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Bridging the BCI illiteracy gap: a
subject-to-subject semantic style
transfer for EEG-based motor
imagery classification

Da-Hyun Kim, Dong-Hee Shin and Tae-Eui Kam*

Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea

Introduction: Brain-computer interfaces (BCIs) facilitate direct interaction

between the human brain and computers, enabling individuals to control external

devices through cognitive processes. Despite its potential, the problem of BCI

illiteracy remains one of the major challenges due to inter-subject EEG variability,

which hinders many users from e�ectively utilizing BCI systems. In this study,

we propose a subject-to-subject semantic style transfer network (SSSTN) at

the feature-level to address the BCI illiteracy problem in electroencephalogram

(EEG)-based motor imagery (MI) classification tasks.

Methods: Our approach uses the continuous wavelet transform method to

convert high-dimensional EEG data into images as input data. The SSSTN 1) trains

a classifier for each subject, 2) transfers the distribution of class discrimination

styles from the source subject (the best-performing subject for the classifier,

i.e., BCI expert) to each subject of the target domain (the remaining subjects

except the source subject, specifically BCI illiterates) through the proposed style

loss, and applies a modified content loss to preserve the class-relevant semantic

information of the target domain, and 3) finally merges the classifier predictions

of both source and target subject using an ensemble technique.

Results and discussion: We evaluate the proposed method on the BCI

Competition IV-2a and IV-2b datasets and demonstrate improved classification

performance over existing methods, especially for BCI illiterate users. The ablation

experiments and t-SNE visualizations further highlight the e�ectiveness of the

proposed method in achieving meaningful feature-level semantic style transfer.

KEYWORDS

brain-computer interface, electroencephalogram, motor imagery, BCI illiteracy, style

transfer, convolutional neural network

1. Introduction

Brain-computer interface (BCI) is a core technology that establishes a direct

communication pathway between the human brain and an external device (Nicolas-Alonso

and Gomez-Gil, 2012; Chaudhary et al., 2016; Jeong et al., 2022). Electroencephalography

(EEG) has been actively used for current BCI systems in order to record the brain signals,

due to its non-invasive, simple operation, relatively low-cost, and high temporal resolution

(Lotte et al., 2007; Abiri et al., 2019). Over the last few decades, several neurophysiological

studies (Decety, 1996; Munzert et al., 2009; Leeuwis et al., 2021) have shown that during

motor imagery (MI), there are increased connections between sensorimotor areas in the

human brain. In other words, MI can activate similar neural activities to those involved in

actual motor movement (Case et al., 2015), and therefore it is feasible to identify the MI

intention of the user by examining the EEG signals that exhibit unique patterns for each

movement type.
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In the MI-BCI paradigm, the user is instructed to imagine

performing a specific body movement, such as the left hand or

right hand, without actually executing the movement. During

the MI period, the brain produces characteristic patterns

of event-related desynchronization (ERD) and event-related

synchronization (ERS), which can be observed in specific EEG

frequency bands (Neuper et al., 2006; Pfurtscheller et al., 2006).

Specifically, it is well-known that different ERD/ERS patterns are

associated with different types of MI tasks, e.g., mu and beta

frequency bands are reactive to imagined hand movements (Jeon

et al., 2011). In this respect, EEG-based MI-BCI systems can be

developed by using the ERD/ERS patterns to translate the imagined

movement for recognizing the user’s intention. As a result, MI-BCI

has become one of the most promising sub-fields in BCI research

and extensively studied over the past several years (Hamedi et al.,

2016; Deng et al., 2021; Jeong et al., 2022).

Despite the great potential of MI-BCI, there is one major

challenge to be addressed before using it in a real-world BCI

application. In the MI-BCI research, it is widely recognized that

there are substantial individual differences in the capability to

perform a given MI task (Ren et al., 2020). Specifically, individual

differences refer to the natural variation in personality traits,

cognitive abilities, motivation, and other innate characteristics

among individuals. Several studies (Allison et al., 2010; Volosyak

et al., 2011; Wriessnegger et al., 2020) have found that these

individual differences can influence MI-BCI performance and level

of success in performing MI tasks. For instance, individuals who

have low levels of motivation or who have difficulty maintaining

attention may struggle with MI-BCI training and may not achieve

the desired performance (Thompson, 2019). In the context of MI-

BCI research, these aforementioned individuals are considered to

have BCI illiteracy, which refers to the lack of knowledge and

proficiency in using a BCI system within a standard training period

(Lee et al., 2019; Volosyak et al., 2020). Based on previous studies

(Becker et al., 2022; Tibrewal et al., 2022), around 15–30% of

BCI users fail to produce the desired EEG patterns in order to

control a BCI device accurately. Moreover, few studies (Zhang et al.,

2020; Wang et al., 2021) have reported that BCI illiteracy subjects

typically achieve classification accuracy below 70% and decrease the

average performance of all subjects. This inability derived from BCI

illiteracy can limit the applicability of the BCI system to be used by

individuals who do not have specialized BCI knowledge or training.

Thus, understanding and addressing BCI illiteracy is one of the

major challenges for advancing the development of BCI technology

(Ahn and Jun, 2015; Thompson, 2019).

In order to tackle the BCI illiteracy problem, various machine

learning (ML)-based approaches (Vidaurre and Blankertz, 2010;

Vidaurre et al., 2011; Tao et al., 2022) have been developed. One

such approach is co-adaptive learning (Vidaurre and Blankertz,

2010), which uses the ML algorithm, i.e., linear discriminant

analysis (LDA), to help users achieve closed-loop feedback. During

the feedback process, both the user and the ML algorithm adapt

to each other, thereby improving the overall performance of the

BCI system. Another ML-based approach is based on multi-kernel

learning (Tao et al., 2022) that aims to make the distribution of

features closer to each other, while maximizing the divisibility

of categories. Despite the reasonable performance achieved by

ML-based approaches, they often rely on heuristic statistical

reasoning and assumptions such as linear separability (Medin

and Schwanenflugel, 1981) and same feature space assumption

(Girolami, 2002). Moreover, theseML-based approaches may suffer

from high computation costs when dealing with high dimensional

data due to the curse of dimensionality (Bach, 2017). The EEG

data are considered as inherently high-dimensional because they

are typically collected using multiple electrodes with various spatial

and temporal features. Thus, ML-based approaches are even more

susceptible to these high-dimensionality issues.

