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Introduction: Major Depressive Disorder (MDD) is a leading cause of worldwide

disability, and standard clinical treatments have limitations due to the absence of

neurological evidence. Electroencephalography (EEG) monitoring is an effective

method for recording neural activities and can provide electroneurophysiological

evidence of MDD.

Methods: In this work, we proposed a probabilistic graphical model for neural

dynamics decoding on MDD patients and healthy controls (HC), utilizing the

Hidden Markov Model with Multivariate Autoregressive observation (HMM-MAR).

We testified the model on the MODMA dataset, which contains resting-state and

task-state EEG data from 53 participants, including 24 individuals with MDD and

29 HC.

Results: The experimental results suggest that the state time courses generated

by the proposed model could regress the Patient Health Questionnaire-9 (PHQ-

9) score of the participants and reveal differences between the MDD and HC

groups. Meanwhile, the Markov property was observed in the neuronal dynamics

of participants presented with sad face stimuli. Coherence analysis and power

spectrum estimation demonstrate consistent results with the previous studies

on MDD.

Discussion: In conclusion, the proposed HMM-MAR model has revealed its

potential capability to capture the neuronal dynamics from EEG signals and

interpret brain disease pathogenesis from the perspective of state transition.

Compared with the previous machine-learning or deep-learning-based studies,

which regarded the decoding model as a black box, this work has its superiority in

the spatiotemporal pattern interpretability by utilizing the Hidden Markov Model.

KEYWORDS

electroencephalogram, major depressive disorder, Hidden Markov Model, neuronal
dynamics, temporal encoding

1. Introduction

Major depressive disorder (MDD), which is known to be characterized by persistent
sadness, irritability, frustration, and restlessness, is among the ten leading causes of
worldwide disability-adjusted life years according to the World Health Organization
(Mathers et al., 2006). The absence of neurological evidence has posed a great challenge
to the current standard clinical treatment, which involves medications and psychotherapy
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minu1pt (Olfson et al., 2016). Pursuant to past studies, one-
third of MDD patients failed to induce remission after adequate
antidepressant trials (Rush et al., 2009). The benefits of studying
the neurological markers of MDD are three-fold: (i) Early
stage MDD diagnosis. By identifying neurobiological markers
that are quantifiable and precisely locatable, it is possible to
expedite and enhance the accuracy of early stage depression
diagnosis, thus preventing misdiagnosis and minimizing
treatment delay (Olbrich and Arns, 2013; Mahato and Paul,
2019); (ii) Device-based intervention. The specification of
neurobiological markers for depression can facilitate effective
interventions targeting specific brain regions or circuits, such as
electroconvulsive therapy (ECT), repetitive transcranial magnetic
stimulation (rTMS), transcranial direct current stimulation
(tDCS), vagus nerve stimulation (VNS), magnetic seizure therapy
(MST) and deep brain stimulation (DBS) (Caldieraro and
Cassano, 2019). (iii) Precision medicine. The identification of
neurobiological markers for MDD can pave way for the targeted
neuropharmacological treatment development, thereby enabling
more precise pharmacotherapy (Manchia et al., 2020).

However, uncovering the neurobiological markers for MDD
is a complex and challenging task. Firstly, the high degree
of heterogeneity in MDD, including diverse symptom profiles,
severity levels, and underlying neurobiological mechanisms, raises
difficulties in the identification of reliable neurobiological markers.
Secondly, the transition patterns among brain activity states during
rest or cognitive tasks in MDD patients remain uncertain, making
it difficult to accurately characterize the temporal features of neural
activities. Nevertheless, neural activities of the brain are conveyed
through electrophysiological signals, which are fast-changing signals
that require analysis at a subtle temporal granularity. Therefore, a
methodology is needed to analyze the patterns of neural activities
and their transformation processes based on neural recordings from
clinically diagnosed MDD patients, which are feasible to deploy on a
large scale in clinical settings. Until recently, the broad deployment
of electroencephalographic (EEG) in MDD treatment and the
development of advanced processing and analyzing methods have
paved the way for an interdisciplinary solution to this dilemma. Since
EEG measures the electrical activities of large and synchronously
firing populations of neurons via the electrodes placed on the scalp,
long-term resting-state EEG monitoring, as well as short-term task-
related EEG signals of the MDD brain is conducive to providing
eletroneurophysiological evidence of MDD.

