequently used phase was used for the labeling. The GRF
signals were downsampled from 2000 to 400 Hz, to make the
GRF and predicted gait phase samples comparable and enable
synchronization.

2.3. Feature extraction

For the segmented EMG data set five types of feature
vectors were defined.

(1) Time domain features (TD).
(2) Wavelet transform coefficients (WC).
(3) Wavelet transform features (WF).
(4) Raw EMG features (RE).
(5) Muscle synergy features (MS).

The features of the time domain consisted of a mean absolute
value, number of slope sign changes, number of zero crossings,
waveform length, fourth-order autoregressive, and root mean
square. Wavelet transform coefficients were obtained through
discrete wavelet decomposition using the Mallat algorithm (Mallat,
1989). As for wavelet transform features, five types of features
from the wavelet transform coefficients (energy, variance, standard
deviation, waveform length, and entropy) were extracted. The
wavelet and scaling functions of the discrete wavelet transform were
symlet7, and the depth of the decomposition level was set to 5.
For the RE features, each element was extracted as the signal value
of 4 muscles in that single window. Thus, the first element of the
vector is the EMG values for muscles 1 through 4 of that segments.
The subsequent vectors are the EMG values of the four muscles
calculated in the second segment, and so on.

The EMG signals of each window were used for the muscle
synergy analysis. Before calculating the muscle synergy, min-
max normalization was performed on the EMG signals of each
window, thus mapping the values in the 0−1 intervals. Muscle
synergies for each subject were extracted using Non-Negative
Matrix Factorization (NNMF) (Lee and Seung, 1999). The reason
for using NNMF was because the feature matrix contains non-
negative values, and the NNMF enforces non-negativity constraints
during extraction of the non-negative synergy matrix. The
NNMF minimizes the residual between the initial matrix and its
decomposition as follows:

E = WH+e,
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FIGURE 2

Illustration of the segmentation and labeling process of the EMG signals. Segmentation is performed using an overlapping sliding window method
with a specified window interval size. Labeling is done based on the ground-truth value within the observation window (gray dashed line).

where E is the p × n matrix (in which p is the number of muscles
and n is the number of time points); W is the p × k matrix
of the synergy weights containing spatial components of muscle
coactivations; H is the k × n matrix of the synergy activation
coefficients including the temporal information of the synergy
coactivation; k is the number of extracted muscle synergies, and e
is the residual error. To avoid local minima, the NNMF algorithm
was performed 20 times for each subject (Hug et al., 2011). Muscle
synergy weights were normalized to the maximum value under the
synergy they belong to. As for the MS, the synergy weights when the
number of synergies was one were used. These feature extraction
methods extracted multi-dimensional vectors, such as the TD with
a dimensionality of 36, WC with a dimensionality of 1786, WF with
a dimensionality of 120, RE with a dimensionality of 1600, and MS
with a dimensionality of 4.

The synthetic minority oversampling technique (SMOTE)
was adopted to address class imbalance in the dataset. SMOTE
is a technique that creates new synthetic data points for the
minority class to increase its representation in the dataset (Chawla
et al., 2002). This technique generates oversampled data for the
minority class by creating new instances in the feature space, using
information from its K-nearest neighbors. This algorithm helps to
overcome the overfitting problem posed by random oversampling.
SMOTE was employed to balance the class distribution by
increasing the number of samples in WA, SS, and SW datasets.

2.4. Optimal window length and classifier

To optimize the classifier, preliminary experiments were
conducted to optimize the window length and to select the

