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The left ventral occipitotemporal cortex has been traditionally viewed as a

pathway for visual object recognition including written letters and words. Its

crucial role in reading was strengthened by the studies on the functionally

localized “Visual Word Form Area” responsible for processing word-like

information. However, in the past 20 years, empirical studies have challenged

the assumptions of this brain region as processing exclusively visual or even

orthographic stimuli. In this review, we aimed to present the development

of understanding of the left ventral occipitotemporal cortex from the visually

based letter area to the modality-independent symbolic language related region.

We discuss theoretical and empirical research that includes orthographic,

phonological, and semantic properties of language. Existing results showed that

involvement of the left ventral occipitotemporal cortex is not limited to unimodal

activity but also includes multimodal processes. The idea of the integrative nature

of this region is supported by the broad functional and structural connectivity

with language-related and attentional brain networks. We conclude that although

the function of the area is not yet fully understood in human cognition, its

role goes beyond visual word form processing. The left ventral occipitotemporal

cortex seems to be crucial for combining higher-level language information with

abstract forms that convey meaning independently of modality.

KEYWORDS

Visual Word Form Area, left ventral occipitotemporal cortex, orthography, phonology,
reading, language

1. Introduction

The unprecedented interest of neuroscientists in the structure and function of the left
ventral occipitotemporal cortex (VOT) came from the fact that this region has over the years
been systematically reported as particularly responsive during processing of written words
(McCandliss et al., 2003; Dehaene and Cohen, 2011). Typically language-related left VOT is
anatomically situated within the left occipitotemporal sulcus extending to the left fusiform
gyrus and inferior temporal gyrus (Price and Devlin, 2011; Price, 2012; Lerma-Usabiaga et al.,
2018).
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The term Visual Word Form Area (VWFA) – functionally
localized in most studies in the mid-anterior part of the left VOT –
was mostly popularized by Cohen et al. (2000, 2002). The most
canonical proposition of the VWFA localization given by Cohen
et al. (2002) was: x = −42, y = −57, z = −15. Later the meta-analysis
by Jobard et al. (2003) of language-based contrasts (e.g., word-
fixation and word-consonants) defined the localization at: x = −44,
y = −58, z = −15 (see: Figure 1). However, the exact localization
of the peak is assumed to slightly differ in each individual and was
typically tested by comparing activation of the left mid-fusiform for
real words versus pseudowords, consonant strings, checkerboards,
false fonts, symbol strings, or other letter-like visual stimuli. There
is an ongoing debate if the VWFA as a part of higher-level visual
cortex should show preferential activation to visual words over
other categories of namable visual stimuli such as objects, tools,
or faces (see e.g., Price and Devlin, 2003; Szwed et al., 2011; Price,
2012; Nestor et al., 2013; Neudorf et al., 2022). Hirshorn et al.
(2016) investigated the visual word form hypothesis using direct
brain stimulation and EEG. They focused on the left midfusiform
gyrus (lmFG) and discovered that disrupting activity in this region
impaired perception of words and letters. The lmFG is involved in
different stages of orthographic representation, including low-level
visual representation.

In the critical article Price and Devlin (2003) showed that
the VWFA (x = −42, y = −57, z = −15) is involved not only
in visual word processing but also in naming colors and objects,
reading Braille and processing auditory words. This was one of
the first pieces of evidence that the middle left VOT area called
VWFA is involved in more than only processing visual word
forms. What is interesting is that all those tasks were connected
to language functions, such as naming (semantics), speech sound
processing (phonology), and Braille reading (orthography but
in a modality different than visual). Therefore, in the current
article, we focus on the language-specific activity of the left-
lateralized VOT (LS-VOT) in multiple language-related tasks.
We discuss phonological, semantic, and orthographic processing
within the LS-VOT independently from visual, auditory, or tactile
modality. We start by describing the earliest but also the narrowest
understanding of the LS-VOT as a visual-based reading region and
extend this by adding different layers of evidence for other possible
language-related functions of this area.

2. LS-VOT as a part of the visual
letter-related system

The cognitive concept of the Visual Word Form came originally
from the Warrington and Shallice (1980) clinical study where
authors contrasted two different forms of reading: letter-by-letter
and whole words. The ability to extract an abstract orthographic
representation of a whole word, irrespective of its color, shape,
font, and size constitutes the knowledge of the “visual word
form.” According to Rapp and Fischer-Baum (2014), orthographic
representations may vary in the size of units (morphemes, digraphs,
and letters) and should contain information about letter identity,
consonant-vowel status, syllabic role, and letter position.

From the beginning, the chosen terminology defined the scope
of the investigation as modality-dependent since a VISUAL Word

Form concept drove authors to explore the VWFA as a part
of the human visual system. The first studies on the VWFA
focused on how reading acquisition transforms the “inferotemporal
pathway for visual object recognition” (McCandliss et al., 2003).
The visual modality-based approach proposed that LS-VOT is
tuned to processing letters based on the constraints in the
hierarchical receptive field structure (Dehaene et al., 2005) with
a preference for line junctions (Szwed et al., 2011). Accordingly,
internal segmentation of the LS-VOT is functionality dependent
on the level of word-related form processing. A posterior-to-
anterior gradient in selectivity was revealed, where false fonts,
letters, bigrams, trigrams, and whole words are processed with
increased selectivity in a posterior-to-anterior direction (Vinckier
et al., 2007). This gradient is consistent with Dehaene et al.’s
(2005) proposal that the left posterior VOT processes single letters,
the middle processes bigrams and trigrams, and the anterior
processes lexical units. Studies that combine relatively high spatial
and temporal resolutions confirm that when showed that letter-
selective responses occurred approximately 60 ms earlier than
word-selective responses, with phase-locking in anterior areas
involved in lexico-semantic processing (Thesen et al., 2012). In this
visual-based approach, LS-VOT is treated more as an identifier
for visual properties of letters and word-forms based on line
junctions than as a part of the language-specific system. However,
this perspective poses some problems.