Numerous studies have utilized machine learning or deep
learning algorithms to extract high-dimensional features from EEG
signals and classify the EEGs of patients with MDD and healthy
controls (HC). In the study conducted by Duan et al. (2020), EEG
signals were acquired from 32 participants, comprising 16 MDD
and 16 HC individuals, and subject to frequency-domain functional
connectivity analysis. The functional connectivity matrix obtained
was subjected to classification using support vector machine (SVM)
and convolutional neural network (CNN) algorithms, yielding
a testing set accuracy of 94.13%. In another functional brain
network (FBN) study for MDD analysis (Zhang et al., 2021), the
phase lag index (PLI) was calculated to construct a functional
connection matrix. Alterations of brain synchronization were
discovered on an EEG dataset consisting of 48 subjects (24 MDD,
24 HC). A network decomposition model based on Improved
Empirical Mode Decomposition (EMD) was proposed for the time-
frequency analysis of FBN on MDD subjects (Shao et al., 2021). By

constructing FBN on different intrinsic mode functions (IMF), the
authors performed the time-frequency analysis of brain function
connections and validated the proposed model on 128-channel
EEG signals. Despite achieving high accuracy in identifying
MDD/HC and discovering statistically significant brain functional
connectivity abnormalities in MDD patients, the aforementioned
studies have overlooked the dynamic variability of brain functional
networks and neglected the dynamic transitions between different
network patterns in MDD patients.

In order to address this issue, the Hidden Markov Model
(HMM) was employed to represent brain activities as a sequence
of discrete brain states in temporal scales derived directly from the
data, offering significant improvements over the sliding window
approach in previous studies (Vidaurre et al., 2016, 2017; Stevner
et al., 2019). Several previous studies have demonstrated the
capability of the HMM to capture the dynamic behavior of brain
activity in short timescales (Vidaurre et al., 2018; Stevner et al.,
2019). Notably, recent research utilizing magnetoencephalography
(MEG) has shown that the HMM can accurately capture brain
activity in a resting state in intervals as brief as 100 ms (Quinn et al.,
2018). Furthermore, the HMM has been proposed as a useful tool
to explore the reconfiguration of whole-brain dynamics associated
with ASP (Lin et al., 2022) and MDD (Wang et al., 2020), and has
the potential to provide a comprehensive description of the brain
dynamics in short timescales.

In this study, we employed the HMM with multivariate auto-
regressive observation (HMM-MAR) model (Vidaurre et al., 2016)
on a 128-channel task-related EEG dataset (Cai et al., 2022),
consisting of 53 subjects with 24 diagnosed with MDD and
29 HC controls. In order to assess the fidelity of the HMM
model in capturing the EEG state transition patterns of MDD/HC
participants, we employed the proposed model to decode the PHQ-
9 scores of the participants. Specifically, we utilized the EEG signals
of the participants in response to presented stimuli and trained
an HMM-MAR model to perform a regression analysis on the
participants’ Patient Health Questionnaire-9 (PHQ-9) scores. The
parameters of the model were updated using the variational Bayesian
inference. The outcoming results suggest that the obtained state
time series can effectively characterize neural dynamic features.
Furthermore, coherence analysis and power spectrum estimation
reveal significant differences in the state time series of MDD and
HC subjects across different emotional stimuli, as observed in
the corresponding EEG signals. These differences are consistent
with previous research findings on depression neural circuits
and brain network analysis, highlighting the potential of utilizing
HMM models to characterize neural dynamic features for clinical
applications.