Recently, a number of deep learning (DL)-based approaches

(Tan et al., 2018; Gao et al., 2020; Zhao et al., 2020; Jeon et al., 2021;

Sun et al., 2022) have been applied to the BCI illiteracy problem

and achieved better performance compared to conventional ML-

based approaches. In particular, deep transfer learning based on

domain adaptation (Tan et al., 2018; Zhao et al., 2020; Jeon et al.,

2021) has gained attention due to its capability to extract common

feature representations. Specifically, Zhao et al. (2020) proposed

a deep representation-based domain adaptation (DRDA) method

that learns significant domain invariant features from multiple

subjects (source domain) and uses that information to improve the

performance on a single subject (target domain). Jeon et al. (2021)

further developed it by utilizing mutual information to estimate the

relevance of features and then extracting subject-invariant feature

representations that are relevant to the classification task.

Even though these above-mentioned domain adaptionmethods

have attained promising results, there are some disadvantages

in their real-world BCI applications. First of all, these methods

require a significant amount of labeled data in order to achieve

good performance because they need to extract the common

domain-invariant representations from multiple subjects (Sun

et al., 2022). This can be problematic in BCI scenarios where

large datasets do not exist or labeled data from multiple subjects

are expensive to obtain in terms of time and cost. Second, they

may suffer from negative transfer due to the large distributional

discrepancy when extracting the common representation from

multiple subjects (Jiménez-Guarneros and Gómez-Gil, 2021).

Specifically, the negative transfer refers to a phenomenon that

occurs when transferred knowledge or information from the source

domain hinders the performance of the classifier on the target

domain instead of improving it (Cao et al., 2018). Third, in real-

world BCI applications, the EEG data from different domains vary

substantially due to intra- and inter-subject variability (Saha and

Baumert, 2020) that involves physiological noise level (Sanei and

Chambers, 2013), signal quality (Ball et al., 2009), or emotions

(Zhao et al., 2021). Therefore, these complex domain shifts derived

from intra- and inter-subject variability can make it very difficult

to find common domain-invariant feature representations across

multiple subjects (Saha and Baumert, 2020). Hence, conventional

domain adaption methods may fail to extract useful information

from the source domain because of the large discrepancy within

multiple sources. Besides, the EEG data of most BCI datasets

are recorded over multiple sessions. So this session-to-session

variability makes it even more difficult to construct a robust

classifier across multiple subjects over multiple sessions.

Style transfer is also one approach for transferring between

these domains. Traditional style transfer methods directly
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processed the image’s content by applying various filters, machine

learning, or probabilistic models (Ma et al., 2020). Gatys et al.

(2015b, 2016a) proposed neural style transfer using convolutional

neural networks, causing a paradigmatic revolution in the field,

and this approach to neural style transfer became mainstream.

Moreover, feedforward neural net-based approaches or iterative

optimization methods (Isola et al., 2017; Yu et al., 2019) were

proposed. These methods using style loss and content loss,

effectively transfer the texture of a style image to a content image.

However, they still have the limitation that they are mainly

effective for the visual style and content. This is an important

restriction because the nature of EEG data is such that differences

are not visible.

To address these inter-subject variability issues, Sun et al. (2022)

proposed another style transfer approach for the EEG classification

tasks. Specifically, they introduced a subject transfer neural network

(STNN) that directly transforms the data distribution from BCI-

illiterate subject into BCI-expert, known as “golden subject”, by

utilizing a subject-to-subject transfer approach. More precisely,

the STNN model aims to learn a one-to-one style transfer

between the golden subject (source domain) and the BCI-illiterate

subject (target domain) without using any domain discriminator

nor explicit regularizers. During training, the STNN uses only

classification loss and perceptual loss, which compares the feature

differences between source and translated target domains in order

to facilitate the style transfer process. However, there are some

limitations and drawbacks to the STNN. The main problem is that

they only focus on transferring the style of the source domain

and do not manage to preserve any content information from the

target domain. Therefore, they may have difficulties in generating

diverse and plausible data distributions containing desired content

information from the target domain.

In this study, we first transform the high-dimensional EEG

data into an image by using a continuous wavelet transform

technique, and then we transfer the class-discriminative style

of the source domain (BCI expert) to the target domain (BCI

illiterates). In particular, we introduce a modified content loss to

preserve the sementic content information of the target domain

even after the style transfer process. Because the translated image

of the target domain obtains class-discriminative characteristics

from the source domain, we can improve the classification

performance by leveraging the source classifier trained on the

source domain data. Hence, our proposed method can alleviate the

BCI illiteracy problem.

The main contributions of our proposed method are

as follows:

1. To tackle the BCI illiteracy problem, we propose a subject-

to-subject semantic style transfer network (SSSTN) that allows

for effective and seamless interaction between users and the

BCI system.

2. Unlike previous approaches that mainly focus on visible

information, we introduce the semantic-aware style transfer

loss function consisting of (i) a content loss to preserve the

semantic identity information of the target domain, (ii) a

style loss to transfer the semantic texture information of the

source domain, and (iii) a semantic loss to further improve the

classification performance.

3. By utilizing a subject-to-subject transfer strategy that performs

a one-to-one mapping from the target domain to the

source domain, our proposed method demonstrates high data

efficiency, requiring only labeled data from a single subject in

each domain dataset.

4. Our proposed method facilitates the construction of an

ensemble classifier by integrating two subject-dependent

classifiers—one from the target domain and the other from

the source domain. This ensemble approach enables the fusion

of diverse feature representations, resulting in a more robust

classification model.

Our proposed method is evaluated on the BCI Competition

IV-2a and IV-2b datasets, with experimental results showing

that SSSTN outperforms other competing approaches in mean

accuracy, particularly for BCI illiterates. Additionally, we

performed an ablation study to assess the efficacy of each

component within our proposed method. We also conducted

ablation studies and visualization using t-SNE (Van derMaaten and

Hinton, 2008) to evaluate the efficiency of each component within

the proposed method. The experimental results demonstrated that

the proposed method achieved meaningful feature-level semantic

style transfer results.

