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Introduction: Advances in mobile computing platforms and the rapid development 
of wearable devices have made possible the continuous monitoring of patients 
with mild cognitive impairment (MCI) and their daily activities. Such rich data can 
reveal more subtle changes in patients’ behavioral and physiological characteristics, 
providing new ways to detect MCI anytime, anywhere. Therefore, we aimed to 
investigate the feasibility and validity of digital cognitive tests and physiological 
sensors applied to MCI assessment.

Methods: We collected photoplethysmography (PPG), electrodermal activity (EDA) 
and electroencephalogram (EEG) signals from 120 participants (61 MCI patients, 
59 healthy controls) during rest and cognitive testing. The features extracted from 
these physiological signals involved the time domain, frequency domain, time-
frequency domain and statistics. Time and score features during the cognitive 
test are automatically recorded by the system. In addition, selected features of all 
modalities were classified by tenfold cross-validation using five different classifiers.

Results: The experimental results showed that the weighted soft voting strategy 
combining five classifiers achieved the highest classification accuracy (88.9%), 
precision (89.9%), recall (88.2%), and F1 score (89.0%). Compared to healthy 
controls, the MCI group typically took longer to recall, draw, and drag. Moreover, 
during cognitive testing, MCI patients showed lower heart rate variability, higher 
electrodermal activity values, and stronger brain activity in the alpha and beta bands.

Discussion: It was found that patients’ classification performance improved 
when combining features from multiple modalities compared to using only tablet 
parameters or physiological features, indicating that our scheme could reveal MCI-
related discriminative information. Furthermore, the best classification results on 
the digital span test across all tasks suggest that MCI patients may have deficits in 
attention and short-term memory that came to the fore earlier. Finally, integrating 
tablet cognitive tests and wearable sensors would provide a new direction for 
creating an easy-to-use and at-home self-check MCI screening tool.
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1. Introduction

Health conditions such as memory loss, frequent repetitive 
questioning, and geographic orientation impairment affect the daily 
lives of many older adults (Knopman and Petersen, 2014). These 
cognitive issues usually are attributed to “normal for age” (Breitner, 
2014). However, when these initial signs occur more frequently, they 
may indicate something more substantial, such as mild cognitive 
impairment (MCI). MCI is an intermediate state between normal 
aging and dementia in which one or more of the corresponding 
cognitive impairments in language, memory, attention, visuospatial 
and executive functions are present (Burns and Zaudig, 2002). A 
recent study showed that ~22.7% of the total United States population 
might suffer from some form of MCI (Rajan et al., 2021). In addition, 
given that many of the early symptoms in MCI are insidious, patients 
may confuse cognitive impairment with normal aging, leading to a 
delay in the actual diagnosis and exacerbating the progression 
to dementia.

Early detection of dementia has been shown to allow interventions 
to slow the evolution of the disease, such as physical activity (Groot 
et al., 2016) and pharmacological interventions (Hansen et al., 2008). 
However, in the clinical setting, commonly available cognitive 
screening tests [e.g., the Mini-Mental State Examination (MMSE) test 
(Folstein et al., 1975); the Montreal Cognitive Assessment (MoCA) 
test (Nasreddine et  al., 2005)] and other screening tools (e.g., 
cerebrospinal fluid examination and magnetic resonance imaging) are 
time-consuming, invasive or not readily available. Furthermore, these 
assessments are subjective and require constant attention from 
managers. Thus, the effective diagnosis of MCI remains one of the 
most difficult challenges in geriatric psychiatry (Gosztolya et al., 2019).

Evidence is mounting that changes in cognition, behavior, 
sensation and movement in patients with Alzheimer’s disease (AD) 
may manifest years earlier than clinical symptoms (Sperling et al., 
2014). Diagnosing MCI and dementia based on clinical features alone 
is challenging and relatively unreliable (Grässler et al., 2021). In recent 
years, with the rapid development of computer technology, computer-
aided diagnostic techniques have contributed tremendously positively 
to improving diagnostic accuracy, reducing missed diagnoses, and 
increasing efficiency (Chen et al., 2022a; Yu et al., 2022). In the early 
screening of neurodegenerative diseases (e.g., dementia), several 
researchers have attempted to use consumer-grade mobile and 
wearable technologies to explore effective digital biomarkers. For 
example, Müller et al. (2019) captured a large number of kinematic 
features of participants during a digital clock drawing test. They found 
that dwell time in the air appeared to be a distinctive feature between 
MCI patients and healthy individuals. Later, Ehsani et  al. (2020) 
assessed the uncertainty of elbow angle and angular velocity in older 
adults while wearing a tri-axial gyroscope performing an upper limb 
dual task, highlighting the potential of entropy of elbow angular 
velocity in detecting cognitive impairment. Furthermore, Ladas et al. 
(2014) discovered that blink rates per minute were higher in MCI 
patients than in healthy controls (HC), suggesting that eye blink rates 
would be promising as one of the potential biomarkers of MCI. Finally, 
Jonell et al. (2021) used nine sensors to capture data on participants’ 
behavioral and physiological signals during clinical interviews and 
identified head temperature changes and mapping gap length as novel 
digital biomarkers perhaps associated with early AD diagnosis. Thus, 
mobile applications and continuous passive sensor data may improve 

individuals’ early detection and monitoring, and provide more 
effective clinical decision-making.