appropriate gait phase classifier. The accuracy of the four
classification methods was compared: decision tree (DT), k-nearest
neighbors (KNN), support vector machine (SVM), and neural
network (NN). DT is a classification algorithm that presents
patterns as predictable rules and provides visually readable results
(Quinlan, 1986). KNN is a simple and efficient algorithm that
classifies based on distance. It assigns a class to a datum based on
the class of the k nearest data points. This method is useful when the
properties of a data distribution are unknown (Al-Faiz et al., 2010).
SVM is a statistical learning method that identifies hyperplanes to
distinguish data belonging to two classes in an optimum way. SVM
is easily applied to large and complex datasets, and it can be used
for linear and non-linear data (Oskoei and Hu, 2008). NN is an
efficient structure designed to mimic the decision-making ability
of the central nervous system. Due to its ability to solve complex
problems and patterns, it has been widely applied in many areas
for classification (Ibrahimy et al., 2013). The size of the window
used to segment the signal that is input to the classifiers can affect
the classification or prediction performance (Nardo et al., 2020).
For this reason, classification accuracy was compared with different
window lengths of 100, 200, 400, and 600 ms. A fourfold evaluation
was performed to compare the accuracy of the different classifiers
and window lengths. The training set was composed of the signal
windows from 6 subjects, and the remaining 2 subjects were used
for testing. The hyperparameters of the model were optimized for
each trial based on the training dataset and random search method.

After the training, it was evaluated on the test dataset, and the
classification accuracy was recorded for different window lengths.
Figure 3 shows the average classification accuracy by window
length. It was confirmed that the result trained by the SVM with
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FIGURE 3

Classification accuracy according to window length for each
classifier. DT, decision tree; KNN, k-nearest neighbors; SVM, support
vector machine; NN, neural network.

a window length of 200 ms had the best classification performance.
All of the other classifiers except NN showed the highest accuracy
when the window length was 200 ms. Therefore, the rest of the
experiments were performed by setting the window length to
200 ms.

2.5. Gait phase classification

To evaluate the validity of the gait phase classification
performance, a 10-fold cross-validation strategy was performed. As
shown in Figure 4, the features of each subject were divided into
a training set (90%) and a test set (10%). The training set was then
divided into two groups: a 90% training fold and a 10% validation
fold. Subsequently, the data from each subject was divided into
three groups: training, validation, and testing. There was no overlap
of data between groups. To find the best number of training epochs,
an early stopping technique was used. If there was no improvement
in accuracy on the validation set for ten consecutive epochs, the
training process would stop.

The accuracy of the gait phase classification was compared
according to the feature extraction method used. Specifically,
we compared the classification accuracy of each subject when
classifying gait phases into 3 and 2 classes using feature vectors
composed of TD, WC, WF, RE, and MS. The accuracy of
classifying the gait phases using MS was compared for each
classifier used in the analysis. After performing the phase
detection for the different classifiers, the detection accuracy was
evaluated for the 3-class classifications and 2-class classifications
for each subject.

2.6. Gait event identification

Gait phase classification performance was based on its ability to
detect changes in the gait phases. Thus, the predicted values were
compared to the ground-truth values calculated using the GRF to

assess the accuracy of detecting the phase transition time. A post-
processing procedure was carried out to eliminate any misidentified
predictions. This involved identifying and removing sections of the
predicted signal that were significantly shorter than physiologically
plausible. Previous research categorized the gait into three stages
based on the occurrences of initial contact (IC), opposite final
contact (OFC), and opposite initial contact (OIC) events, which
were noted to correspond to 10%, 50%, and 100% of the mean
gait cycle of healthy individuals, respectively (Neumann, 2016).
From this perspective, transitions from WA to other gait events
with a duration of less than 54.69 ms (≈5 % of the gait cycles)
were excluded. In both the SS and LA sections, any transitions that
had a duration of less than 218.75 ms (≈20 % of gait cycles) were
excluded. Based on the gait transition period of the final contact
(FC) and initial contact (IC) events, the gait is divided into two
stages occurring at 60% and 100% of the gait cycle, respectively. In
both the ST and SW sections, any transitions that had a duration
of less than 218.75 ms (≈20 % of gait cycles) were also rejected
(Nardo et al., 2020). After that, to verify the accuracy of detecting
the gait phase transitions, the predicted values were compared
with the ground-truth values obtained from the GRF. Three gait
events (WA, SS, and LA) and two gait events (ST and SW) were
considered. Predicted events falling within a tolerance range of± 1
segment (± 2.5 ms) of the GRF-estimated events were considered
successfully predicted. A tolerance window of 2.5 ms falls within the
acceptable range of the estimation errors that are typically reported
for commonly used gait event detection methods (Panebianco et al.,
2018).