2. Materials and methods

2.1. Dataset and preprocessing

2.1.1. Dataset description
In this work, we used two publicly available benchmark

datasets, namely BCI Competition IV-2a (Brunner et al., 2008)

and 2b (Leeb et al., 2008), to evaluate our proposed method. The

BCI Competition IV-2a dataset consists of EEG recordings from 9

healthy subjects, each performing four-class motor imagery tasks

involving left hand, right hand, both feet, and tongue movements.

For each subject, there were two separate EEG recording sessions

that took place on different days. In each session, there were 72

EEG trials for each motor imagery task, resulting in a total of

288 EEG trials per subject. Each EEG trial lasted for 6 s, starting

with a fixation cross, a cue followed by the motor imagery task.

The EEG signals were recorded using 22 Ag/AgCl electrodes on

the scalp in the 10-20 system (Homan et al., 1987), and the EEG

data was sampled at 250 Hz. The BCI Competition IV-2b dataset

comprises MI task experiments for two classes (right- and left-

hand movements). The competition’s objective was to classify MI

tasks using EEG signals recorded from C3, CZ, and C4 channels. A

total of 9 subjects participated in the experiment, with five sessions

recorded for each subject. In each session, we used 60 trials for each

motor imagery task, resulting in a total of 120 EEG trials per subject.

Otherwise, the sampling rate and recording method are the same as

for the BCI Competition IV-2a.

2.1.2. Data preprocessing
For each trial, we obtained 4.5 s of EEG data by including 0.5

s prior to the start cue and 4.0 s after it (Schirrmeister et al., 2017).

We then applied a bandpass filter ranging from 0.5 to 40 Hz and

utilized exponential moving standardization to preprocess the raw
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EEG data. As a result, the preprocessed EEG signals consisted of a

total of 1,125 time points (4.5 s × 250 Hz sampling rate) from 22

electrodes for the BCI Competition IV-2a dataset.

In this study, we decided to use a wavelet transform (Rioul

and Duhamel, 1992) to transform the EEG data into images in

order to use it as input data for our proposed SSSTN. Note that

the use of wavelet transform is advantageous in our study for

several reasons. Firstly, it allows for the effective representation

of EEG signals in a multi-scale and multi-resolution manner,

and this richer representation helps the algorithm to work with

more informative data for the style transfer process. Secondly,

transformation to images allows a convolutional neural network

(CNN) to capture spatial-spectral-temporal features from multiple

EEG representations from different electrodes, making it easier to

perform semantic style transfer. Thus, after data preprocessing,

we employed the continuous wavelet transform (CWT) technique

(Rioul and Duhamel, 1992) to translate a one-dimensional signal

from the temporal domain to a two-dimensional signal in the

temporal-spectral domain. Specifically, the application of CWT

to the EEG signal yielded a two-dimensional matrix, commonly

referred to as a scalogram. Note that this scalogram matrix

comprises the absolute values of the wavelet coefficients at different

wavelet scales for the given EEG signals. Hence, this matrix

can provide a detailed representation of the EEG signals in the

temporal-spectral domain. By treating the scalogram matrix as an

image, the 2D-CNN can be employed to extract spatial-spectral-

temporal features and classify the MI tasks. Mathematically, the

EEG signal x(t) can be transformed by CWT operation such

as follow:

Xw

(

a, b
)

=
1

|a|1/2

∫ ∞

−∞

x (t) ψ

(

t − b

a

)

dt, (1)

where a ∈ R
+ and b ∈ R denote the scaling parameter for

the spectral domain and the shifting parameter for the temporal

domain, respectively (Rioul and Duhamel, 1992). Note that ψ(t)

represents the Morlet wavelet (Grossmann and Morlet, 1984),

which is one of themost widely used wavelet base functions because

it provides good resolution in both temporal and spectral domains.

To be more specific, theMorlet wavelet ψ(t) is expressed as follow:

ψ (t) = exp

(

−
β2t2

2

)

cos (π t) , (2)

where β represents the admissibility condition that determines the

balance between the spectral resolution and the temporal resolution

of the waveletMorlet. The images of each subject obtained through

the CWT process are used as input data for the generator in the

style transfer process.

2.2. Methods

Here, we propose a Subject-to-subject Semantic Style Transfer

Network (SSSTN) for tackling the BCI illiteracy problem in EEG-

based MI classification tasks. Unlike conventional style transfer

networks, our SSSTN not only performs style transfer but also

transfers and generates class-discriminative data while taking into

account the semantics of the input data. Since we transform an

EEG signal into an image by using the CWT method, the stylistic

differences between the source and target data may not be easily

distinguishable as to be visible. Consequently, we think that existing

style transfer approaches are not suitable for this task. To address

this issue, we introduce a modified style loss and content loss that

are tailored to this specific task of transferring semantic style and

semantic content information in an effective manner. During the

transformation of the target subject (especially, BCI illiterates) data

into the source subject (BCI expert) data, our SSSTN effectively

transfers and preserves the underlying semantic style and content

information at feature-level in order to ensure that the source

subject classifier is able to accurately classify the transformed data.

The overall flow of our proposed method is depicted in Figure 1.

The training process of SSSTN can be divided into three phases: (1)

Pretraining, (2) Style Transfer, and (3) Prediction and Ensemble.

Detailed explanations of each phase are presented below.

2.2.1. Pretraining
In the pretraining phase, we train a classifier for each subject

using image data, i.e., obtained through the CWTmethod, and then

perform a classification task under the subject-dependent scenario

(subject-specific training). The primary objective of the pretraining

process is to train the classifier, which can accurately classify input

image data into one of the four distinct MI classes. The architecture

of the classifiers utilized in this process is represented in Figure 2.

The numerical values in the convolutional layer box represent

the kernel size, number of output channels, stride, and padding,

respectively. Note that the classifier architecture remains consistent

across all subjects, comprising two convolutional layers and one

dense layer. The convolutional layers are composed of batch

normalization, LeakyReLU activation, max pooling operation, and

dropout (Zhang et al., 2021). After each convolutional layer, a

squeeze-and-excitation (SE) (Hu et al., 2018) module is employed.