With significant technological advances in the ubiquitous 
availability of convenient devices and wearable sensors, continuous 
monitoring of patients and their daily activities has become possible. 
Combining low-cost and non-invasive methods of measuring an 
individual’s physical signs with a game-based screening test for serious 
cognition will allow older adults to detect and track cognitive decline 
with minimal disruption and burden. This paper aims to explore the 
validity and feasibility of extracting features from physiological signals 
(e.g., PPG, EDA, and EEG) and digital cognitive parameters to assess 
MCI. Specifically, subjects’ physiological data are recorded at rest and 
while performing a cognitive task. The digital cognitive parameters 
consist of time and score, while features of the physiological data are 
extracted from several modalities, time domain, frequency domain, 
time-frequency domain and statistical. After obtaining the optimal 
feature subset by a feature selection algorithm, we  compared the 
classification performance of the feature subset in single-mode and 
fused multi-mode. We hypothesized that features extracted from all 
physiological modalities fused with cognitive parameters would be the 
best for classification. Finally, five machine learning classification 
algorithms, including k-Nearest Neighbor (kNN), Decision Tree (DT), 
Random Forest (RF), Naive Bayes (NB) and XGBoost (GBDT), were 
used to classify healthy individuals and MCI patients. In particular, 
their classification accuracy was used as a decision weight for model 
predictions, considering the differences in screening performance for 
each cognitive test.

2. Materials and methods

2.1. Participants

A total of 120 participants (62 females and 58 males) were 
recruited consecutively. Participants met the following criteria: (1) 
normal or corrected normal hearing and vision; (2) age > 65 years; (3) 
completed the MMSE test; (4) completed the MoCA test; and (5) were 
able to do moderate exercise and had no physical disability. The MCI 
group comprised 61 subjects who scored below 26 on the MoCA scale. 
Clinical interviews confirmed that healthy individuals had no 
neurological or psychiatric history and showed no signs of cognitive 
decline. In addition, all subjects had not previously performed these 
tasks and completed all test items. Table 1 summarizes the clinical 
statistical information for the 120 participants.

2.2. Experimental equipment and 
procedure

In this study, we used an iPad 2019, Empatica E4 and MUSE 2 to 
collect digital cognitive parameters and physiological signals from 
participants at rest and in the task state. All cognitive tests were 
presented on the iPad 2019 (7th generation, 3GB/128GB, 10.2″, 
2,160 × 1,620 pixel touchscreen), and Apple Pencil to perform 
drawing-related tasks. The tablet records the start and end times of 
each test in real time, providing the basis for subsequent 
synchronization of physiological data. The Empatica E4 is a watch-like 
multi-sensor device that measures EDA, PPG, skin temperature and 
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accelerometer data. It is small, lightweight and comfortable to wear, 
making it particularly suitable for unobtrusive, continuous monitoring 
in the cognitive screening of older adults. We charge and synchronize 
the E4 to a laptop computer before use. The data is typically stored on 
the E4 and then transferred to the computer for processing. The 
MUSE 2 is a wire-free, portable, wearable, and flexible EEG headband 
widely used in meditation and research (Cannard et al., 2021; Hunkin 
et al., 2021; Chai et al., 2023). It contains five electrodes, two of which 
are frontal electrodes (AF7 and AF8), two others are temporal 
electrodes (TP9 and TP10) and a reference electrode located at the Fpz 
position. The MUSE headband uses Bluetooth technology to send data 
through the Muse monitor at a sampling rate of 256 Hz.