Generally, the major work contributions are: i) Distinct
patterns of brain activity state transitions in response to different
emotional stimuli were identified in patients diagnosed with
MDD in comparison to HC. Brain connectivity analyses of the
corresponding patterns to these stimuli were conducted in both
groups. ii) The brain activity state transition patterns in response to
sadness-related stimuli had the best fit with the scores on the PHQ-
9 among all stimuli presented to participants in the study. These
patterns are therefore more likely to indicate a risk for anxiety and
MDD in response to sadness-related stimuli. iii) The outcoming
results suggest that our finding introduces a novel approach to the
diagnosis of MDD, and shows the potential to be integrated into the
clinical treatment workflow.
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2. Materials and methods

2.1. MODMA EEG dataset

We used the MODMA dataset,1 from Lanzhou University (Hu
et al., 2017; Li et al., 2018), as the research subject. This dataset
collected resting-state and task-state electroencephalography
(EEG) data from 53 participants (Age: 18–52, Female: 37.7%),
including 24 individuals with major depressive disorder (MDD)
and 29 healthy controls (HC). All participants who were classified
into the MDD group were diagnosed by experienced clinical
psychologists according to the DSM-IV inclusion criteria. Scalp
EEG was recorded using the EGI series 128-channel EEG
acquisition system manufactured by Electrical Geodesics Inc. All
the participants went through psychological assessment scales,
such as PHQ-9, Generalized Anxiety Disorder (GAD-7), Social
Support Research Scale (SSRS), Life Event Scale (LES), and
Childhood Trauma Questionnaire (CTQ-SF). Inclusion criteria for
MDD group included meeting the diagnostic criteria of the Mini-
International Neuropsychiatric Interview (MINI) for depression,
scoring greater than or equal to 5 on the PHQ-9, and having
abstained from psychotropic drug treatment for at least 2 weeks
prior to the study.

In this experiment, participants were asked to complete an
experimental task using a modified dot-probe paradigm while
seated 60 cm away from a 17′′ monitor with 1280 × 1024
resolution and a 60 Hz refresh rate. Before the formal experiment,
participants completed 10 practice trials to become familiar with
the task. During the experiment, participants viewed emotional
face pairs and identified the location of a dot by pressing a
button on a reaction box without moving their bodies or eyes.
The experiment consisted of three blocks, each with 160 trials
of fear-neutral, sad-neutral, and happy-neutral pairs. Each trial
lasted approximately 1.6 s and the entire experiment took around
25 min. The experiment settings were described in detail by
Cai et al. (2022).

2.2. Systematic framework

The workflow for the proposed MDD neurological state
analysis framework is shown in Figure 1. The system comprises
three major parts: (i) The preprocessing of EEG signals; (ii) The
implementation of the HMM-MAR model, whose parameters
are updated using the variational Bayesian inference; (iii) The
analysis of state-time courses, state-wise functional connectivity,
power spectrum estimation, and coherence analysis. The detailed
descriptions of the aforementioned parts are listed below.

2.3. EEG preprocessing

The EEG signal preprocessing pipeline is as follows: Initially,
the raw signal undergoes a bad segment removal process. It is
then subjected to band-pass filtering in the frequency range of

1 http://modma.lzu.edu.cn/data/index/

0.5–70 Hz, in addition to notch filtering at 50 Hz to eliminate
artifacts due to motion, noise, and powerline interference. Next,
the EEG is re-referenced to the average electrode, followed by an
independent component analysis (ICA) procedure (Makeig et al.,
1995). The ICA removes components that are influenced by eye
movement, motion, heartbeat, and bad channels, which results in
preprocessed EEG signals. The aforementioned data preprocessing
steps were performed using the EEGLAB toolbox (Delorme and
Makeig, 2004), with the ICLabel plugin (Pion-Tonachini et al.,
2019) utilized for ICA component selection. We manually selected
and excluded the data with significant artifacts and bad channel
influence. A total of 43 eligible participants were included in the
study’s EEG dataset out of the 53 initially recruited individuals. The
preprocessed EEG segments ranging from 200 ms pre-stimulus to
800 ms post-stimulus for each participant were utilized as input,
and subsequently entered into the neural dynamic decoding model.