First, it neglects that LS-VOT is structurally (Saygin et al., 2016;
Vanderauwera et al., 2018; Moulton et al., 2019) and functionally
(Morken et al., 2017; Smith et al., 2018; Li et al., 2020) connected
with the language system and especially the left superior temporal
gyrus (STG) and inferior frontal gyrus (IFG) which take part in
phonological and semantic processing (Hodgson et al., 2021). It
seems that not only does shape, size or font determine orthographic
form but also its phonology (Pylkkänen and Okano, 2010). In terms
of LS-VOT engagement, Hashimoto and Sakai (2004) showed
preferential activation to newly learned orthographic forms in
adults but only when they were combined with speech sounds
instead of non-speech sounds (tones and noise).

Second, orthographic representations are usually understood
as modality-independent (Rapp and Fischer-Baum, 2014). In line,
the LS-VOT was found to be responsive to reading not only in the
visual but also in the tactile modality (Büchel et al., 1998a,b). This
was true for both early and congenitally blind individuals (Amedi
et al., 2003), some late blind individuals (Burton et al., 2002), as
well as sighted individuals learning to read Braille tactually (Siuda-
Krzywicka et al., 2016). The site of the reading-related activation
was not discernable between the blind and the sighted readers
(Reich et al., 2011; Dziȩgiel-Fivet et al., 2021) and in both groups,
similar sensitivity to letters was found (Ra̧czy et al., 2019). These
observations led to a hypothesis that LS-VOT is implicated in
reading on a modality-independent level (Amedi et al., 2017).

Third, LS-VOT activation may not be specific to letter shapes
as compared to other visual meaningful stimuli like nameable
pictures. Neudorf et al. (2022) showed that the same LS-VOT
area was equally responsive to naming pictures and words without
dominant activations for one type of stimuli. There is also an
interesting line of research that broadens the LS-VOT function
to all symbolic stimuli with known referents, even those without
an orthographic structure or preferred visual properties like line
junctions. In a study by Song et al. (2012) the LS-VOT was more
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FIGURE 1

Anatomical visualization of the left inferior temporal gyrus and fusiform gyrus; the localization of the word-specific peak from the meta-analysis of
Jobard et al. (2003).

active for symbolic landscapes (e.g., Eiffel Tower as a symbol
of Paris) than for non-symbolic landscapes (e.g., unknown high
building). This effect was also present for the artificial symbol–
referent associations that were trained in the study. Preferential
LS-VOT activity was further found for stimuli with communicative
intentions like body gestures (Xu et al., 2009), or visually complex
everyday scenes (Tylén et al., 2009). A more general view was
proposed by Vingerhoets et al. (2013) who showed mutual
co-lateralization between tool use and language, regardless of
handedness. The authors argue that their results link gestures and
speech to explain the beginning of human language.

3. LS-VOT as storage for abstract
orthographic representations

The idea that the LS-VOT is storage for abstract orthographic
forms was widely explored. There is an ongoing debate about
whether LS-VOT processes whole-word (lexical) forms or whether
LS-VOT is sensitive primarily to smaller orthographic parts like
letters or bigrams (Dehaene et al., 2005; Binder et al., 2006).
There was also a more hybrid approach claiming that LS-VOT is
involved in both lexical and sublexical coding (e.g., Schurz et al.,
2010). The sublexical hypothesis which assumed that the LS-VOT
is responsive to bigrams or trigrams rather than whole words
was challenged by Glezer et al. (2009). The authors employed
a rapid adaptation paradigm to detect more subtle changes in
BOLD signal than in the usual contrast testing. With this change
in methodology, the authors claimed that LS-VOT proved to be
selective to real words and not sublexical units. In their study,
the comparison of mean activations for two real words that
shared visual similarities but were not identical (like “farm” –
“form”) revealed no neural adaptation patterns contrary to the
presentation of two orthographically identical words (Glezer et al.,
2009). Thus, sublexical information shared by those words was