The cognitive test was developed through discussions between 
two neurologists, two nurses and three engineers from our team. 
Specifically, it includes Boston naming, immediate recall, associated 
memory, building block test, trail making test A, trail making test B, 
clock drawing test, handwriting test, digital span sequence, digital 
span inverse, color interference and listening test, as shown in 
Figure 1. The battery assessed various cognitive abilities, including 
verbal fluency, memory, attention, listening, visuospatial and executive 
function. Before the experiment begins, the experimenter will explain 
the procedure to the participants and obtain their written consent. 
Once consent was obtained, the experimenter would place the MUSE 
on the subject’s forehead and the Empatica on the wrist of the subject’s 
non-dominant hand (Boucsein, 2012; Gashi et al., 2019). The subjects 
were asked to sit comfortably, fully relaxed, and record physiological 
signals with their eyes closed for 5 min. Next, subjects began 
performing cognitive tasks with real-time access to wearable device 
physiological signals and tablet cognitive data, as shown in Step 1 
(Figure 2). In particular, for cognitive tasks involving drawing, the 
experimenter would provide some assistance (e.g., fixing the tablet) 
during the drawing process to minimize the participant’s 
non-dominant hand involvement.

2.3. Data processing and analysis

We draw on the computer-aided diagnostic medical image 
analysis process, i.e., from dataset to preprocessing, feature extraction, 
feature selection, and classification (Li et al., 2022; Hu et al., 2023) for 
the acquired cognitive and physiological data. The details are 
described below.

FIGURE 1

Tablet-based digital cognitive testing.

TABLE 1 Clinical and demographic characteristics.

HC (n = 59) MCI (n = 61) Value of 
p

Age avg. (std) 67.90 (6.185) 70.98 (5.846) 0.025

Gender 

(F[%]/M[%])
28[47]/31[53] 34[56]/27[44] 0.273

Education level 

avg. (std)
7.87 (2.839) 5.05 (3.514) <0.001

Sleep quality avg. 

(std)
6.44 (0.821) 6.12 (1.122) 0.159

Exercise habits 

(Y[%]/N[%])
48[81]/11[19] 35[57]/26[43] 0.012

MoCA avg. (std) 27.10 (1.119) 23.20 (1.436) <0.001

MMSE avg. (std) 28.77 (0.872) 25.05 (1.482) <0.001

The bold values mean that there is a significant difference between the two groups.
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2.3.1. Data pre-processing
HRV describes the irregularity between two consecutive 

heartbeats by measuring variations known as the RR interval or 
interbeat interval (IBI). It is pleasing to note that IBI data can be easily 
obtained from the participant’s E4 wristband. By pre-processing the 
IBI, the reliability of HRV can be  effectively improved. First, 
we removed noticeable artifacts from the IBI series according to the 
rules for detecting artifacts in existing studies (Acar et  al., 2000; 
Karlsson et al., 2012). Second, for those missing heartbeat data not 
identified by the measurement device, we increase the reliability of the 
HRV measurement by defining a threshold standard to remove 
imperfect windows, as suggested by Föll et al. (2021). Thus, if a time 
window t satisfies the following inequality, it will not be discarded.

 
thresh L N

IBIt
t⋅ <

µ  
(1)

where Nt denotes the number of valid heart beats detected in 
window t, L denotes the epoch width (window length) in seconds, μIBIt 
denotes the average IBI (in seconds) in window t and thresh ∈  [0, 1]. 
In summary, a higher threshold setting will result in a higher proportion 
of detected heartbeats relative to the desired amount of expected 
heartbeats. Here, we set the epoch width to 180 and the threshold to 0.2.

Autonomous activation of human sweat glands causes skin 
conductance changes and is a phenomenon commonly referred to as 
EDA. To improve the obtained EDA signal quality, we followed the 
same preprocessing steps suggested by Boucsein (2012), Gashi et al. 
(2019), Hassib et al. (2017), and Martínez-Rodrigo et al. (2017): (1) A 
first-order Butterworth low-pass filter with a cut-off frequency of 
0.6 Hz is used to remove high-frequency noise fluctuations from the 
signal; (2) EDA signal is further decomposed into tonic and phase 
components using the cvxEDA method proposed in the literature 
(Greco et  al., 2015); (3) Given that the SCR response duration is 
between 1 and 5 s, we divide the EDA series into 5 s non-overlapping 
segments and extract most of the features suggested by existing 
literature (Gashi et al., 2019; Shukla et al., 2019) to describe shape 
artifacts; (4) Machine learning was used to identify shape artifacts, 

thereby effectively distinguishing between standard EDA signals 
and artifacts.