The difference in the gait phase transition times was calculated
using the mean absolute error (MAE) for each feature extraction
method. The classification performance was evaluated using the
precision, recall, and F1-score. The precision is defined as follows:

Precision =
TP

TP + FP

where TPs are the true positives, and FPs are the false positives. The
recall is defined as follows:

Recall =
TP

TP+FN

where FNs are the false negatives. The F1-score is defined as
follows:

F1− score = 2 ×
Precision × Recall
Precision+Recall

If the predicted gait event is the same as the ground-truth, it
is recognized as a true positive. Otherwise, the predicted event is
recognized as a false positive or false negative.

2.7. Statistics

In the statistical analysis, the differences among various
classification and feature extraction methods were evaluated
(Tables 1, 2). The statistical difference in data distributions,
including MAE, precision, recall, and F1-score, was also assessed
(Table 3). A one-way analysis of variance (ANOVA) with Tukey’s
post-hoc test was employed when the data met the normality
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FIGURE 4

Illustration of the 10-fold cross-validation and prediction processes. The training dataset, consisting of 90% of the data, was divided into a training
fold, while the remaining 10% was allocated to the validation fold. The intra-subject approach was performed using the training dataset. The trained
classifier was then used to predict the gait stage using the test dataset.

TABLE 1 Prediction accuracy with respect to the subjects for the different classification methods.

A B

Subject DT KNN SVM NN Subject DT KNN SVM NN

1 89.5% 88.9% 96.0% 92.5% 1 84.0% 83.5% 96.0% 89.3%

2 96.6% 96.5% 97.4% 97.2% 2 98.9% 98.4% 98.5% 99.2%

3 88.1% 83.2% 94.8% 85.9% 3 95.3% 93.4% 94.2% 94.5%

4 96.8% 91.6% 93.0% 86.6% 4 80.3% 79.2% 93.6% 83.1%

5 96.7% 94.8% 99.1% 87.6% 5 96.9% 100.0% 99.3% 99.9%

6 90.4% 82.3% 95.3% 87.2% 6 92.4% 91.0% 95.1% 92.2%

7 91.8% 96.2% 97.0% 94.8% 7 99.8% 99.8% 100.0% 99.8%

8 81.8% 87.8% 88.9% 88.6% 8 90.8% 86.7% 94.2% 90.9%

Avg. 91.5% 90.2% 95.2% 90.0% Avg. 92.3% 91.5% 96.4% 93.6%

Std. 5.2% 5.6% 3.1% 4.2% Std. 7.0% 7.9% 2.5% 6.0%

(A): 3-class gait phase classification. (B): 2-class gait phase classification. DT, decision tree; KNN, k-nearest neighbors; SVM, support vector machine; NN, neural network.

assumption. In contrast, for non-normally distributed samples, the
Kruskal-Wallis test followed by the Dunn post-hoc test was utilized
for comparative analysis. Values with p < 0.05 were considered
significantly different.

3. Results

3.1. Gait phase classification

In the absence of oversampling, the classification models for
the 3-class gait event classification were trained with an average
of 2047, 9100, and 11602 samples of extracted features from WA,
SS, and LA, respectively. The models were then tested with 227,

1011, and 1289 samples. For the 2-class gait event classification,
the models were trained using 13877 and 8872 samples of extracted
features from ST and SW, respectively, and tested with 1541 and
986 samples. However, with oversampling, the number of training
samples from WA and SS was increased to 11602 on average.
Subsequently, the classification models were trained using 11602
samples of extracted features from WA, SS, and LA for the 3-
class gait event classification, and using 13877 samples of extracted
features from ST and SW for the 2-class gait event classification.
The testing was performed using the same number of samples as in
the case without oversampling.

The detection accuracy was evaluated for the 3-class and 2-
class classifications for each subject as shown in Tables 1, 2. Gait
phase classification was performed using MS as feature vectors in
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all classifiers for comparison under the same conditions across the
subjects. Both the 3-class and 2-class classifications showed the
highest accuracy when using SVM (Table 1). On the other hand,
NN (90.0%) and KNN (91.5%), which had the lowest classification

accuracy, also showed over 90%, respectively. However, the
difference in predictive accuracy among the classification methods
was not statistically significant in the one-way ANOVA test for both
3-class and 2-class classifications [for 3-class, F(3,28) = 2.14, p = 0.12;

TABLE 2 Prediction accuracy for the different feature extraction methods using SVM.