The SE module is responsible for capturing the important

channel-wise relationships, which is crucial in EEG signals where

interdependencies between channels are important, as each channel

represents an electrode. After each SE operation, the feature hl is

used to calculate the loss in the subsequent step of style transfer,

where l ∈ L = {1, . . . , L} denotes the l-th convolutional layer

of the classifier C. Our proposed model utilizes a total of two

convolutional layers, denoted as L = 2 in our case. After the

two convolutional layers and the SE modules, the dense layer

produces the prediction. The dense layer is a fully-connected layer

that flattens the input features and then performs fully-connected

operations, returning them as predictions for the four classes.

Finally, classifiers are trained with the following classification loss:

Lcls = −

K
∑

k=1

y(k) log ŷ(k), (3)

where K denotes the total number of classes. In our case, each

classifier performs a 4-class classification task, which sets the value

of K to 4. Additionally, during this stage, we identify the subject

with the highest classification performance to serve as the source

subject for style transfer, while designating all other subjects as

target subjects.
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FIGURE 1

Overview of the proposed SSSTN framework. The SSSTN consists of three phases: (1) pretraining, (2) style transfer, (3) prediction and ensemble. The

input variables, xT and xS, represent the target and source subject data, respectively, while xS′ signifies the target data transformed by the generator

G. During the pretraining phase, the classifiers CT and CS are pretrained using xT and xS, respectively. In the style transfer phase, only G is trained.

Content loss is computed using features hl
T and hl

S′ from the l-th convolutional layer after passing xT and xS′ through CT and CS, respectively. Style

loss is calculated between hl
S′ and hl

S after passing xS′ and xS through CS, respectively. Semantic loss is computed between the predicted label ŷS′ ,

which is obtained by passing xS′ through CS, and the ground-truth label yT . In the last phase, the final prediction is generated using a soft voting

ensemble of ŷS′ and ŷT , where ŷT is the predicted label for xT obtained from CT .

2.2.2. Style transfer
It is worth noting that the objective of the style transfer phase in

our study differs from that of general style transfer approaches. In

general style transfer, the style is typically represented by the texture

or color of the image, while the content refers to the object depicted

in the image. However, the semantic style and content in our

study are not defined by visible textures, colors, objects, or general

scenery. As a result, they may not be immediately apparent or easily

recognizable in the image data. As previously mentioned, there

exist substantial inter-individual differences in EEG characteristics

within MI-BCI (Ren et al., 2020). Therefore, even if multiple

subjects are trained with the same classifier structure, the features

of each subject are represented in distinct feature spaces. Among

these feature spaces, the feature space of the source subject with

the highest classification performance, which we refer to as BCI

experts, contains source features that are well-classified by the

source classifier. It is reasonable to assume that this feature space

is where the source classifier performs effectively. Thus, if the

generator can accurately map the target features to the source

feature space while retaining class-relevant feature representation,

the resulting transformed features can be expected to be effectively

classified by the source classifier. In this context, the class-relevant

feature representation of the target feature is considered as the

content that should be preserved during the transfer process, and

the feature space where the source feature is located is treated as

the style that should be applied to the target data.

In the style transfer phase, the generator G is responsible

for subject-to-subject style transfer by transforming the target

data from each target subject to align with the style of a single

source data (in our specific case, subject 3 was selected as the

source). The primary objective of G is to transform the input

image in such a way that the resulting target data reflects

the style of the source data at feature-level, while concurrently

preserving the content of the target data. This is achieved by

effectively mapping the target features to the source feature space,

enabling the transformed features to be accurately classified by the
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FIGURE 2

The architecture of the classifier C in the proposed framework. The dimensions of the input image are denoted by C, F, and T, corresponding to the

number of channels, frequencies, and time points, respectively. The kernel size in each convolutional layer is followed by a number indicating the

number of output channels. The variables s and p denote the stride and padding used in the convolutional layers, respectively. The activation

function used in this architecture is LReLU, which stands for Leaky ReLU. The output features of the first and second convolutional blocks are

represented as h1 and h2, respectively, and are utilized to calculate the loss. Finally, the number written in the dense layer indicates the dimension of

the output feature, resulting in a prediction of size 4 at the end.

source classifier. The architecture of G follows an encoder-decoder

structure as illustrated in Figure 3. The encoder module consists

of three convolutional layers, each with batch normalization,

LeakyReLU activation, and dropout. The decoder module, on

the other hand, consists of three transposed convolutional layers.

Notably, the first and second transposed convolutional layers are

followed by a self-attention layer (Vaswani et al., 2017; Zhang

et al., 2019). The self-attention layer is incorporated into the

generator to enhance its capability to selectively emphasize relevant

features in the input data that are crucial for precise classification

during the transformation of target data into source data (Sun

et al., 2022). After each self-attention layer, batch normalization,

LeakyReLU, and dropout are applied to the encoder. The output

image generated by G is of the same size as the input image. It

is noteworthy that during the entire style transfer process, the

pretrained source classifier CS and target classifier CT remain fixed,

while G is the only network being trained. The entire loss function

of G consists of style loss, content loss, and semantic loss, which are

combined to guide the network toward the desired outcome.

The features hlS′ and h
l
S are obtained by passing the transformed

and source data, xS′ and xS, respectively, through the l-th

convolutional layer of CS. The objective of the style loss is to

align the feature distributions of the transformed target features hlS′
and the style features hlS in the feature space. This is achieved by

measuring the discrepancy between the Gram matrices of hlS′ and

hlS (Gatys et al., 2015b, 2016a). By minimizing the style loss, the

distribution of hlS′ becomes more similar to that of hlS. The style loss

can be mathematically defined as follows:

Lstyle =

N
∑

i=1

KL
(

σ

(

Gr
(

hlS′
)) ∥

∥

∥
σ

(

Gr
(

hlS

)) )