The EEG signal is an overall reflection in the cerebral cortex or 
scalp surface from the electrophysiological activity of brain nerve cells. 
As a typical signal in body sign signals, it contains much 
neurophysiological information. Owing to its susceptibility to the state 
of contact between the scalp and the sensor and to interference from 
environmental noise, we followed several routine pre-processing steps 
as recommended by the OHBM COBIDAS MEEG committee (Pernet 
et al., 2020). First, the recorded EEG data were band-pass filtered to 
1–45 Hz using the egfiltfft function in the EEGLab toolbox. Then, 
independent component analysis (ICA) was applied to each channel’s 
signal to detect and remove eye movements, muscle artifacts, channel 
noise and outlier data segments. Subsequently, the remaining data 
epochs were manually checked to remove data segments with 
significant artifacts or drowsiness features that were not automatically 
removed. Finally, the EEG signal was separated into five typical bands, 
namely the delta band (1–4 Hz), theta band (4–8 Hz), alpha band 
(8–13 Hz), beta band (13–30 Hz) and gamma band (13–45 Hz), 
employing a second-order Butterworth band-pass filter.

The tablet-based digital cognitive test records hand movements and 
cognitive performance in older adults. Features extracted from these 
data will be used as digital biomarkers that may distinguish healthy 
individuals from those with mild cognitive impairment. Therefore, the 
raw data needs to be cleaned before features can be extracted, including 
removing outliers and checking data consistency.

2.3.2. Feature extraction and selection
After pre-processing, the next step was to extract features from the 

wearable sensor signals and tablet data to classify healthy individuals 
and MCI patients, as shown in Step  3 (Figure  2). Three frequency 
domain features, namely mean power (MP), spectral entropy (SE) and 
asymmetry index (AI) were extracted from the EEG signal and these 
features have been applied to MCI detection (Luckhaus et al., 2008; 
Bruña et al., 2012; Martin et al., 2022). MP is derived by calculating the 
mean of the absolute power in each band. SE is a measure of 
unpredictability and disorder associated with the spectrum of a signal, 

FIGURE 2

The proposed MCI detection framework for multi-source data.
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and a higher SE indicates a higher level of complexity. The MP and SE 
have 20 features each, i.e., four channels in the MUSE headband, each 
with five bands. AI includes Differential Asymmetry (DASM), which is 
the absolute power difference between each band of the left and right 
hemisphere asymmetric channels (TP9 & TP10 and AF7 & AF8), and 
Reasonable Asymmetry (RASM), which is the absolute power ratio 
between each band of the left and right hemisphere asymmetric 
channels (TP9 & TP10 and AF7 & AF8). Ten feature values were 
obtained from the EEG data for each DASM and RASM feature set. The 
final total number of extracted EEG features was 60. For the EDA and 
PPG signals collected from the E4 wristband, we used FLIRT (Föll et al., 
2021) to extract 41 HR or HRV features (these features belong to the 
statistical, time domain, and frequency domain) and 42 EDA features 
(these features belong to the time domain, frequency domain, time-
frequency domain and SCR time-domain). Finally, the time spent and 
scores obtained by the participants for each test were extracted from the 
tablet. The specific features can be found in the Supplementary material.

Regarding feature selection, we use recursive feature elimination 
cross-validation (RFECV) to separate the best subset of features from each 
physiological signal, enabling the classification model to maintain 
accuracy while reducing the computational cost. The algorithm is divided 
into two phases: (1) creating the model through iterations, eliminating the 
worst features or retaining the best features in each iteration. Subsequent 
iterations use the unselected features from the previous modeling to build 
the next model until all features are used. The features are ranked 
according to the order in which they are retained or rejected. (2) Different 
numbers of features are sequentially selected from the ranked feature set 
for cross-validation, and the number of features with the highest mean 
score is determined by comparison to obtain the best feature subset. In 
addition, the RFECV we use for single-mode and multi-mode data is 
performed independently with a 10-fold cross-validation.

2.3.3. Classification
In this study, different cognitive tests may affect the MCI diagnosis 

and correspond to different classification accuracies, so we proposed a 
weighted soft voting strategy for classification, as shown in Step  5 
(Figure 2). The fused base classifiers in the soft voting principle include 
kNN, DT, RF, NB and GBDT. Here, the tree count of RF was set to 100, 
NB is Gaussian Bayes, and the tree count, learning rate, and booster of 
XGBoost are 100, 0.1, and gbtree, respectively. Cross-validation is 
10-fold cross-validation, where all samples are divided into 10 equal 
parts and any first part is treated as test data. We normalized each test 
cross-validation score and used them as predictive model weights 
(e.g., , 1,2, , ).w w wi…  In other words, identifying a subject as MCI can 
be derived from the following formula.

 
P pi wiMCI

i
MCI= ×

=
∑
1

12

 
(2)

 
P pi wiHC

i
HC= ×

=
∑
1

12

 
(3)

PMCI  denotes the probability that the predicted individual 
belongs to MCI, piMCI  is the probability that the i-th test soft-vote 
predicts an individual to be MCI, and wi  is the normalized value of 
the i-th test soft-vote cross-validation score. The same is true for PHC ,  

piHC . Individual categories are predicted by comparing the 
magnitude of PMCI  and PHC . Finally, in line with most evaluation 
metrics in the literature (Zhang J. et al., 2021; Chen et al., 2022b), 
we  use accuracy, precision, recall, and F1 score to measure 
classification performance.