2.4. HMM-MAR model

The Hidden Markov Model (HMM) is a probabilistic graphical
model that is commonly used to model time-series data. It is
designed to describe a Markov process with a hidden, unknown
variable that depends only on the current state and not any
previous state. The HMM is comprised of two basic components:
a state sequence and an observation sequence. The state sequence
is a sequence of hidden states in a time series that transition
based on certain rules, while the observation sequence refers to
the data observed at each time point, which may or may not
be related to the state sequence. The basic assumption of the
HMM is that the observation sequence is generated only by the
corresponding state at each time point. To extract features from
time-series data and model multivariate time-series data, Fox
et al. (2009) proposed the Beta-Process Auto-Regressive Hidden
Markov Model (BP-AR-HMM), which combines the traditional
HMM with the autoregressive model (AR) and Beta Process
initialization. This model can automatically extract features from
time-series data and model multivariate time-series. Building
on the BP-AR-HMM model, Vidaurre et al. (2017) proposed a
full probabilistic representation of the multivariate autoregressive
model and used variational Bayesian inference to estimate the
model parameters.

To be specific, we denote the multichannel EEG signal as Ot ∈

RN , and the hidden states as Ht , where t 1, · · · , T. Assuming
Gaussian noise, the observation model could be depicted as:

Ot|Ht = k ∼ N

∑
l∈ρ

yt−lW
(k)
l ,

(k)∑ , (1)

where ρ presents the lags of the MAR model, W(k)
l presents the k-th

state AR coefficient matrix, and
∑(k) the diagonal noise covariance

matrix. The inverse of
∑(k) could be modeled with a Wishart

distribution, and Gamma distribution if diagonal.

(k)∑−1

∼Wishart(ı0,B0), (2)

-
(k)
ii ∼ Gamma(ı0,B0), (3)
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FIGURE 1

Schematic workflow of the proposed Hidden Markov Model (HMM).

The probability representation of the Markov dynamics can be
depicted as:

P
(
Ht = k1|Ht−1 = k2

)
= 2k1k2 , (4)

P
(
H1 = k

)
= ηk (5)

where 2k1k2 and ηk are the HMM-MAR model parameters to be
inferred, and are modeled with Dirichlet distribution:

2k ∼ Dir(ν0) (6)

η ∼ Dir(ξ0) (7)

where ν0 and ξ0 are the parameters inferred via the HMM-MAR
training process.

The Bayesian hierarchy governing the model’s parameters
was established from Eqs. (1∼7). The variational Bayes method,
which assumes additional factorizations in the parameter space
and requires conjugate prior distributions (Wang and Fan,
2019), was implemented for parameter inference. This approach
utilizes an iterative algorithm that operates on one group
of parameters at a time to minimize the free energy, a
quantity that is useful for monitoring and model selection.
The algorithm seeks to minimize the cost function known as
free energy, which is computed as the sum of the model’s
average log-likelihood, the Kullback-Leibler divergence (KL-
divergence) between the actual and factorized distributions, and
the negative entropy of the factorized distribution. The variational
approach involved alternating between a (variational) E-step and
M-step. The E-step involved estimating the probabilities of the
hidden states, while the M-step involved estimating the model
parameters. This statistic is described in detail in the previous
studies (Rezek et al., 2005), while others (Foti et al., 2014)
provide further mathematical elaborations on the algorithm and
cost function.

In the model implementation, we followed previous
research experiences (Tao et al., 2022) and specified the
number of hidden states as 6 and the order of the MAR
model as 3 in the HMM framework. Additionally, the
stochastic inference was performed using a batch size of 15,
forget rate of 0.7, and a base weight of 0.9. The experiments
were implemented on a high-performance computing unit

equipped with a 48-core Intel Xeon E5-2696 processor and
192GB of RAM.