A B

Subject TD WF WC RE MS Subject TD WF WC RE MS

1 76.3% 76.2% 83.5% 70.4% 96.0% 1 78.8% 84.3% 83.5% 84.5% 96.0%

2 90.3% 85.5% 96.9% 96.6% 97.4% 2 95.7% 93.0% 96.6% 98.3% 98.5%

3 91.6% 87.5% 94.5% 96.1% 94.8% 3 93.0% 86.0% 96.8% 98.3% 94.2%

4 83.2% 87.5% 85.9% 88.2% 93.0% 4 79.8% 85.3% 85.7% 88.5% 93.6%

5 91.6% 92.5% 94.1% 90.6% 99.1% 5 94.6% 92.8% 95.2% 91.1% 99.3%

6 86.2% 85.1% 96.0% 95.6% 95.3% 6 91.1% 93.1% 98.2% 97.3% 95.1%

7 85.2% 86.7% 94.0% 90.3% 97.0% 7 95.8% 97.4% 95.0% 98.9% 100.0%

8 88.2% 89.3% 93.1% 93.8% 88.9% 8 98.0% 94.7% 96.7% 96.5% 94.2%

Avg. 86.6%* 86.3%* 92.3% 90.2% 95.2% Avg. 90.9%* 90.8%* 93.4% 94.2% 96.4%

Std. 5.2% 4.7% 4.8% 8.6% 3.1% Std. 7.4% 4.9% 5.6% 5.4% 2.5%

(A): 3-class gait phase classification. (B): 2-class gait phase classification. *Indicates a significant difference between all features, p < 0.05. TD, time domain features; WF, wavelet transform
features; WC, wavelet transform coefficients; RE, raw EMG features; MS, muscle synergy features; avg., average; std., standard deviation.

TABLE 3 Mean absolute error (MAE), precision, recall, and F1-score with respect to gait events for different feature extraction methods.