3. Results

For the statistical analysis of demographic characteristics, digital 
cognitive parameters and physiological sensor data, the Kolmogorov–
Smirnov test was used to test for normality. Welch correction was 
applied to the uneven variance data. A t-test was used to compare 
differences between MCI patients and healthy individuals. The 
non-parametric Mann–Whitney test was applied to assess group 
differences in the score variables and the Hodges-Lehmann estimator 
estimated confidence intervals, as the variable did not follow a normal 
distribution. In addition, for age, education, MoCA, MMSE and sleep 
quality, statistical descriptions were performed using means (standard 
deviations). However, gender and exercise habits were categorical 
variables described by percentages, and Pearson’s chi-square test was 
used to detect differences between groups. For all tests, the level of 
statistical significance was set at p < 0.05.

3.1. Digital cognitive tests performance in 
healthy individuals and MCI patients

Figure 3 shows the statistical comparison results of the time and 
score features among the investigated groups (MCI patients and 
healthy controls) during the digital cognitive test. We found that both 
features performed well in distinguishing MCI patients from healthy 
individuals. Specifically, except for three tests (handwriting test, color 
interference and listening test), there was a significant difference in 
finishing time between healthy individuals and MCI patients (all 
p < 0.05; Figure 3A). The MCI group usually took longer to recall, draw 
and drag than the control group. Interestingly, in the digital span test, 
healthy individuals could correctly recall previous digits and move on 
to the next level, increasing their time overhead. However, in terms of 
score features, the two groups differed significantly on Boston naming, 
associated memory, digital span sequence, digital span inverse, 
building block test, and trail making test B (all p < 0.001; Figure 3B). 
Finally, the color interference and listening test were less effective in 
screening MCI patients and healthy individuals, which may indicate 
that MCI patients are aligned with healthy individuals in their ability 
to inhibit habitual behavior and auditory memory.

3.2. Physiological signals performance in 
healthy individuals and MCI patients

Physiological signals obtained by Empatica E4 at rest and while 
performing a cognitive task were analyzed using paired t-tests. We found 
significant differences between the HR and EDA data obtained by the 
investigated groups during the experiment’s two phases (all p < 0.001; 
Figure 4). It is also evident from the box plots that MCI patients exhibited 
lower HRV and higher EDA values during the test, which may reflect 
dysautonomia and impaired health in MCI patients (Rossini et al., 2008). 
Furthermore, Figure 5 shows a brain activity visualization of participants 
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at rest and in the task state from the power spectral density. A brain map 
in red describes intense brain activity, while orange indicates weak 
cortical activation. We can conclude from the experimental results: (1) 
the MCI group had increased power spectral density at slower 
frequencies (i.e., delta and theta) compared to the control group (i.e., the 
MCI group showed yellow brain maps while the HC group showed 
orange brain maps in the delta and theta bands) and (2) the electrodes in 
the alpha and beta bands during the task had visually different brain 
activity compared to the resting state, which was evident in both the 
healthy control and MCI groups (i.e., MCI: alpha-TP10, beta-TP9; HC: 
alpha-TP10, beta-TP10).

3.3. Predictive value of the digital cognitive 
tasks

We examined the classification performance of each task in the digital 
cognitive test, as shown in Table 2. The results show that digital span 

inverse had the highest detection accuracy of 84.4%. As far as precision is 
concerned, digital span inverse also had the best results. That is, 85.7% of 
all predicted MCI patients in digital span inverse were actual MCI 
patients. Digital span sequence achieved the best recall, indicating that 
this task could correctly detect 86.4% of real MCI patients. The F1 score 
takes into account both accuracy and recall. Digital span inverse achieved 
the best result of 85.2% in this metric, demonstrating the better overall 
performance of digital span inverse. Furthermore, to explore which 
physiological features were more prominent in distinguishing the MCI 
and HC groups, we selected features ranked 3, 3, and 2 (HRV, EDA, and 
EEG) in importance from the subset of best features for each cognitive 
test. The experimental results involved three aspects: (1) SDNN, pNN50 
and LF occur more frequently in HRV. In other words, lower SDNN 
indices and PNN50 indicate that MCI patients may be vulnerable to 
autonomic and parasympathetic dysfunction (Xue et al., 2022). However, 
LF power performed more prominently on memory and attention-related 
tests (Nicolini et  al., 2020), further strengthening the classification 
performance of the Digital Span (which measures a person’s attention and 

A B

FIGURE 3

Performance of the surveyed group in the digital cognitive test. (A) Time cognitive parameter; (B) Score cognitive parameter.