not sufficient enough to evoke selectivity in LS-VOT. Further
research revealed that LS-VOT’s selectivity was also present in
processing familiarized (trained) pseudowords in contrast to the
novel ones (Glezer et al., 2015). This approach corresponds with
another type of research based on the so-called “familiarity effect.”
It was first observed in object recognition studies when the repeated
presentation of the stimuli led to decreased activation of the
VOT (Chao et al., 2002; Van Turennout et al., 2003). Following
this idea, Kronbichler et al. (2004) tested the LS-VOT response
regarding the stimuli arranged gradually from the most familiar
(high-frequency words) to the least (pseudowords). Again, the
authors demonstrated that the higher the familiarity, the lower the
LS-VOT activation, which was interpreted as a proof for the whole-
word functionality instead of letter-based functionality: more effort
was needed to decode words that did not have familiar forms.
In the follow-up study in 2007, Kronbichler et al. (2007) used
a different set of items (words/pseudohomophones/pseudowords)
and observed the same effect: lower activations of LS-VOT for
words versus pseudohomophones and pseudowords [this was
widely replicated by Bruno et al. (2008), Woollams et al. (2011),
and Wimmer and Ludersdorfer (2018)]. The latest connectivity
studies (Lerma-Usabiaga et al., 2018; White et al., 2019; Yablonski
et al., 2023) showed that anterior LS-VOT is connected with higher-
language areas as opposed to the posterior part connected with
visual regions and sensitive to visual features of words. It may
suggest the functional division between posterior and anterior
parts, where anterior part showed growing multimodality and
holistic lexical processing while a posterior part supports this hub
by providing information about visual features of letters.

There is a consensus that especially the location of left-
hemispheric LS-VOT is very consistent across tasks and writing
systems (Bolger et al., 2005; meta-analysis including studies carried
out in European alphabets, Chinese characters, and Japanese Kana
and Kanji). In children, the overlap of specific activation for reading
English words and Chinese characters (Krafnick et al., 2016), as
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well as French words and Chinese characters (Feng et al., 2021) was
found in the left LS-VOT in the direct proximity of the English-
based ROI (Cohen et al., 2002). Classical LS-VOT ROI was also
explored in adults reading frequent Chinese characters (nouns),
and activation in this region was confirmed as specific for reading
(Liu et al., 2008). No language differences and high specificity of
the LS-VOT [also located as in Cohen et al. (2002)] were also
found in bilinguals reading Chinese and Korean (Bai et al., 2011).
Nonetheless, while the LS-VOT engagement was consistent across
many studies regardless of the languages and writing systems,
its right hemisphere homolog was consistently found to be more
engaged in the readers of logographic compared to alphabetic
scripts (e.g., Bolger et al., 2005). The bilateral processing of non-
alphabetic scripts has been attributed to their visual complexity
and the larger grain size principle inherent in these scripts (Hsiao
and Lam, 2013); right hemisphere engagement would be thus
more associated with holistic or whole-object processing (Hirshorn
and Harris, 2022). In line with that Li et al. (2017) showed that,
similarly to alphabetic languages, in readers of logographic scripts
the connection between spoken language areas and the LS-VOT
strengthens as individuals grow older. However, the strength of
this connectivity differs between the orthographies, as learning
alphabetic languages is mostly based on phonics instructions.

4. Why is LS-VOT sensitive to
speech?

Language Specific - VOT (LS-VOT) was traditionally argued
to store visual-based orthographic representations. However, many
studies so far showed that the LS-VOT is activated in auditory
speech-based tasks. This was found in sighted readers (Dehaene
et al., 2015; Planton et al., 2019) but also to a larger extent in
blind Braille readers. In the case of the blind population, VOT
activation was observed during both low-level tasks like passive
listening to words (Kim et al., 2017; Dziȩgiel-Fivet et al., 2021),
basic phonological tasks (Burton et al., 2003; Arnaud et al., 2013)
but also during high-level tasks like sentence comprehension
where the activity of this region was related to task difficulty
(Kim et al., 2017).

Moreover, in the sighted LS-VOT’s activation seems to be
related to the overall reading level and reading deficits (Dehaene
et al., 2010; Desroches et al., 2010; Dehaene and Cohen, 2011;
Dȩbska et al., 2016, 2019; Wang J. et al., 2018, Wang et al., 2021).
This is in analogy to the theories of reading which suggest that
the involuntary orthographic influence in processing phonology
appears as a function of reading skill (Morais et al., 1979; Ventura
et al., 2007; Ziegler and Muneaux, 2007). The plethora of empirical
evidence favors the abstract, modality-independent concept of
the LS-VOT functionality. So far several hypotheses have been
formulated that describes an extended LS-VOT role in speech
processing.

4.1. A unimodal orthographic hypothesis

Dehaene et al. (2010) and Dehaene and Cohen (2011)
proposed a unimodal orthographic hypothesis. Accordingly,
abstract orthographic representations are activated automatically

in a top-down manner during active speech processing. In this
view VOT activations are not a result of phonological processing
but involuntary orthographic co-processing that facilitates and
accompanies phonological processing. In Dehaene et al. (2010)
study, LS-VOT was active during auditory lexical decision task
(distinguishing between words and pseudowords) but not in
passive sentence listening. The activity in the auditory lexical
decision task was present only in literates but not in illiterates.
Individual differences in the strength of LS-VOT activity on
auditory stimuli correlated with the LS-VOT activity for written
words but not other visual objects. These empirical findings were
interpreted as evidence for the unimodal orthographic hypothesis.
Ludersdorfer et al. (2015, 2016) asked whether the need for
orthographic processing is crucial for LS-VOT’s activation in an
auditory speech-based task. Results showed that LS-VOT was
more active for orthographic (letter count) relative to semantic
(living-non-living) tasks (both were based on speech stimuli).
However, even the semantic task elicited weak activation relative
to the baseline non-linguistic tones processing in the LS-VOT.
Most auditory speech-based tasks where the preferential activity
of LS-VOT and its positive relation to reading proficiency was
acknowledged were not orthographic tasks per se. Most empirical
data came from phonological awareness tasks like word rhyming
(Booth et al., 2002; Desroches et al., 2010; Yoncheva et al., 2010;
Dȩbska et al., 2016), alliteration (Wang J. et al., 2018; Dȩbska
et al., 2019; Wang et al., 2021), or even pseudoword matching
(Dȩbska et al., 2019). The question arises if the preferential activity
of LS-VOT in speech-based tasks requires the active engagement of
orthographic code [like Dehaene et al. (2010) directly proposed],
or if LS-VOT is crucial for processing phonological or semantic
properties of language independent of the need to activate
orthographic code (see sections “2. LS-VOT as a part of the
visual letter-related system” and “4.2. A unimodal phonological
hypothesis”).