A

TD WF WC RE MS

MAE (ms) IC* 55.06± 13.86 29.69± 14.97 10.85± 6.15 19.56± 2.78 7.40± 2.75

OFC* 40.20± 7.35 20.36± 7.94 18.48± 7.81 26.32± 8.76 12.03± 5.10

OIC* 30.23± 18.76 27.42± 6.72 28.90± 6.60 29.78± 7.56 5.00± 1.86

Precision IC* 0.71± 0.20 0.79± 0.15 0.91± 0.05 0.85± 0.14 0.90± 0.09

OFC 0.93± 0.05 0.95± 0.03 0.95± 0.03 0.93± 0.07 0.96± 0.04

OIC* 0.96± 0.03 0.97± 0.03 0.98± 0.01 0.97± 0.02 0.99± 0.02

Recall IC* 0.81± 0.13 0.85± 0.08 0.89± 0.05 0.87± 0.11 0.98± 0.03

OFC 0.92± 0.07 0.96± 0.03 0.97± 0.02 0.95± 0.04 0.94± 0.06

OIC 0.94± 0.03 0.95± 0.03 0.98± 0.01 0.95± 0.04 0.97± 0.04

F1-score IC* 0.74± 0.14 0.81± 0.09 0.90± 0.01 0.85± 0.08 0.94± 0.05

OFC 0.92± 0.04 0.95± 0.02 0.96± 0.01 0.94± 0.05 0.95± 0.03

OIC* 0.95± 0.02 0.96± 0.01 0.98± 0.01 0.96± 0.02 0.98± 0.03

B

TD WF WC RE MS

MAE (ms) IC* 74.48± 25.08 22.25± 3.01 20.71± 9.94 24.10± 5.00 10.29± 2.33

FC* 84.11± 28.15* 21.63± 7.10* 18.02± 5.07 37.94± 15.10 9.04± 4.13

Precision IC 0.96± 0.03 0.97± 0.04 0.97± 0.03 0.97± 0.03 0.96± 0.06

FC 0.89± 0.17 0.95± 0.03 0.94± 0.09 0.91± 0.11 0.94± 0.07

Recall IC 0.95± 0.07 0.97± 0.02 0.97± 0.04 0.95± 0.05 0.95± 0.05

FC 0.94± 0.03 0.95± 0.06 0.96± 0.04 0.96± 0.04 0.95± 0.08

F1-score IC 0.95± 0.04 0.97± 0.02 0.97± 0.02 0.96± 0.04 0.96± 0.04

FC 0.91± 0.11 0.95± 0.03 0.95± 0.05 0.93± 0.07 0.94± 0.06

(A): 3-class gait phase classification. (B): 2-class gait phase classification. *Indicates a significant difference between all features, p < 0.05. TD, time domain features; WF, wavelet transform
features; WC, wavelet transform coefficients; RE, raw EMG features; MS, muscle synergy features; WA, weight acceptance; SS, single limb support, LA, limb advancement; ST, stance phase;
SW, a swing phase.

Frontiers in Human Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1201935
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1201935 May 15, 2023 Time: 11:5 # 8

Park et al. 10.3389/fnhum.2023.1201935

for 2-class, F(3,28) = 0.95, p = 0.43]. The 3-class classification had
an average performance of 91.72% for all the classifiers compared
with the 2-class classification accuracy of 93.44%, which was 1.72%
points higher.

Table 2 shows the detection accuracy using different feature
extraction methods for each subject. The classifiers used to classify
gait events were all SVM for the comparison under the same
conditions for each subject. The average classification accuracy
(± standard deviation) showed the highest performance when
using MS for both the 3-class and 2-class gait event classifications.
The differences in accuracy for 3-class and 2-class gait phase
classification among feature extraction methods were found to
be statistically significant in a one-way ANOVA test [for 3-class,
F(4,35) = 3.69, p = 0.01; for 2-class, F(4,35) = 4.20, p = 0.03]. The
post-hoc test results confirmed that the prediction accuracy of the
MS method was significantly different from that of the WF method
for both classifications (for 3-class, p = 0.02; for 2-class, p = 0.03).
Additionally, for the 3-class classification, a significant difference
between the MS and TD methods was observed (p = 0.03).

3.2. Gait event identification

Figure 5 illustrates the distribution of accurately detected gait
events compared to the events detected by GRF for each feature
extraction method within each gait classification. Table 3 shows
the difference between the predicted value and ground-truth of the
phase transition time, calculated as the MAE in millisecond (ms).
In addition, the statistical differences in the data distribution were
represented by the precision, recall, and F1-score. The accuracy
of the 3-class gait phase estimation for each feature extraction
method was highest for the MS methods showing consistently
high precision and recall values with average F-1 scores >0.94.
The lowest average F-1 scores (0.94 ± 0.05) were observed for
IC, whereas the highest average F-1 scores (0.98 ± 0.03) were
observed for OIC, among the three gait events. The average MAE
of the OIC was found to be the lowest (5.00 ± 1.86 ms) when
using the MS features. The differences in MAE values for feature
extraction methods were found to be statistically significant in one-
way ANOVA and Kruskal-Wallis tests across all classes [for IC class,
F(4,35) = 3.36, p = 0.02; for OFC class, F(4,35) = 0.68, p = 0.01; for
OIC class, H = 10.77, p = 0.03]. The post-hoc test results revealed
that the MAE of the MS method was significantly different from
that of the TD method across all classes (for IC class, p = 0.02;
for OFC class, p = 0.01; for OIC class, p = 0.03). Statistically
significant differences in F1-scores for feature extraction methods
were observed in the IC and OIC classes [for IC class, F(4,35) = 6.22,
p = 0.02; for OIC class, F(4,35) = 2.92, p = 0.03]. The post-hoc test
results consistently showed that the F1-score of the MS method
was significantly different from the TD method (for IC class,
p < 0.01; for OIC class, p = 0.04). Additionally, in the IC class,
a significant difference was observed between the WF and MS
methods (p < 0.05).