,

Grlij =

M
∑

m=1

hlimh
l
jm,

(4)

where KL and σ represent the KL divergence and softmax

activation function, respectively, while Gr stands for the Gram

matrix and N represents the sample size. The Grlij is the inner

product between vectorized feature maps i and j in layer l, and the

M indicates the total number of spatial locations in the feature map

(Gatys et al., 2015a, 2016b). In order to achieve further semantic

style consistency between target and source data, we employed the

Gram matrix-based style loss (Gatys et al., 2015a) in conjunction

with the Kullback-Leibler divergence (KL divergence) (Kullback

and Leibler, 1951). The application of Gram matrices has become

a widely adopted technique for matching second-order statistics

between different feature activations in various studies (Gatys et al.,

2015a, 2016b; Huang and Belongie, 2017). Building upon previous

studies using Gram matrices, we utilize the KL divergence with a
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FIGURE 3

The architecture of the classifier G in the proposed framework is shown, with deconv representing the transposed convolutional layer. All other

notations used are consistent with those shown in Figure 2.

softmax function applied to the Grammatrix representations of hlS′
and hlS as the style loss. Of note, the KL divergence represents the

distance between two distributions. By minimizing the style loss

based on KL divergence between the Gram matrix representations

of hlS′ and hlS, the generator G can bring the distribution of hlS′
closer to that of hlS, both of which are based on the feature

space of CS. Consequently, our proposed approach results in xS′

being better classified by CS, thereby achieving improved style

transfer performance.

Our proposed style loss serves as a regularization technique for

the target data (xT) by guiding G to transform it in a direction

that incorporates more of the semantic style of the source data (xS)

(Huang et al., 2022). However, unilaterally transferring only style

information can result in negative transfers. To address this issue,

we introduce a content loss term that enforces the preservation of

the semantic content in xT before and after the transformation. The

mathematical formulation of our content loss is provided below:

Lcont =
1

N

L
∑

l=1

(hlT − hlS′ )
2 , (5)

where N represents the sample size again and the features hlT are

obtained from the l-th convolutional layer of the target classifierCT .

The feature representation hlT contains class-relevant information

of the target image xT , and thus transferring it to xS′ ensures that G

preserves the semantic content of xT during the transformation.

The ultimate objective of SSSTN is to ensure that the generated

image xS′ is correctly classified by CS. To achieve this, we use

semantic loss, which is designed to minimize the classification error

of xS′ in the MI classification task. Specifically, we compute the

cross-entropy loss between the prediction ŷS′ and true label yT of

xT . The resulting semantic loss is shown below:

Lsem = −

K
∑

k=1

y
(k)
T log ŷ

(k)
S′ , (6)

where K represents the total number of classes, which is 4 in our

specific case. The total loss is defined as follows:

Ltotal = αLstyle + βLcont + γLsem, (7)

where α, β , and γ are weighting factors for style, content, and

semantic loss, respectively. Recall that our style loss and content

loss do not directly enforce xS′ to match xS, but instead leverage CS

and CT to measure the similarity at feature-level between the two.

The goal of the style loss and content loss is to ensure that hlS′ is

mapped to a feature space that is similar to hlS, while preserving the

class-relevant representation of hiT . Therefore, minimizing this total

combined loss leads to xS′ having high classification performance

on CS.

2.2.3. Prediction and ensemble
After completing the style transfer phase, two predictions for

xT can be obtained. The first prediction, denoted as ŷS′ , is derived

from CS for xS′ that is generated by G. The second prediction,

denoted as ŷT , is derived from CT for xT . Next, we employ

a soft voting-based ensemble to obtain the final prediction by

combining the two predictions obtained for xT . A soft voting-

based ensemble is a well-established method of combining multiple

classifiers by taking into account both individual decisions and

probability values to assign data to a specific class (Sherazi

et al., 2021). Soft voting has been demonstrated to yield better

performance and results than hard voting since it utilizes an average
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of probabilities (Saqlain et al., 2019). As such, soft voting has

been widely used in many BCI studies due to its potential to

improve the classification performance (Mussabayeva et al., 2021;

Tasnim et al., 2022; Mehtiyev et al., 2023). In addition, soft voting-

based ensembles are effective in compensating for the weaknesses

of individual classifiers and can achieve even better performance

when combining classifiers trained on different features. The

increased diversity in feature space is the key factor behind the

performance improvement of ensemble classifiers, as it enhances

their robustness to both inter- and intra-subject variability (Corsi

et al., 2022). Due to the fact that CT and CS were trained on distinct

datasets, namely xT and xS, respectively, their feature spaces are

different and complementary. Consequently, by leveraging both

classifiers through an ensemble method, we can effectively utilize

multiple feature spaces to enhance the classification performance.

Mathematically, the final prediction ŷvoteT is obtained by employing

the soft voting-based ensemble method, as depicted below.

ŷvoteT = ŷS′ + ŷT , (8)

where ŷS′ and ŷT represent the predicted labels obtained from

subject-specific classifiers CS and CT , respectively. The final

prediction is determined by selecting the class with the highest

logit value in ŷvoteT . To sum up, our proposed style transfer

approach leverages subject-specific classifiers to facilitate the use

of the ensemble method, resulting in enhanced performance and

classification accuracy.

3. Results

3.1. Competing methods

We evaluated the proposed SSSTN on accuracy by comparing it

to the following competing methods on the BCI Competition IV-2a

and the BCI Competition IV-2b datasets. For a more accurate and

intuitive comparison, we categorized the competing methods into

signal-based ([1]∼[4]) and image-based ([5]∼[8]), as shown in the

Table 1.

[1] EEGNet (Lawhern et al., 2018) is tailored to exploit the

unique spatial and temporal structure of EEG signals,

combining temporal and spatial convolutions to capture

relevant information. The model is lightweight and adaptive

and has shown good performance for low computational cost

in various BCI studies.

[2] DeepConvNet (Schirrmeister et al., 2017) focuses on exploiting

the inherent spatial and temporal structure of the EEG data

by employing specialized convolutional layers that capture

the intricate patterns within the signals. Furthermore, the

authors introduce a visualization technique that allows for the

inspection and interpretation of the learned representations in

the context of the underlying neural processes.

[3] DRDA (Zhao et al., 2020) proposes a deep representation-based

domain adaptation approach to address non-stationary EEG

classification challenges. The methodology focuses on learning

transferable and discriminative representations by bridging the

gap between source and target domains, while simultaneously

preserving the class-discriminative information.