Another issue is that the LS-VOT might play a different
role in the speech-based task than in processing written stimuli.
For example, Ludersdorfer et al. (2013) showed that in the case
of visual stimuli, the LS-VOT reduced its activity for word-like
written stimuli (words < pseudowords < artificial stimuli) but
in reverse increased its activity for word-like auditory stimuli
(words and pseudowords > artificial stimuli). Also, observed LS-
VOT engagement during the processing of speech might be related
to the deactivation effects more than activation differences. For
example, Yoncheva et al. (2010) controlled the attentional demands
of two tasks: one speech-based and one non-linguistic (tones
comparison). The comparison between attentional tone and speech
processing showed that both conditions evoked deactivations in the
left fusiform except for the more narrow left mid-fusiform area in
the case of a speech condition. This leads to higher activity in the
mid-fusiform (corresponding to VWFA) relative to surrounding
deactivated regions of the left fusiform.

4.2. A unimodal phonological hypothesis

A second explanation of the LS-VOT’s preferential activation
to speech is the existence of neuronal populations involved in
processing phonology. Pattamadilok et al. (2019) formulated a
theoretical proposal for the existence of unimodal (auditory)
phonological groups of neurons in LS-VOT that are sensitive
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to phonological but not orthographic features of stimuli. The
preliminary confirming evidence came from the Conant et al.
(2020) studies on school-aged children and adolescents. They
found that activity in the LS-VOT was modulated by phonological
factors such as syllable structure, suggesting that this region is
involved in processing the sound structure of language. The authors
found that the activity of LS-VOT in discriminating speech-
syllables versus non-phonemic stimuli was not only positively
related to the reading level but also to categorical phoneme
perception skills. The authors concluded that LS-VOT plays a role
in both reading proficiency and phoneme perception refinement.
Although the authors did not exclude an automatic orthographic
co-activation explanation, they rather argued that LS-VOT is
responsible for the refinement of speech perception and audiovisual
integration (see section “4.3. A multimodality hypothesis”).

Moreover, Xue et al. (2006) trained adult individuals with
a new visual font for 2 weeks (visual training) and then new
sounds for another 2 weeks (phonological training). Interestingly,
phonological training evoked more activity in bilateral LS-VOT
compared to visual training which made the authors conclude
that (bilateral) LS-VOT is engaged in processing phonology or
in phonology-orthography integration. Still, the interpretation of
results was limited by the fact that the order of training was not
counterbalanced.

Another piece of evidence for the phonological function of
LS-VOT was brought by Pattamadilok et al. (2009) in a TMS
facilitation study. The authors tested whether in orthographic
or phonological priming on LS-VOT, a TMS stimulation would
facilitate word processing. Results showed only unimodal
(orthographic or phonological) but not multimodal facilitation
effects. The authors interpreted those findings as a confirmation
on the existence of separate phonological and orthographic
groups of neurons within the LS-VOT but not multimodal ones.
However, the site of the LS-VOT stimulation was chosen based
on non-specific individual localizer (words > fixation) therefore
the localization of phonological versus orthographic LS-VOT
areas is still a matter of debate and probably requires higher
spatial resolutions than the ones offered by standard fMRI or TMS
(Grill-Spector and Malach, 2001; Price and Devlin, 2003).

4.3. A multimodality hypothesis

One may ask if the positive relationship between orthography-
phonology integration in the LS-VOT and the reading level (e.g.,
Wang J. et al., 2018), may be due to the fact that LS-VOT
integrates information from orthography and phonology. Print-
speech convergence and audiovisual integration effects in LS-VOT
that were found to be reading-related are worth discussing in this
context.