3. Results

3.1. Regression results for PHQ-9 score

We partitioned the preprocessed EEG data of all participants
into six groups, consisting of MDD patients presented with happy,
sad, and fearful stimuli, and healthy controls presented with happy,
sad, and fearful stimuli. We extracted EEG segments ranging from
200 ms before stimulus onset to 800 ms post-stimulus onset from
each group and concatenated all trials of all participants within
each group to form six long sequences. We then applied the
HMM-MAR model to each sequence for neural dynamic activity
modeling. To verify the decoding ability of the HMM-MAR model
for the dynamic neural activity of MDD patients and healthy
controls in response to the three types of stimuli, we regressed
the state time series obtained from the model for each of the
six groups against the PHQ-9 scores of each participant within
each group, due to its suitability for measuring the severity of
depressive symptoms. The regression results are shown in Figure 2
and Table 1.

In order to better demonstrate the results. Due to the relatively
concentrated PHQ-9 scores of the healthy control group and the
scattered scores of the MDD group, we used a box plot to depict the
relationship between the actual PHQ-9 scores of the healthy control
group and the estimated values obtained through state time series
regression and used a scatter plot to describe the MDD group. The
comparison details were illustrated in Figure 2.

In Table 1, we quantitatively compared the regression
performance of the PHQ-9 scores for the six experimental and
control groups using the MAE, MSE, and RMSE. From Figure 2
and Table 1, we observed that regardless of the MDD or HC group,
using the HMM-MAR model to obtain the state time series of
participants’ brain signals when exposed to sad face stimuli resulted
in the best regression of participants’ PHQ-9 scores. This indicates
that the HMM-MAR model is more capable of decoding the neural
dynamics of the brain when processing sad emotions, and the brain
state under sad stimuli presents a more obvious Markov property.
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FIGURE 2

Regression results regarding the PHQ-9 scores.

3.2. State-time courses analysis

To examine the inferred states, global temporal statistics were
calculated and analyzed. In this work, we calculated the interval
times of each HMM state in each of the six experimental and

control groups. The switching rates of each subject for each group
were also calculated and compared, shown in Figure 3. The interval
times for each group are composed of six vectors indicating
the number of time points between state visits. The results in
Figure 3 show that in the six experimental groups, the interval
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TABLE 1 Comparisons among six groups on PHQ-9 score regression.

H_F H_H H_S M_F M_H M_S

MAE 1.59 2.04 1.43 4.85 4.15 3.33

MSE 3.55 5.49 2.96 52.59 42.08 16.30

RMSE 1.88 2.34 1.72 7.25 6.49 4.04

H_F, HC group with fear face stimuli; H_H, HC group with happy face stimuli; H_S, HC
group with sad face stimuli; M_F, MDD group with fear face stimuli; M_H, MDD group with
happy face stimuli; M_S, MDD group with sad face stimuli; MAE, Mean Absolute Error; MSE,
Mean Square Error; RMSE, Root Mean Square Error.

time distributions of the six states are relatively evenly distributed.
Although some states have more outliers, there is no dominant
state in any of the groups. This demonstrates that the neural
dynamic state time series decoded by the HMM-MAR model is
evenly distributed. Meanwhile, we also provided measurements of
the state switching rate for each subject, which can be understood as
a measure of stability per subject. The results presented in Figure 3
reveal that the switching rates among subjects vary considerably
in response to fearful or happy facial stimuli, whereas such rates
remain relatively consistent when MDD subjects are presented with
sad facial stimuli. These findings align with the conclusions drawn
in the previous section.

3.3. State-wise neural dynamic

Our study performed a frequency domain analysis of the states
(states 1-6) inferred by the HMM-MAR model in the MDD and
HC control groups and computed the coherence between channels.
To partition the 128 EGI-Geodesics EEG cap electrodes into six
regions, we followed the method proposed by (Sleeping) et al.
Specifically, we divided the electrodes into six regions, namely
Frontal, Central, Right Temporal, Left Temporal, Parietal, and
Occipital, based on their layout. The coherence between EEG
channels was calculated for three distinct emotional facial stimuli
in the MDD and HC control groups, we preserved the top 1%
coherences and generated a connectivity map as presented in
Figure 4.