A B

FIGURE 4

Performance of physiological signals in the surveyed group during rest and cognitive testing. (A) HR signal; (B) EDA signal.
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short-term memory capacity); (2) Phasic signals in EDA features, 
particularly those derived from SCR components (transient, faster 
fluctuations in skin conductance) are most prominent, such as phasic 
kurtosis, amp (mean amplitude of the SCR peaks) and decay time (mean 
of the SCR peaks decay time). Compared to healthy individuals, MCI 
patients typically show higher amp and longer decay time, indicating that 
they are more reactive to external stimuli and less able to recover from 
stress; (3) Interestingly, the EEG features of each test are mainly focused 
on the alpha and beta bands. The alpha and beta bands contribute to the 
perfect oscillation of human consciousness in cognitive reasoning, 
computation, reading, communication and thought states, suggesting that 
touchscreen-based tests can have a better stimulating and arousing effect 
on older adults.

3.4. Predictive value of the classification 
framework

We compared the classification performance of the proposed 
classification framework under different classifiers for cognitive 

features from tablets, physiological features from wearable devices, 
and their combined features, as shown in Tables 3, 4. As expected, 
the combined features of all modalities yielded the highest 
classification accuracy. In particular, the highest classification 
accuracy (88.9%), precision (89.9%), recall (88.2%) and F1 values 
(89.0%) were obtained using the weighted soft voting strategy 
(Table 4). Furthermore, we compared it with digital cognitive tests 
and wearable sensors used for MCI detection in recent years, as 
shown in Table  5. The results show that our cognitive system 
outperformed recent studies in correctly identifying MCI patients, 
achieving an accuracy rate of 85.1%. Features fusing HRV, EDA and 
EEG signals were also the best when used to differentiate healthy 
individuals from MCI patients, achieving an accuracy of 86.2%, 
indicating that the use of fused features from multimodal data is 
more effective than unimodal data for classifying MCI. Similarly, 
our proposed MCI classification scheme outperformed all these 
methods by using fused features selected from Tablet, HRV, EDA 
and EEG signals, achieving a classification accuracy of 88.9%. 
Finally, the number of subjects participating in the experiment was 
120, which is also the highest compared to studies using 

FIGURE 5

Brain activity visualization in different EEG bands at power spectral density during two phases of the experiment (Row 1: rest-state, Row 2: during 
cognitive testing).

TABLE 2 Performance comparison of classification of selected feature subsets for 12 digital cognitive tests.