The mean and standard deviation of the performance scores
for the 2-class gait phase detection are presented in Table 3. The F-
1 score was found to be greater than 0.9 for all feature extraction
methods used. The WF and WC feature extraction methods
resulted in identical F-1 scores for the IC and FC, specifically 0.97

and 0.95, respectively. On the other hand, the MS features showed
less MAE than the WC features, showing a higher agreement with
the ground-truth. The F-1 scores for the IC and FC were found to
be the lowest, at 0.95 or less, when using the TD feature extraction
method. In addition, the MAE results indicated the highest error
with an average value of 74 ms or more. The differences in MAE
values for feature extraction methods were found to be statistically
significant in the Kruskal-Wallis test across all classes [for IC class,
F(4,35) = 3.36, p = 0.02; for FC class, F(4,35) = 0.68, p = 0.01]. The
post-hoc test results confirmed that the MAE of the MS method
was consistently different from both the TD and WF methods (for
IC class, p = 0.02, 0.01; for OFC class, p = 0.01, <0.01; for OIC
class, p = 0.04, 0.02). These results indicate that MS features can
enhance estimation performance compared to TD or WF features
when conducting gait phase detection.

4. Discussion

This study hypothesized that muscle synergy can provide
more robust and informative features for gait event classification
compared to traditional features such as the time-domain and
wavelet features. To investigate this, a machine learning-based
approach was used to classify gait events and predict phase
transition times. The performance of four machine learning
algorithms, DT, KNN, SVM, and NN, was compared in this
study. The results showed that using MS features resulted in the
highest classification accuracy for both 3-class and 2-class gait event
classifications. Notably, the highest classification performance
was observed when using a single muscle synergy, indicating
the accurate representation of changes in gait patterns even in
a low-dimensional MS. These experimental results support our
hypothesis that muscle synergy, known as the coordinated activity
of multiple muscles, enables accurate gait event classification. This
study presents a novel approach to gait analysis, demonstrating the
potential of muscle synergy as a tool for gait phase detection.

4.1. Gait cycle analysis and classification

It is widely acknowledged that the gait of humans involves
three essential tasks, namely, WA, SS, and LA. These tasks must
be executed successfully to achieve forward progression while
maintaining balance (Perry and Davids, 1992). By dividing the
gait cycle into two stages (ST and SW), changes in the activation
patterns of the lower extremity muscles responsible for supporting
body weight, stabilizing joints, propelling the body forward, and
controlling the movement of the limbs can be observed during
each cycle of gait. These tasks are performed during distinct and
clearly defined phases of the gait cycle, which can be identified by
ipsilateral and contralateral heel contact and toe-off events.

An intra-subject approach was used for the analysis in this
study. The classifier was trained using 90% of the gait dataset,
which was measured for 1 min, while the remaining 10% of the
dataset was utilized as the test datasets. This process was repeated
10 times, and the test datasets were selected at different time
segments (10-fold cross-validation). As a result, for the 3-class
classification, the average accuracy was found to be 95.21 ± 3.14%,

Frontiers in Human Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1201935
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1201935 May 15, 2023 Time: 11:5 # 9

Park et al. 10.3389/fnhum.2023.1201935

FIGURE 5

Representative figure comparing the gait event identification for each feature extraction method evaluated by a representative subject (subject
seven). The top subplot represents the 3-class gait phase classification, and the bottom subplot represents the 2-class gait phase classification. The
dotted line represents the moment each gait event occurred. Indicate the IC, initial contact; OFC, opposite final contact; OIC, opposite initial
contact; FC, final contact; GRF, ground reaction force; TD, time domain features; WF, wavelet transform features; WC, wavelet transform
coefficients; RE, raw EMG features; MS, muscle synergy features.

and the classification performance of all the subjects did not
fall below 88.87% (subject 8). For the 2-class classification, the
average accuracy was 96.37 ± 2.54%, and the lowest accuracy was
high at 94.21% (subject 8). In other studies, related to muscle
activity during the gait cycle, the intra-subject approach has also
yielded encouraging results (Agostini et al., 2015; Castagneri et al.,
2019). Because this model is not affected by inter-subject variations
in muscle activation patterns and muscle strength, it is suitable
for analyzing the effect of MS features on gait cycle prediction
independently. On the other hand, because these models are trained
on a specific individual, they may have limited generalizability to
other individuals.