[4] MI (Jeon et al., 2021) presents a method that leverages

mutual information for deep representation learning in

brain-computer interface (BCI) applications. The proposed

approach aims to achieve subject-invariant and class-relevant

representations by optimizing mutual information between

the learned features and class labels, while minimizing

subject-related information. This method facilitates enhanced

generalization across subjects and increased classification

performance in BCI tasks.

[5] CWT-CNN (Mahamune and Laskar, 2021) employs two-

dimensional images, generated through continuous wavelet

transform (CWT) filter bank decomposition of pre-processed

EEG data using the multi-class common spatial pattern

(CSP) technique. These 2D images serve as the basis for

training a convolutional neural network (CNN), enhancing

classification accuracy.

[6] SE-CNN inspired by Zhang et al. (2021) is designed as the

backbone classifier for our SSSTN in this study. It consists of

two convolutional layers and SE modules, as described above.

Therefore, the performance of SE-CNN corresponds to the

version of the pretraining phase of SSSTN.

[7] STNN (Sun et al., 2022) proposes a style transfer approach that

trains a golden subject-specific classifier and transforms other

subjects into generators to fit that classifier. The generator is

trained by BCE loss and perceptual loss. It is most similar to the

proposed method, and the difference between the two methods

will be discussed later in the ablation study.

[8] SSSTN (ours) introduces a novel subject-to-subject semantic

style transfer network (SSSTN) designed to address the BCI

illiteracy problem. Our method incorporates a semantic-aware

style transfer loss function, which consists of content, style, and

semantic losses to preserve and transfer essential information

while improving classification performance. SSSTN consists

of three main phases: pretraining, style transfer, prediction

and ensemble.

3.2. Experimental settings

Regarding dataset splitting, we used the first of two sessions

of the BCI Competition IV-2a dataset as the training set and

the second as the test set during the training of SSSTN and all

competing methods. For the BCI Competition IV-2b dataset, the

first three sessions were used for training, while the remaining two

sessions served as test data. During the initial model training, we

allocated 10% of the training set for use as a validation set. We

then proceeded to tune the hyperparameter configuration based on

the model’s performance on this validation set. Due to the small

size of the dataset, we incorporated the validation set back into

the training set for the final model training. This allowed us to

leverage the full dataset for training, thereby potentially improving

our model’s performance.

As previously mentioned, we designated subject 3 as the source

subject and assigned the remaining subjects as target subjects for

the BCI Competition IV-2a dataset. Similarly, we selected subject 5

as the source subject and allocated the remaining subjects as target

subjects for the BCI Competition IV-2b dataset. We evaluated
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TABLE 1 Performance comparison of proposed and competing methods for subject-dependent scenario on the BCI Competition IV-2a dataset.

Input-type Method S01 S02 S03 S04 S05 (source) S06 S07 S08 S09 Mean

Signal-

based
EEGNet [1] 78.54 55.14 90.55 55.14 67.71 53.26 84.38 80.69 66.60 70.22

DeepConvNet [2] 77.40 52.14 85.75 68.39 74.00 59.19 72.96 80.10 80.93 72.32

DRDA [3] 83.19 55.14 87.43 75.28 62.29 57.15 86.18 83.61 82.00 74.70

MI [4] 79.51 56.60 89.23 67.36 72.22 60.07 68.06 78.47 79.17 72.30

Image-

based

CWT-CNN [5] 87.07 56.17 92.97 68.67 39.85 52.00 89.85 72.14 82.56 71.25

SE-CNN [6] 83.26 53.54 92.57 70.42 68.13 60.90 89.51 83.40 85.63 76.37

STNN [7] 82.29 47.57 92.57 60.76 66.67 57.99 85.76 77.08 80.90 72.40

SSSTN (Ours) [8] 86.46 58.33 92.57 75.35 80.90 67.01 93.06 85.76 86.46 80.66

The bold denotes the highest performance in each column.

the performance of each model with classification accuracy. All

competing methods were trained using the number of epochs and

hyperparameters mentioned in each paper. The training process of

the proposed SSSTN consists of pretraining and style transfer (since

the model is not trained in the prediction and ensemble process).

In the pretraining phase, each classifier was trained with a learning

rate of 0.0002 for 3,000 epochs. For the style transfer phase, the

generator was trained with a learning rate of 0.003 for 600 epochs

for the BCI Competition IV-2a dataset. The experimental settings

for the 2b dataset were consistent with those of the 2a dataset, with

the sole difference being a reduced training duration, set at 200

epochs. Finally, we adopted α as 0.1, β as 1, and γ as 1 for style loss.

3.3. Performance evaluations

Table 1 presents the classification accuracy of each method

under the subject-dependent scenario in the BCI Competition IV-

2a dataset. The proposed SSSTN method demonstrated superior

performance with the mean accuracy of 80.66% on the BCI

Competition IV-2a dataset, outperforming all other competing

methods. The SSSTN also exhibited the highest accuracy on

all the individual subjects except subject 3. It is worth noting

that since subject 3 was used as the source subject, it did

not undergo any additional training beyond the pretraining

phase. Among the subjects included in the study, subjects 2

and 6 were considered to be BCI illiterate as they exhibited

particularly low classification accuracy in the dataset. Our proposed

SSSTN method achieved significant improvements in classification

accuracy on both BCI illiterate subjects 2 and 6, compared to other

competing methods evaluated on the same dataset. Specifically,

the SSSTN method demonstrated notable performance gains over

our baseline model, i.e., SE-CNN [6], achieving improvements

of 4.79 and 6.11% on subject 2 and subject 6, respectively.

Moreover, when compared to the second-best performing method,

i.e., MI [4] (signal-based), the SSSTN method continued to

demonstrate superiority with improvements of 1.73 and 6.94% on

subjects 2 and 6, respectively. Remarkably, the proposed SSSTN

method demonstrated substantial improvement in performance

for individuals, such as subject 5, who exhibited moderately

low classification accuracy in the dataset. To be specific, the

SSSTN achieved a significant enhancement of 12.77 and 8.68% in

classification accuracy compared to our baseline model and the

second-best performing method, respectively.