First, in the case of print-speech convergence, there is an
assumption that literacy acquisition changes the brain in a way
that print stimuli start to be processed in the network responsible
for spoken language processing (Liberman, 1992; Rueckl et al.,
2015; Preston et al., 2016; Chyl et al., 2018). Most of the studies
showed print-speech coactivations in relation to the reading level
mostly in the left IFG and STG (Frost et al., 2009; Rueckl et al.,
2015; Preston et al., 2016; Chyl et al., 2018; Marks et al., 2019):

regions typically involved in speech sound processing. Interestingly
the LS-VOT area also showed print-speech convergence in the
opaque orthographies like English or Hebrew compared to the
more transparent orthographies like Spanish (Rueckl et al., 2015).
This effect was evident in English adults (Rueckl et al., 2015) and
beginning 7 years old readers (Chyl et al., 2021). However in Chyl
et al. (2021) no evidence was found on the relation between print-
speech co-activation in LS-VOT and the reading level in English
or Polish (see Chyl et al., 2021, Supplementary Material 4). Also,
the representational similarity analysis (RSA) in processing print
and speech in beginning readers showed no significant overlap in
LS-VOT contrary to the left IFG and STG. Different results were
found in the case of young Chinese adults (18–26 years olds) where
RSA analysis showed that LS-VOT patterns of activation are best
explained by orthographic and phonological similarity compared
to unimodal processing (Zhao et al., 2017; Qu et al., 2022). So it
seems that similar patterns between phonology and orthography
might be related to reading ability, yet more cross-linguistic and
developmental studies are needed.

Second, in the case of language-specific audiovisual integration,
involvement in LS-VOT was found during audio-visual exposure
to letters and ambiguous speech sounds (Romanovska et al.,
2021). McNorgan and Booth (2015) tested audiovisual integration
specifically in LS-VOT in English 8–13 years old children in relation
to reading and found that multisensory integration in LS-VOT was
modulated by the reading level.

4.4. An “all in one” hypothesis

The last possibility is that orthographic, phonological,
semantic, and multimodal groups of neurons coexist within the
LS-VOT. Those groups could be spatially separated and therefore
it should be possible to identify their individual topography.
Alternatively, the areas might not be spatially distinct for different
functions and thus the activation patterns measured by multivoxel
pattern analysis of the same or similar area will differ depending
on the task. These two alternatives are interesting because at the
first sight the “all in one” approach allows the reconciliation of
different empirical findings. An interesting example of the “all in
one” approach is an “impostor” hypothesis proposed by Cohen
et al. (2004). When the authors tested written and auditory word
processing in VOT they found a multimodal area called LIMA
(“lateral inferotemporal multimodal area”). LIMA was localized
anteriorly to the canonical localization of VWFA (LIMA = x = −54,
y = −52, z = −10, VWFA = x = −39, y = −60, z = −18, Talairach
coordinates). During the presentation of written and auditory
words LIMA was activated independently of modality whereas the
region described as VWFA was active only in response to the visual
words. The authors concluded that VWFA and LIMA might be
“easily confounded” when interpreting the results of fMRI studies
(see also Sebastian et al., 2014). Curiously, the authors gave LIMA
a function that was later discussed in the context of VWFA: an
integrative hub of cross-modal phonemic and lexical links (Price
and Devlin, 2011). The “all-in-one” approach is promising because
instead of focusing on VWFA defined as an area preferentially
activated to real words, the focus is placed more on processing
different functions like orthography or phonology or both those
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types of information within the VOT. The question is how those
spatially different groups of neurons or functionally different
patterns of activations should be localized on the individual
level, analogically to how VWFA was localized. The promising
approaches of using fMRI rapid adaptation (Weiner et al., 2010) or
fast periodic stimulation (Gao et al., 2018) are yet to be developed.
Interesting insights came from multivoxel pattern analysis research
(MVPA). A univariate analysis, which averages brain activation
across voxels, could fail to detect weak but informative signals
distributed in multivariate patterns (Tong and Pratte, 2012).
Different neural patterns are suggested to be associated with
different cognitive functions, therefore, may distinguish between
various roles of LS-VOT. Also, the MVPA might be more sensitive
to individual differences in word processing and reading styles
(Carlos et al., 2019). Fischer-Baum et al. (2017) showed that
the same region of LS-VOT encodes orthographic and semantic
(but not phonological) information. This semantic processing
seems to be task- and category-dependent and may contribute
to orthographic identification and overall task performance
(Wang X. et al., 2018). Another promising approach was presented
by Kay and Yeatman (2017). Their model for faces and words
demonstrates that high-level representations in the cortex are built
from and tied to low-level properties through linear and non-
linear operations. This suggests that visual features hierarchically
contribute to semantic representations. The model provides
a potential mechanism for the emergence of semantic tuning
properties in the visual cortex.

5. LS-VOT as a part of distributed
neural systems

The research described so far was mostly based on the
assumption of a localist representation system, which means that
it assumes one set of neurons that is responsible for processing
one concept. Instead, a distributive approach may be taken into
account (e.g., Roy, 2017) where the whole collective brain network
is responsible for encoding a concept. This is an interesting
approach because it seems to reconcile different lines of research.
For example, there is tension between the purely unimodal nature
of LS-VOT and its multimodal characteristics. In the case of
distributed system approach, we may treat the LS-VOT as a part
of the multimodal network but the function within that network
may be unimodal or may vary across tasks (e.g., see Price and
Devlin, 2011). Also, the discussion on the LS-VOT’s sensitivity
for active speech tasks rather than for passive listening, may be
informed by the research on connections between LS-VOT and the
attention network. If LS-VOT is a part of two cortical networks,
the differences in the activity of LS-VOT in active speech tasks vs.
passive listening may be a result of the interaction between roles
the left VOT plays in language and attention networks. If this is
the case, firstly, we may ask what is the empirical evidence on
the existence of structural and functional connections between LS-
VOT and other brain parts. Secondly, we might wonder what kind
of theory would describe the role of LS-VOT in such distributed
network/s.