4.2. Muscle synergy analysis in gait

Muscle synergy can be conceptually viewed as a pattern of
co-activation of muscle groups that can be combined to generate
various motor behaviors. The concept of modular organization
has proven useful in the study of locomotion mode identification
(Hagio et al., 2015; Kibushi et al., 2018; Saito et al., 2018b; Esmaeili
and Maleki, 2019) and rehabilitation of neurological disorders
(Ting et al., 2019). Synergy weights are a fundamental component
of muscle synergy analysis because they represent the underlying
muscle patterns that are coordinated by the nervous system to
produce a specific movement. These patterns related to gait were
identified using NNMF. As demonstrated in Table 2, our findings
exhibit a better classification performance compared with the raw
EMG signals and commonly used features. These results indicate
that the patterns of synergy weights during gait more accurately
reflect the corresponding gait phases. The reason is that muscle
synergy analysis enables the identification of specific muscle groups
that contribute to gait and provides an analysis of the functional

organization of the movement system. Furthermore, this approach
enables the investigation of the underlying properties of the motor
control system.

Several studies have suggested a relationship between the
number of muscle synergies and walking performance. A reduced
number of muscle synergies were observed during walking in the
lower limb affected by chronic or subacute stroke compared to
the unaffected limb (Clark et al., 2010). This finding suggests a
decrease in the complexity of motor control, which is associated
with poorer walking performance. Our results show that a low-
dimensional muscle synergy features are sufficient to classify gait
events. In this study, only one muscle synergy was extracted and
used as the feature vectors for the comparative analysis. The
features obtained by extracting two (with a dimensionality of 8) or
three (with a dimensionality of 12) muscle synergies by performing
NNMF showed the following results. The 3-class classification
exhibited average performances of 95.21 ± 3.14%, 91.30 ± 5.63%,
and 92.29 ± 4.53% when the number of synergies was 1, 2, and
3, respectively. In addition, the 2-class classification demonstrated
an average performance of 96.37 ± 2.54%, 92.78 ± 6.12%, and
93.62 ± 4.67% when the number of synergies was 1, 2, and
3, respectively. Overall, the highest performance was observed
when using a single muscle synergy. It has been confirmed that
changes in gait patterns are accurately represented even in a lower-
dimensional MS.

4.3. Limitation and future work

Furthermore, it should be noted that the experimental
environment was limited as the subjects only performed the gait
on a treadmill. In this study, a treadmill gait was utilized to collect
the ground-truth data on the gait cycle by a built-in force plate and
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to measure the EMG signals during steady walking in a controlled
environment. However, there are differences between treadmill
walking and level ground walking in kinematics that can result
from differences in foot placement, joint angles, muscle activation,
and balance control (DeVita and Hortobagyi, 2000; Dingwell and
Cavanagh, 2001; Riley et al., 2007; Sinclair et al., 2013). This
study only including healthy adult males can also be considered
as a limitation. Individuals with neuromuscular disorders or
injuries may exhibit altered muscle activation patterns during their
gait. Therefore, our model may not accurately predict the gait
cycle for females or individuals with neuromuscular disorders or
injuries. This study did not conduct a comprehensive real-time
analysis, considering space, time, and computational complexities.
This aspect may affect the effectiveness and efficiency of the
proposed methods when applied in practical scenarios or assistive
devices. Future studies should aim to obtain additional data by
including a more diverse range of participants and testing them in
various experimental environments. Additionally, the efficiency of
computation for real-time analysis should be considered to enhance
the applicability of the proposed methods.

Performing gait phase classification with EMG data has several
clinical significances. Several studies have conducted gait phase
classification using IMUs (Hundza et al., 2014; Tereso et al., 2014)
or sensor fusion techniques (Lopez-Meyer et al., 2011; Novak et al.,
2013; Rösevall et al., 2014); however, using EMG data offers the
following advantages. It can provide insight into muscle activation
patterns during gait, which can help identify muscle weaknesses
or imbalances. It can also be used to monitor the progress of
rehabilitation and track changes in muscle activation patterns over
time. This information can be used to develop more effective
rehabilitation programs and interventions for patients with gait
disorders. The proposed technique of using muscle synergy to
classify the gait cycle has many potential applications in different
fields. For example, it can be used for recognizing gait intention in
exoskeleton technology, remote diagnosis and digital therapy, and
VR rehabilitation.
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