Among our competing methods, the STNN [7] was considered

as the most analogous competitor to our proposed approach due

to its comparable implementation of subject-to-subject feature-

level style transfer based on source classifiers. The BCE loss used

in the STNN can be aligned with our semantic loss in terms of

conceptual similarity. However, unlike the perceptual loss function

employed in the STNN that calculates the L2 loss between the

source feature (hlS) and transformed target feature (hlS′ ), our style

loss function measures the difference between the probability

distributions of the semantic styles of hlS and hlS′ by utilizing

KL divergence. Furthermore, the STNN did not have the content

loss designed to guarantee the retention of salient information

derived from the target. These key differences in loss functions

make the STNN a suitable comparison method for our proposed

method when exploring the impact of different types of style loss

and the absence of content loss. In comparison to the STNN,

our SSSTN surpassed its performance across all subjects. Notably,

our semantic style loss encourages target and source feature

distribution alignment, while STNN’s perceptual loss focuses

on matching feature values. Experimental results convincingly

demonstrated that our proposed style loss contributes to superior

classification performance compared to the perceptual loss.

Overall, these findings suggest that our proposed method holds

the potential for addressing the BCI illiteracy problem, especially

for individuals who were previously difficult to classify MI tasks. In

addition to the significant improvements observed on BCI illiterate

subjects, our proposed SSSTN method achieved high levels of

accuracy on top-performing subjects in the dataset. Particularly,

ourmethod exhibited an improvement in the performance of 3.55%

on subject 7, when compared to our baseline model. Additionally,

our method demonstrated robust performance on subjects with

intermediate levels of classification accuracy. In a nutshell, we want

to emphasize that our proposed method is effective across a range

of BCI proficiency levels, and may have broad applicability for

individuals with varying levels of BCI performance.

As illustrated in Table 2, we conducted an additional

experiment utilizing the BCI Competition IV-2b dataset. It is

essential to note that SE-CNN denotes our baseline network.

Following SE-CNN’s pretraining, subject 5 achieved the highest

performance of 95.83%, serving as the source subject, while subject
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TABLE 2 Performance comparison of proposed and competing methods for subject-dependent scenario on the BCI Competition IV-2b dataset.

Input-type Method S01 S02 S03 S04 S05 (source) S06 S07 S08 S09 Mean

Signal-

based
EEGNet [1] 71.10 67.13 74.19 95.02 74.04 71.95 79.89 80.75 80.01 77.19

DRDA [3] 81.37 62.86 63.63 95.94 93.56 88.19 85.00 95.25 90.00 83.98

Image-

based
STNN [7] 85.00 75.00 68.40 98.90 75.00 82.00 83.20 79.50 79.00 80.70

SE-CNN [6] 78.12 67.71 83.68 94.44 95.83 81.25 90.28 89.93 87.50 85.41

SSSTN (Ours) [8] 79.58 70.42 86.67 95.42 95.83 82.92 92.08 90.00 90.00 86.99

The bold denotes the highest performance in each column.

2, with a performance of 67.71%, was identified as the BCI illiterate.

Without the need for any additional hyperparameter tuning or

alterations to network architectures, our SSSTN consistently

outperformed the competing methods in terms of mean accuracy

in this experiment. Remarkably, SSSTN was the sole method to

achieve a classification accuracy exceeding 70% for all subjects,

including subject 2, and displayed the highest accuracy for the

majority of subjects. The analysis of the BCI Competition IV-2b

dataset substantiates that our proposed SSSTN can be effectively

applied to a diverse range of datasets, thereby demonstrating the

generalizability of our approach.

3.4. Ablation study

We performed an ablation study on the BCI Competition

IV-2a to validate the effectiveness of our proposed method and

its loss functions. Table 3 presents the variants of our SSSTN

method utilized in this ablation study. Specifically, SSSTN-A

represents the model that excludes the content loss, SSSTN-B is

the model that omits the style loss, and SSSTN-C indicates the

model without the semantic loss. Finally, SSSTN refers to the

entire network we proposed. The remaining SSSTN and its variants

all achieved higher mean accuracy than SE-CNN. These results

suggest that our proposed SSSTN method with different types of

losses has a positive impact on the classification performance of

the model. In terms of mean accuracy, the SSSTN-A exhibited the

most inferior performance, succeeded by SSSTN-B, subsequently,

SSSTN-C. From these observations, we conclude that content loss,

followed by style loss and semantic loss, contributes to improved

classification performance. It is worth noting that our SSSTN

method outperformed all other methods, displaying the highest

performance improvement across nearly all subjects. Specifically,

for subjects 2, 5, and 6, classified as BCI illiterate due to low

classification accuracy, the SSSTN-B model exhibited the most

significant performance improvement, surpassing all other models

except for the complete SSSTNmethod. This outcome suggests that

the content loss is one of the most critical factors in addressing

the BCI illiteracy issue because it helps to retain the class-relevant

feature representation of xT . As demonstrated in Section 3.3.1, our

proposed style loss exhibited superior performance, which becomes

evident when comparing the results of STNN and our SSSTN.

Therefore, these findings demonstrate the effectiveness of our

proposed SSSTN method in addressing the BCI illiteracy problem,

which is achieved through leveraging classifier-based feature-level

semantic style transfer with appropriate loss functions.

In order to ascertain that our SSSTN can be adaptable to

different source subjects, we conducted additional experiments on

the BCI Competition IV-2a to validate this claim by adopting

subject 7, which had the second-highest accuracy of 89.51% among

the subjects in our baseline network (SE-CNN), as the source

subject. As shown in Table 4, the experimental results demonstrated

that our proposed method is not confined to a specific source

subject, i.e., subject 3, but also exhibits robust performance when

applied to subject 7, thereby confirming its adaptability and

applicability to various source subjects. Employing subject 7 as the

source subject, the SSSTN achieved a mean accuracy of 78.74%,

surpassing the performance of the baseline network. However, it

is worth mentioning that selecting subject 7 as the source subject

led to a minor improvement in performance from the baseline

compared to when subject 3 was chosen, which can be attributed

to the relatively lower classification accuracy of subject 7 in relation

to subject 3.

4. Discussion

4.1. t-SNE visualization

To examine the impact of style transfer, we employed the t-

SNE algorithm (Van der Maaten and Hinton, 2008) to visualize

the feature h2 obtained from the second convolutional layer of C

before and after the transformation. This experiment was carried

out on a test set of Subjects 5 and 7 that were randomly selected.