Tasks Acc Pre Rec F1 Tablet HRV EDA EEG

T1 0.756 0.765 0.841 0.801 T S Hb Hd Hh Ea Ec Ed Gc Ge

T2 0.683 0.710 0.805 0.755 T Ha Hc Hj Ec Ee Ej Gc Gf

T3 0.756 0.768 0.836 0.801 T S Ha Hb Hj Ed Ek Eh Ge Gg

T4 0.843 0.843 0.828 0.836 T S Ha Hg Hi Ef Ei Ej Gh Go

T5 0.729 0.738 0.745 0.742 T Hb Hd Hh Ec Ee Eh Gc Gd

T6 0.786 0.780 0.857 0.816 T S Ha Hd He Ec Ei Ek Gg Gk

T7 0.783 0.789 0.862 0.824 T Ha Hd Hj Ef Ej Ek Gg Gm

T8 0.734 0.750 0.825 0.786 / Ha Hd Hl Ea Ec Ej Ga Gd

T9 0.816 0.822 0.864 0.842 T S Hg Hj Hl Ed Ee Eh Gi Gl

T10 0.844 0.857 0.847 0.852 T S Ha Hd Hj Eg Ei Ek Gj Gn

T11 0.654 0.687 0.782 0.731 / Hb He Hg Ed Ef Ej Gb Gc

T12 0.742 0.764 0.773 0.769 / Ha Hh Hk Eh Ei Ek Gj Gp

The bold values mean the largest attribute’s values in the table. T1: Boston naming; T2: immediate recall; T3: associated memory; T4: building block test; T5: trail making test A; T6: trail 
making test B; T7: clock drawing test; T8: handwriting test; T9: digital span sequence; T10: digital span inverse; T11: color interference; T12: listening test; Ha: SDNN; Hb: RMSSD; Hc: NN50; 
Hd: pNN50; He: sum of the IBIs; Hf: skewness; Hg: peaks; Hh: entropy; Hi: VLF; Hj: LF Hk: HF; Hl: LF/HF ratio; Ea: tonic rms; Eb: tonic kurtosis; Ec: phasic kurtosis; Ed: tonic perm_entropy; Ee: 
phasic perm_entropy; Ef: tonic skewness; Eg: phasic skewness; Eh: rise time; Ei: max derive; Ej: amp; Ek: decay time; Ga: MP_theta_AF7; Gb: MP_theta_AF8; Gc: MP_alpha_AF7; Gd: MP_alpha_
AF8; Ge: MP_alpha_TP9; Gf: MP_alpha_TP10; Gg: MP_beta_AF7; Gh: MP_beta_AF8; Gi: MP_beta_TP9; Gj: MP_beta_TP10; Gk: SE_alpha_AF7; Gl: SE_alpha_TP9; Gm: SE_beta_TP9; Gn: 
DASM_alpha_AF8; Go: DASM_beta_AF7; Gp: RASM_beta_AF7; T: time; S: score.
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non-invasive wearable sensors to screen elderly with 
cognitive impairment.

4. Discussion

This paper describes a non-invasive and convenient classification 
approach to facilitate early sign detection in MCI by simultaneously 
collecting cognitive behavioral and physiological data. To our 
knowledge, this is a rare study using a mobile app and multimodal 
wearable sensors (e.g., PPG, EDA and EEG) to assess and monitor 

physiological variations in MCI patients. Specifically, we fused features 
extracted from all physiological modalities and digital cognitive 
parameters, and applied machine learning to classify healthy 
individuals and MCI patients. The experimental results show that our 
classification framework works well, achieving 88.9% accuracy, 
reflecting the synergistic effect of combining digital cognitive tests and 
physiological sensor recordings in the context of MCI screening. In 
addition, the cognitive screening process can be carried out portable 
and without the involvement of a medical specialist, regardless of the 
test location, thus providing a low-cost and flexible family screening 
paradigm for the early detection of MCI.

TABLE 5 Diagnostic value of our classification framework compared to existing studies of healthy individuals and MCI patients.

Study, Year HC/MCI Equipment Examination Modalities Acc

Müller et al. (2019) 138/137 Microsoft Surface Pro Clock drawing test Tablet 0.815

Zhang Y. et al. (2021) 20/41 Huawei M5 tablet cogSYS Tablet 0.824

Ntracha et al. (2020) 12/11 Smart Phone Typing tasks Phone 0.800

Alharbi et al. (2022) 21/21 CorSense Resting state HRV 0.765

Gwak et al. (2018) 35/34 Nonin Onyx 2 Cognitive tests PPG 0.820

Lee et al. (2022) 22/21 Pico Neo 2, Looxid Link Cognitive tests EEG 0.800

This paper 59/61 iPad 2019, Empatica E4, 

MUSE 2

Cognitive tests Tablet 0.851

HRV 0.825

EEG 0.823

HRV, EDA, EEG 0.862

Tablet, HRV, EDA, EEG 0.889

The bold values mean the largest attribute’s values in the table.

TABLE 3 Performance comparison of the classification framework with different classifiers for single-modal features from tablets and wearable 
devices.

Classifier HRV EDA EEG Tablet

Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1

kNN 0.724 0.721 0.731 0.726 0.667 0.648 0.728 0.686 0.682 0.685 0.680 0.683 0.753 0.765 0.752 0.759

DT 0.758 0.749 0.771 0.760 0.724 0.755 0.698 0.726 0.735 0.738 0.734 0.736 0.782 0.794 0.809 0.801

NB 0.775 0.752 0.769 0.760 0.733 0.744 0.732 0.738 0.738 0.735 0.740 0.737 0.798 0.801 0.812 0.806

RF 0.860 0.757 0.764 0.760 0.731 0.727 0.744 0.735 0.741 0.740 0.742 0.741 0.801 0.806 0.829 0.817

GBDT 0.794 0.779 0.818 0.798 0.774 0.761 0.793 0.777 0.790 0.789 0.791 0.790 0.836 0.839 0.848 0.843

Soft voting 0.825 0.815 0.828 0.822 0.801 0.800 0.807 0.803 0.823 0.835 0.822 0.829 0.851 0.858 0.870 0.864

The bold values mean the largest attribute’s values in the table.

TABLE 4 Performance comparison of a classification framework with different classifiers for multi-modal fusion features of tablets and wearable 
devices.