The following conclusions can be drawn from Figure 4. For
both the MDD and HC groups presented with sad facial stimuli,
the coherence between the frontal electrode and other electrode

regions is significantly reduced in the MDD group, indicating
weakened channel connectivity. This may be related to frontal
lobe dysfunction in MDD patients, resulting in different brain
connectivity patterns induced by sad facial stimuli compared to
HC. There was no significant difference between the MDD and HC
groups presented with fearful facial stimuli, while in the experiment
with happy facial stimuli, MDD patients showed differences in
connectivity patterns in the right temporal and occipital regions
compared to HC. This may be related to the different brain activity
patterns of MDD patients in response to happy stimuli.

3.4. Power spectrum

We adopted a parametric autoregressive modeling approach,
namely the MAR, to estimate the power spectra of different neural
dynamic transitions observed in the MDD and HC control groups
during three distinct stimuli. It is noteworthy that the MAR model
for power spectrum estimation is not the same as that used in
the HMM-MAR model. An MAR model with a model order of 3
was trained separately in the process. Specifically, we computed the
power spectra of the six states in six control groups (MDD and HC)
across Delta (0–4 Hz), Theta (4–8 Hz), Alpha (8–12 Hz), and Beta
(12–40 Hz) frequency bands. To accommodate space limitations,
we present the scalp maps of the power spectra estimation, with
each map normalized to 0∼1, in response to the sad emotional
facial stimulus for the MDD group in Figure 5.

Utilizing power spectra, we can approximate the level of
activation of brain regions corresponding to scalp EEG electrodes.
From Figure 5, the following observations can be made: Firstly, in
terms of distribution, when presented with sad facial stimuli, the
activation regions in MDD patients are mainly distributed in the
parietal and frontal lobes. In the vertical direction, the power of the
electrode corresponding to the parietal lobe in the delta frequency
band is higher, indicating stronger activation, while in the theta and
alpha frequency bands, activation is observed in both the parietal
and frontal lobes. Secondly, different neural dynamic patterns
decoded by HMM-MAR exhibit differences in activation patterns.
In the horizontal direction, differences in activation regions for
states 1 to 6 could be observed in all frequency bands, indicating the
presence of Markovian properties in the brain activation patterns of
MDD patients when presented with sad stimuli.

FIGURE 3

Interval times (upper row) and switching rates (lower row) of the decoded state-time courses.
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FIGURE 4

Channel-wise coherence connectivity for each HMM states.

4. Discussion

This study aimed to decode the neural dynamics of EEG
signals in response to happy, sad, and fearful facial stimuli in
both clinically diagnosed MDD patients and healthy controls,
using the HMM-MAR model. Specifically, we trained the HMM-
MAR on the MODMA dataset using two groups of samples,
MDD and HC, exposed to stimuli of happiness, fear, and sadness,
respectively, to obtain the state time series. To validate the
accuracy of the model, we designed a regression task that utilized
the state time series to predict the participants’ PHQ-9 scores,
yielding favorable regression accuracy. In Figure 3, we observe that
MDD patients exhibit stable and lower conversion rates between
different brain states compared to the other groups. This suggests
that MDD patients have a reduced tendency for transitioning

into brain activity states associated with stimuli evoking sadness.
Consequently, it implies that sad emotional stimuli may not
elicit as active brain responses in MDD patients. To explore
the neurophysiological basis underlying this phenomenon, we
computed the coherence between channels within each HMM state
for the six experimental groups, as shown in Figure 4. Our analysis
reveals a decreasing trend in frontal lobe connectivity in the MDD
group when presented with grief stimulus materials. Furthermore,
in Figure 5, we calculated the power spectral density for various
frequency bands. Notably, we observed significant activation in the
frontal and parietal regions in the theta and alpha frequency bands.
This finding supports the association between the generation of
sadness emotions and the frontal and parietal regions. Coupled
with the reduced frontal connectivity observed in Figure 4, we can
infer that the abnormal response of depressed patients to sadness
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FIGURE 5

Power spectrum topology for each HMM states.

stimuli is related to functional abnormalities in the frontal and
parietal regions.