The functional and structural connectivity may constrain the
extent of potential networks and therefore shed light on the

cognitive characteristics of LS-VOT (e.g., Pessoa, 2014; Chen et al.,
2019). The local or sparse connections with other brain areas
will restrict the role of the region of interest. In the case of LS-
VOT, a number of connections both structural and functional
connections were found, with many distant regions within the
language network, which exist even before the reading acquisition.
According to the biased connectivity hypothesis (Dehaene and
Dehaene-Lambertz, 2016; Moulton et al., 2019) the location of LS-
VOT is directly determined by the structural connections to other
cortical language areas.

The connectivity of LS-VOT with the language network was
studied from the earliest stages of development. Li et al. (2020)
studied newborns within 1 week after birth. They examined the
resting state activity that showed significant connectivity between
anterior LS-VOT and frontal and temporal language networks.
Saygin et al. (2016) scanned 5-year-olds before they learned to
read. At the age of eight children were tested again with tasks that
determined the functional localization of VWFA. The VWFA area
even before the reading acquisition had white matter (anatomical
fiber tracts) connections with speech and language processing
networks. Moulton et al. (2019) showed that microstructural
changes in the pathway between LS-VOT and the left inferior
parietal lobule (IPL) correlated with the reading level in the first
year of reading instruction. Stevens et al. (2017) asked if the
functional connectivity between VWFA and the language system
is specifically tuned to processing words vs. other visual stimuli
like namable pictures. They showed that resting-state connectivity
of LS-VOT with the left posterior STG is preferential compared
to other visual stimuli. Also, Bouhali et al. (2014) compared
VWFA with the fusiform face area (FFA) and proved privileged
connectivity for VWFA to left perisylvian superior temporal and
inferior frontal areas (but for a domain-general view see: Vogel
et al., 2013).

The interesting question in this field of research is how to
explain the role of the preferential connectivity between some
parts of VOT and the language network even before children
start to read. The answer to this question might advance our
knowledge of the VOT role in language processing in general. The
simplest hypothesis is that connections between VOT and language
systems are necessary for naming visual stimuli. Stevens et al.
(2017) showed that in the semantic classification task (deciding
whether the stimuli were man-made or natural objects), the
connections between the left posterior STG and LS-VOT predicted
only performance on word stimuli compared to picture stimuli.
The authors proposed that while structural connectivity does
not drive specialization, the experience-driven “coupling among
regions critical for performance during skill acquisition” (p. 5296)
leads to higher connectivity of those regions over time. However,
longitudinal studies are needed since the preferential connectivity
of LS-VOT with language networks in adults might be a result of
reading training not a cause of LS-VOT engagement in reading.

The experience-driven hypothesis of the LS-VOT specialization
for language is supported by the studies on the blind population.
As mentioned before in the early and congenitally blind LS-
VOT is engaged in speech processing on a higher level (e.g., in
tasks demanding syntactic processing) than it is observed in the
sighted population. According to the pluripotent cortex hypothesis
(Bedny, 2017) such activity may be an effect of similar structural
connectivity of the VOT with other brain regions but changed
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experience, as no visual input enters this region in the blind. The
connections with the language processing areas in this context
may get strengthened (Abboud and Cohen, 2019; Kanjlia et al.,
2021) and lead to increased sensitivity to language early on in
the development of blind individuals. The LS-VOT would thus
be a part of distributed, modality-independent language network
(Dziȩgiel-Fivet et al., 2021) even before reading acquisition and
become specialized for Braille reading only afterward in a similar
manner in which frontal and temporal areas become engaged
in the visual reading. This hypothesis was further supported by
the observation that in the blinds LS-VOT lacks the posterior-
to-anterior organization gradient that is observed in the sighted
(Tian et al., 2022). Instead, such a gradient can be observed in the
modality-specific posterior-parietal cortex in the blind.

As for the comprehensive theory of the role of LS-VOT in
a distributed system the most known Interactive Account was
given by Price and Devlin (2011). According to their proposal,
LS-VOT is not responsible for encoding orthographic or visual
information but serves as an “interface” between sensory input
and top-down predictions modulated by attentional and task
requirements. In default “sensory inputs” are visual properties of
words and “top-down predictions” correspond to the non-visual
features of stimuli like phonological or semantic information.
However, the authors see linguistic processing as a distributed
system where it is difficult to dissociate the parts of cognitive
functions that are implemented in a given region of the network.
According to that view, “orthographic representations emerge
from the interaction of backward and forward influences” (Price
and Devlin, 2011, paragraph 3). The authors use a “prediction
error” concept: it results from the top-down influence of linguistic
information. Greater prediction error (mismatch between visual
input and top-down predictions) evokes higher activity of the LS-
VOT. This, according to the authors, explains why the LS-VOT
activates more strongly for pseudowords than words: real words
cause the lowest prediction error. This is an alternative explanation
to the “Familiarity effect” (Kronbichler et al., 2004; discussed in
paragraph 3) or “Rapid Adaptation effect” (Glezer et al., 2009,
2016) where the LS-VOT is less active on known stimuli because
of the adaptation processes. However, the context (e.g., adding
attentional demands) might change the activity pattern of the LS-
VOT. In consequence, its activity should be disturbed and overall
lower in reading deficit because linguistic top-down predictions
are less precise. The developmental stage also matters: LS-VOT
activity should be highest at the beginning of learning to read
because top-down predictions are only starting to be formed. The
preliminary empirical evidence was provided, e.g., by Wang et al.
(2022): based on graph analysis results the authors claimed that
the LS-VOT serves as an “interface” between visual and higher-
order systems. In some tasks (sentence comprehension) LS-VOT
becomes a connector in the auditory-sensorimotor system whereas
in speech processing in noise when the signal is severely degraded
LS-VOT serves as a peripheral part of a visual system.