Figures 4A, C depict h2T and h2S before style transfer (ST), while

Figures 4B, D show h2S′ and h2S after ST, both in two-dimensional

embedding space. Each marker represents the subject (source or

target) of the samples, and each color corresponds to the label of

the samples. Before the transformation, distinct distributions were

observed between the target and source subjects, evident for both

Subjects 5 and 7 as illustrated in Figures 4A, C. However, after

transformation, the target and source distributions merged into a

single distribution, as depicted in Figures 4B, D. Note that the same

labels are consistently clustered together, regardless of whether

they belong to the source or target data. This result supports the

idea that our proposed style transfer process effectively preserved

the underlying class-relevant feature representation. In particular,

before the transformation of Subject 5, the target data was not

distinctly separated by the label as shown in Figure 4A. However,

as shown in Figure 4B, after the transformation, the target data

exhibited a significantly better separation by the label and were

closely clustered with the source data samples that shared the

same label. The obtained results suggest that the proposed SSSTN

Frontiers inHumanNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1194751
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Kim et al. 10.3389/fnhum.2023.1194751

TABLE 3 Ablation study results demonstrating the impact of removing specific components from the proposed SSSTN method on the BCI Competition

IV-2a dataset.

Method S01 S02 S03 S04 S05 S06 S07 S08 S09 Mean

SE-CNN [6] 83.26 53.54 92.57 70.42 68.13 60.90 89.51 83.4 85.63 76.37

SSSTN-A (w/oLcont) 81.60 53.47 92.57 68.06 74.65 65.62 90.28 85.42 83.68 77.26

SSSTN-B (w/oLstyle) 84.36 53.82 92.57 72.57 75.00 68.75 92.01 84.03 86.11 78.80

SSSTN-C (w/oLsem) 84.03 52.78 92.57 74.31 75.00 67.01 93.06 85.76 86.81 79.04

SSSTN (Ours) [8] 86.46 58.33 92.57 75.35 80.90 67.01 93.06 85.76 86.46 80.66

The bold denotes the highest performance in each column.

TABLE 4 Additional results demonstrating the applicability of our SSSTN model to other source subjects beyond the single source subject on the BCI

Competition IV-2a dataset.

Method S01 S02 S03 S04 S05 S06 S07 S08 S09 Mean

SE-CNN [6] 83.26 53.54 92.57 70.42 68.13 60.90 89.51 83.4 85.63 76.37

SSSTN (Source:3) 86.46 58.33 92.57 75.35 80.90 67.01 93.06 85.76 86.46 80.66

SSSTN (Source:7) 81.60 54.86 95.49 73.61 76.39 70.83 89.51 85.07 85.07 78.74

The bold denotes the highest performance in each column.

FIGURE 4

t-SNE (Van der Maaten and Hinton, 2008) visualization of the change in the h2 feature distribution of the target (S05, S07) and source (S03) before and

after the style transfer. (A, B) Before/after style transfer from S05 to source. (C, D) Before/after style transfer from S07 to source.
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FIGURE 5

Training loss plot of the SSSTN for subject 5 and 7. Lstyle, Lcont, and Lsem denote style, content, and semantic loss, respectively.

method effectively improves the discriminability of the transformed

target features, leading to better classification by CS. Therefore, we

verified that the proposed SSSTN method transfers the target data

to a well-classified feature space of the source data, while preserving

the feature class-relevant representation of the target data.

4.2. Training loss analysis

As part of our analysis of the SSSTN network, we plotted the

training loss graphs for subjects 5 and 7, which show the changes

in style, content, and semantic loss over time. It is noteworthy

that our selection of subjects 5 and 7 is consistent with our t-SNE

visualization analysis. As depicted in Figure 5, the loss converges

to a stable value after approximately 600 epochs of training. This

convergence demonstrates the stability of the SSSTN during the

training process and provides a profound understanding of the

network’s overall performance.

4.3. Practical potential of our proposed
method

In this section, we investigate the real-world application and

the practical potential of our proposed method. Our proposed

method is based on the assumption that we can identify a

BCI expert (source subject) and BCI illiterates (target subjects)

through a pretrained classification network. As mentioned in the

introduction and supported by prior studies (Zhang et al., 2020;

Wang et al., 2021), subjects with performance below 70% for

a predefined period are classified as BCI illiterates. Our study

seeks to enhance the performance of these illiterate subjects

using a pretrained network. In this context, it could be feasible

to distinguish between a BCI expert, who exhibits the highest

classification performance, and BCI illiterates who score less than

70% based on the pretrained network. We then use a semantic

style transfer process to transform the BCI illiterates’ data into

the expert’s style, thereby improving their performance further.

We believe that this approach offers potential for real-world

applications in situations where an existing BCI system, specifically

a pretrained classifier, is available to effectively distinguish between

BCI expert and BCI illiterate subjects. Furthermore, our proposed

method relies on prior knowledge, such as a pretrained network,

but is not restricted to a specific network. This flexibility allows

for its application to networks with varying architectures. We will

continue to investigate strategies to enhance the generalizability

and practicality of our method in future studies.

5. Conclusion

In this study, we proposed a subject-to-subject semantic

style transfer network (SSSTN) to address the problem of

BCI illiteracy in EEG-based motor imagery classification tasks.

The proposed SSSTN leverages subject-specific classifier-based

modified style loss and content loss to effectively transfer invisible

feature-level semantic styles from source subject (BCI expert)

to target subjects (specifically, BCI illiterates) while preserving

their class-relevant semantic information of target subjects.

Therefore, the transformed data from the target to the source

retains the distribution of class-discriminative features from

the source, leading to better classification performance by the

source classifier. Experimental results on the BCI Competition

IV-2a dataset show that our proposed method outperforms

other competing methods, especially for the BCI illiterate. The

ablation study and t-SNE visualization demonstrate the ability

to achieve meaningful feature-level semantic style transitions

by confirming the effectiveness of each component within the

SSSTN. Furthermore, the ensemble approach used in this method
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contributes to improving classification performance by fusing

different feature representations. This study paves the way for

further research on subject-to-subject style transfer and BCI

illiteracy mitigation.
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