Our study demonstrates that the HMM-MAR model can serve
as a decoding tool to analyze the neural dynamic processes of
brain activity in cognitive tasks. Based on coherence analysis of
brain connectivity patterns and power spectrum estimation results,
significant differences in brain activation and connectivity patterns
were observed between MDD patients and HC when presented
with three emotional stimuli, which may suggest a risk for MDD
in clinical practice. Furthermore, regression experiments revealed
that the neural dynamic processes of MDD patients when presented
with sad facial expressions exhibited Markovian properties and
could be well characterized by the HMM-MAR model.

Regarding the differences in brain connectivity and activation
between MDD and HC, there is ample evidence from previous
studies that MDD may be a brain disorder characterized by changes
in brain structure and function resulting from damage to certain
brain tissues or abnormal neural circuits. The caudal middle frontal
cortex (MFC) and the superior frontal gyrus (SFG) are structures
of the frontal lobe, whose structural change has been considered
to manifest anatomic abnormalities in MDD (du Boisgueheneuc
et al., 2006), whose cortex volume saw a significant reduction
with subjects suffered from long term depression (Lai et al., 2000).
Besides, the degeneration in the temporal lobe was believed to be
associated with the occurrence of first-episode MDD in a meta-
analytical study (Bora et al., 2012). According to a morphology

study on 77 adolescents aged 11–21 (Wang et al., 2011), the
insula, the temporal pole, the parahippocampal, and the cingulate
cortices were major components of the paralimbic zone (PZ),
which circles around the medial and basal aspects of the cerebral
hemispheres, plays a critical role in the regulation of emotional
and neurovegetative functions that were disrupted in the core
features of MDD. Moreover, accumulating pieces of evidence have
revealed that MDD might originate in abnormal neural circuits.
Consistent evidence widely distributed within the Default Mode
Network (DMN) tissues was found in a functional MRI study that
the MDD patients differed from controls during the performance
of emotional tasks. Reduced functional connectivity and altered
negative BOLD responses within the DMN were also reported in
functional MRI studies (Grimm et al., 2009; Belleau et al., 2015;
Yan et al., 2019). Therefore, the differences in connectivity and
activation patterns between MDD and HC groups decoded by
HMM-MAR can be supported by evidence in both brain structure
and function. This suggests the scientific validity of using HMM-
MAR for decoding dynamic neural processes.

The clinical impacts of the proposed method are in three
folds. Firstly, the differential responses of the HC and MDD
groups to sad facial stimuli, as analyzed using the HMM-MAR
model, may represent a potential clinical diagnostic indicator for
MDD. This approach could serve as a reference to determine
whether an individual exhibits characteristics of MDD in its early
stages. Furthermore, the property of Markovian dynamics observed
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in MDD patients when presented with sad facial emotional
stimuli can provide guidance for the use of rTMS, tDCS, ECT,
and other devices in clinical MDD treatment (Caldieraro and
Cassano, 2019). This finding can assist clinical therapists to guide
physical interventions at appropriate stages of treatment. Finally, a
comprehensive analysis of the distinct transition patterns between
the HC and MDD, as suggested by the proposed model, may
facilitate the identification of unique differences in brain functional
connectivity. This information could be of immense value in the
development of novel medications for MDD.

The present study has the following limitations. Firstly,
although the HMM-MAR model demonstrated its ability to capture
the neural dynamic transition in the experiment, the order of HMM
states was not constrained, leading to the HMM states obtained not
being directly related to brain networks, such as the DMN, which
is widely believed to have physiological and structural significance.
Additionally, the experiment was conducted only on a dataset of
128-channel EEG task data from 53 subjects, and further studies
should apply the model to more MDD datasets to validate the
universality and the reproducibility of results.

To the best of our knowledge, this is the first study to employ
HMM-MAR to decode the neuronal dynamic of MDD patients.
Compared with the previous machine-learning or deep-learning-
based studies, which regarded the decoding model as a black
box, this work has its superiority in the spatiotemporal pattern
interpretability by utilizing the Hidden Markov Model. It is also
noteworthy that the proposed method highly coincides with the
clinical routine. Therefore, integrating this decoding model into
the clinical workflow will be beneficial to both MDD diagnosis and
permit timely interventions based on the diagnosis.
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