White et al. (2023) also showed a task-dependent modulation
of LS-VOT. In the case of processing written words, the task to
recognize them (vs. ignoring them) resulted in an increased level
of LS-VOT activity compared to processing symbol strings. The
task-dependent modulation for words was associated with higher
functional connectivity with language regions and was only visible
in a part of LS-VOT that corresponds to VWFA but not in the
overall visual cortex. It shows that the LS-VOT region is modulated

by the need for reading words but not processing other visual
stimuli.

Another proposal suggesting that the LS-VOT is part of a
distributed neural system was formulated by Chen et al. (2019).
The authors showed results in favor of a multiplex model of LS-
VOT. They examined structural connectivity between LS-VOT and
a priori defined regions of the language and attention networks.
LS-VOT showed an even stronger connection with the attention
network (frontoparietal nodes) than with the language network.
Also, the double dissociation in brain-behavior relation was
discovered: the level of structural connectivity between the LS-VOT
and nodes within the language network was found to be a predictor
of individual differences in reading and language abilities, but not
attention. Still the degree of structural connectivity between the LS-
VOT and nodes in the dorsal frontoparietal attentional network
was associated with visual attention abilities, but not with reading
and language abilities. The results are particularly interesting in
light of the discussion on the LS-VOT involvement in speech
processing because most of the phonological tasks evoking activity
of LS-VOT were attention-based (e.g., phoneme deletion or rhyme
matching) compared to passive listening of speech. However,
the multiplex model assumes interaction between attention and
language in the left VOT – not necessarily two distinct roles of the
left VOT. In general, thanks to the local connections with the visual
system and distant relations with the attentional and language
systems the left VOT is an “attentional spotlight” on word-like
stimuli that are later processed in a language network. Woodhead
et al. (2014) studied the role of the left IFG in word recognition.
They found that the left IFG is sensitive to words and provides top-
down feedback to the VOT, aiding in efficient word identification.
This feedback occurs in the early stages of processing. In line
with this highly interactive view, Ellenblum et al. (2019) showed
that the orthographic network is not as coherent as other well-
described networks (like DMN). The authors explained that the
orthographic process requires highly specialized cross-domain and
cross-modality interactions and many already complex cognitive
functions therefore they point to the “high-level integrative” role
of the LS-VOT in reading and spelling.

6. LS-VOT acquires its function in
the development

Based on early connectivity studies of structural and functional
connections of LS-VOT in childhood (as in e.g., Saygin et al.,
2016) different developmental paths of LS-VOT involvement
in reading and language processing might be formulated. The
canonical approach comes from Dehaene, Cohen, and colleagues
(e.g., Dehaene and Cohen, 2007) proposal that we may call here
“the orthographic hypothesis.” In this view, the development of
orthographic sensitivity in LS-VOT, which is primarily responsible
for complex visual stimuli processing, is driven by literacy
development. Then possibly automatic orthographic co-activations
grow during phonology processing, which makes LS-VOT sensitive
to speech processing even without the visual stimuli present.

In detail, the original neuronal recycling hypothesis claims
that when we learn to read, our brain repurposes certain areas
of the left LS-VOT previously used for recognizing other things
like faces or objects. The process of neuronal recycling would
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Dȩbska et al. 10.3389/fnhum.2023.1199366

involve a competition in which the group of neurons used in
print processing “invades” the regions of the LS-VOT and takes
them over for reading (Dehaene and Cohen, 2007). The hypothesis
has been prominent since it was proposed and referenced in
studies on both adults (Dehaene et al., 2010; Pegado et al., 2014)
and children (Monzalvo and Dehaene-Lambertz, 2013). Studies
comparing literate and illiterate adults have found that LS-VOT
regions involved in reading also respond to other visual stimuli
like objects, faces, and checkerboards. As reading ability improved,
responses to faces decreased slightly in the left side of the brain
and increased significantly in the right side (Dehaene et al., 2010;
Pegado et al., 2014). Similarly in children, right lateralization
of the activation to faces in the VOT increased with reading
performance (Monzalvo et al., 2012). More recently, also a “weaker”
or “revised” version of the hypothesis has been proposed, based
on the longitudinal data (Dehaene-Lambertz et al., 2018). The
revised hypothesis suggests that the brain has dedicated areas for
processing different visual categories, which expand as we grow.
With reading instruction, the LS-VOT responds to written words
at initially weakly specialized sites, and without altering their
(weak) preexisting responsivity to other visual inputs, such as faces.
This view was also supported by recent studies that reported co-
existence of growing word sensitivity and other visual categories
representations (Nordt et al., 2021; Feng et al., 2022; Chyl et al.,
2023).