Classifier HRV + EDA + EEG Tablet+HRV + EDA + EEG

Acc Pre Rec F1 Acc Pre Rec F1

kNN 0.775 0.786 0.779 0.783 0.804 0.809 0.801 0.805

DT 0.794 0.807 0.798 0.802 0.825 0.834 0.829 0.832

NB 0.807 0.811 0.820 0.815 0.827 0.845 0.831 0.838

RF 0.816 0.826 0.818 0.822 0.834 0.866 0.841 0.853

GBDT 0.844 0.854 0.848 0.851 0.864 0.870 0.860 0.865

Soft voting 0.862 0.873 0.863 0.868 0.889 0.899 0.882 0.890

The bold values mean the largest attribute’s values in the table.
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Secondly, regarding cognitive domains, our digital cognitive 
tests covered multiple dimensions of language, memory, attention, 
visuospatial and executive function, which are core dimensions 
included in many existing computerized cognitive assessment tools 
(Gates and Kochan, 2015; Demeyere et al., 2021). A comparison of 
categorical performance on 12 cognitive tests found that the 
surveyed group had better discrimination on the digital span and 
building block tests (mean accuracy of 83.4%; Table 2), suggesting 
that early cognitive impairment is primarily associated with declines 
in memory, attention and executive function (Petersen, 2004). In 
addition, statistical hypothesis testing analyses found that time 
features performed more prominently on cognitive assessments; in 
other words, mobile apps could capture favorable cognitive 
parameters more efficiently than traditional paper-based screening 
methods. Notably, two tests (i.e., the color interference and listening 
test) performed poorly in screening the MCI, providing insights for 
future cognitive systems improvements.

Third, regarding the application of wearable sensors in MCI 
validation, the combination of the three modalities achieved an 
accuracy of 86.2% (Table 4). In other words, the best classification 
results were obtained by combining selected features of all modalities 
compared to the separate modalities. Furthermore, HRV reflects the 
activity of the autonomic nervous system and can be  used as a 
parameter to monitor the health status of the elderly. Assessment of 
HRV characteristics showed that SDNN, pNN50 and LF were the 
most important predictors (Table  2), implying that sympathetic 
autonomic regulation contributes well to overall cognitive function 
(Dalise et  al., 2020). The autonomic nervous system has been 
reported to be activated during cognitive assessment (Nicolini et al., 
2014; Luque-Casado et al., 2016). However, participants’ EDA values 
were significantly higher during the task than resting state (Figure 3), 
reflecting that their mental health may be dominated by stress or an 
increased awareness of the ongoing job. High arousal levels are a 
complex physiological response to stress and task awareness 
observed during daily activities, accompanied by increased EDA and 
reduced heart rate (Hernandez et al., 2014). Finally, our findings also 
suggest that EEG recorded by MUSE has the potential to screen for 
neurodegenerative diseases. For example, (1) the MCI group showed 
an increase in power spectral density at slower frequencies (i.e., delta 
and theta) compared to controls (Figure 3); (2) EEG features selected 
by RFECV method were concentrated in the alpha and beta bands 
(Table 2), indicating significant differences between the investigated 
groups in these two bands; (3) Mean power was most frequent in 
distinguishing MCI patients from healthy individuals (Table 2), in 
other words, lower mean power indicated a significant association 
with poorer cognitive performance on psychometric tests (Luckhaus 
et al., 2008).

Finally, some limitations and future directions can be worked 
on in this paper. First, our sample was relatively small, including 
only 120 participants in the validation process. Transfer learning 
provides an idea for solving the small sample problem (Rahaman 
et al., 2020), and a richer dataset will enhance the validation of the 
screening effect of the MCI classification framework. Secondly, 
we  ignored the relationship between physiological signals and 
cognitive domains (e.g., language, memory, attention, visuospatial 
and executive functions, etc.) to highlight whether these data or 
their derived features can be  considered indicators of general 

cognitive functioning. In the next step, we  will investigate 
participants’ physiological data under different cognitive domains 
to assess whether they can be regarded as predictors of cognitive 
performance. Finally, our classification framework is based on 
traditional machine learning methods and in the future, as the 
sample increases, we  propose to improve the classification 
performance further using deep learning models (Zhao et al., 2022; 
Chen et al., 2023).

5. Conclusion

This study used digital cognitive tests and multimodal wearable 
sensors (e.g., PPG, EDA and EEG) to screen for MCI. We acquired 
physiological signals from participants at rest and during the task, and 
extracted features from these data. We found that participants differed 
significantly in their physiological signals during these two phases 
(i.e., resting and task states). Moreover, data from multiple modalities 
provided better classification performance than data from either 
modality alone, implying that combining the two (i.e., mobile app and 
wearable device) can synergistically influence MCI screening. The 
RFECV method and weighted soft voting strategy provided 88.9% 
classification accuracy by performing 10-fold cross-validation using a 
selected subset of features. With the popularization of mobile 
computing platforms, our classification framework may provide new 
ideas and practical support for early MCI detection in home and 
portable screening.
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