Nonetheless, the relationship between the emergence of
different visual categories and competition in the LS-VOT is
currently far from being a consensus, and the hypothesis has
been critically discussed. New research has found that literacy
can actually enhance the similarity between representations of text
and faces, without reducing the response to other, non-linguistic
visual categories (Hervais-Adelman et al., 2019; Van Paridon et al.,
2021). In fact, the recent critical review (Rossion and Lochy, 2022)
found little evidence to support the idea that reading ability affects
the way the brain processes faces. Instead, the review argued that
right-lateralized neural activity for face recognition emerges early
in life, and is not modulated by literacy level. Therefore, it is
hard to say what is actually “recycled” if word selectivity invades
cortical regions that are not selective (or weakly selective) to faces
or other categories, as the “revised” version of the hypothesis
postulates. Hence, the authors suggest abandoning the misleading
“recycling” terminology altogether, not just “revising” it (Rossion
and Lochy, 2022). They propose the term “neural competition” in
which sensory inputs sharing functional characteristics (e.g., faces
and words) compete for the same population of neurons within the
left VOT. Also, Vogel et al. (2012) 2014 studies on adults showed
that the acquisition of lexical representations does not necessarily
replace the ability of LS-VOT for visual analysis. Instead this
region remains crucial for reading thanks to its sensitivity to visual
characteristics of print and its involvement in statistical learning
that enables fluent processing of real words. However, the same
region might be useful for processing other types of information.

The alternative pathway of LS-VOT functional development
might be called “the phonology to orthography hypothesis.” This
alternative was formulated by Conant et al. (2020) who claimed that
areas within VOT are involved in speech-face circuitry because of
the proximity to FFA. After reading acquisition, some parts of LS-
VOT that were involved in processing speech become responsible
for audiovisual integration between phonology and orthography

and later LS-VOT starts to be responsible for processing unimodal
orthographical forms. This alternative explains what might be
the evolutionary relevant function of the connections between
some parts of the VOT and the language networks before reading
acquisition. If this is the case, the preferential activity for speech
sounds in LS-VOT should be observed already in small children
before schooling. So far, there is evidence of LS-VOT involvement
in phonological processing at the beginning of reading acquisition
but not in true pre-readers without any experience with print
or letter knowledge. For example, Dȩbska et al. (2016) showed
stronger LS-VOT involvement in 6–7 years old Polish children in
an auditory rhyming task in a group without the familial risk for
dyslexia compared to the risk group. Similarly, Wang J. et al. (2018)
showed that activity of the posterior left VOT correlated with a
reading level in an auditory onset comparison task in 5–6 years old
beginning readers in English. Also, the activity of the posterior left
VOT was related to efficiency in a phonological in-scanner task.
However, Dehaene et al., (2010, 2015) claimed that LS-VOT is not
sensitive to speech or phonology in illiterate adults. Therefore more
evidence on preliterate children is needed to prove the preferential
engagement of LS-VOT in speech processing.

Another promising but less studied explanation is “the growing
multimodality hypothesis.” First, the sensitivity for orthography
in LS-VOT might be explained to be a consequence of a
multimodal interaction during establishing letter–speech sound
correspondences (Brem et al., 2010). This recurring co-activation
in the reading process might lead to establishing an ortho-
phonological representation based on connectivity with a speech
processing network in the left STG. In this view, there are no “pure”
orthographic representations that are not related to phonology – at
least in a typical development of reading. Analogically the constant
co-activation may lead to the restructuring of primary phonological
areas like the left STG in a way that this region becomes sensitive
to strictly orthographic effects like consistency in spelling (as
proposed by Pattamadilok et al., 2010).

7. Conclusion

The research described in this article provides evidence that
the term “Visual Word Form Area” is insufficient to describe the
cognitive role of the language specific - VOT (LS-VOT) area.
Different phonological, orthographic, and semantic functions of
the LS-VOT were found that turned out to be independent of
modality. The most promising approach for defining a general
cognitive function of the LS-VOT seems to be focusing on its
preferential structural and functional connectivity with higher-
level language and attention networks. In this view, the LS-
VOT may be described as a task-driven “interactive gateway”
that connects certain modality-independent stimuli with their
associated orthographic, semantic, and phonological properties
processed within the whole network. The activity of the LS-VOT is
not limited to a specific script or orthography system but extends to
all symbolic communication-relevant stimuli that convey meaning
in a repeatable manner.

Overall the ventral visual pathway may play a more major
role as an interactive hub connecting modality-independent
experience with brain regions specialized for different functions.
The shift toward a domain-general perspective in understanding
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the functions of the ventral stream is visible in studies on processing
numbers (Chen and Verguts, 2012, 2017; Grotheer et al., 2019).
Specialization in the ventral “visual” stream can develop regardless
of sensory modality or visual experience (Abboud et al., 2015;
Grotheer et al., 2016). This phenomenon occurs due to unique
patterns of connectivity (Grotheer et al., 2019). Similar findings
have been observed in studies on action-object recognition,
categorization processes (Grill-Spector et al., 2001; Mahon et al.,
2007, 2009) and semantic representations (Chen and Mirman,
2015). A crucial area of focus for future research is to determine
whether the functional connectivity between the ventral stream
and other structures beyond it serves as a fundamental organizing
principle that leads to category-specific processing in the human
visual system.
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