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The aim of this study is to explore the potential of technology for detecting

mind wandering, particularly during video-based distance learning, with the

ultimate benefit of improving learning outcomes. To overcome the challenges

of previous mind wandering research in ecological validity, sample balance, and

dataset size, this study utilized practical electroencephalography (EEG) recording

hardware and designed a paradigm consisting of viewing short-duration video

lectures under a focused learning condition and a future planning condition.

Participants estimated statistics of their attentional state at the end of each

video, and we combined this rating scale feedback with self-caught key press

responses during video watching to obtain binary labels for classifier training.

EEG was recorded using an 8-channel system, and spatial covariance features

processed by Riemannian geometry were employed. The results demonstrate

that a radial basis function kernel support vector machine classifier, using

Riemannian-processed covariance features from delta, theta, alpha, and beta

bands, can detect mind wandering with a mean area under the receiver operating

characteristic curve (AUC) of 0.876 for within-participant classification and AUC

of 0.703 for cross-lecture classification. Furthermore, our results suggest that a

short duration of training data is sufficient to train a classifier for online decoding,

as cross-lecture classification remained at an average AUC of 0.689 when using

70% of the training set (about 9 min). The findings highlight the potential for

practical EEG hardware in detecting mind wandering with high accuracy, which

has potential application to improving learning outcomes during video-based

distance learning.

KEYWORDS

mind wandering, electroencephalography (EEG), passive brain-computer interfaces
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1. Introduction

A passive brain-computer interface (pBCI) is a type of BCI that does not require the
user to actively generate signals or perform tasks to interact with the system. Instead, pBCIs
use techniques such as electroencephalography (EEG) to record brain activity from healthy
people in real-life situations and are suited for applications such as emotion recognition,
stress level measurement, and mental workload measurement (Aricò et al., 2018). In the
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current study, we are interested in building an EEG-based pBCI
system to detect mind wandering during video-based learning.

Mind wandering is usually defined as task-unrelated thoughts
or stimulus-independent thoughts (Smallwood and Schooler, 2015;
Andrews-Hanna et al., 2018). With the wide-spread usage of
personal computers, the increasing availability of open courses,
and the impact of the pandemic in recent years, video-based
distance learning is becoming a vital learning paradigm for many
students. However, the frequency of mind wandering during video-
based learning has been found to be higher (Risko et al., 2012,
2013) compared to classroom learning. Researchers believe that
mind wandering may occur much more frequently outside the
laboratory, because there are more temptations in real-world
settings (Szpunar et al., 2013). Since students who report higher
mind wandering rates during learning have lower test performance,
both in video-based learning (Risko et al., 2012) and classroom
learning scenarios (Wammes et al., 2016b), developing methods to
detect mind wandering during video-based learning has important
potential benefits.

Many studies have tried to detect the mind wandering state,
however, they were conducted in laboratory settings with well-
controlled stimuli (Jin et al., 2019; Dong et al., 2021; Groot et al.,
2021; Chen et al., 2022). Particularly, Chen et al. (2022) designed a
multi-modal sustained attention to response task (MM-SART), in
which participants were instructed to press a key when non-target
stimuli appeared and to refrain from doing so when target stimuli
appeared. The mental states of the participants were measured
via thought probes administered at the end of each experimental
block. Chen et al. (2022) observed that entropy-based features led
to high classification performance for mind wandering. Below we
focus on studies that aim to detect mind wandering state in near-
real-life settings. One example study is by Dhindsa et al. (2019)
who conducted an experiment in a live lecture scenario using
a 16-channel EEG system. They reported 80%–83% accuracy for
within participant 2-class classification. In their paradigm, the mind
wandering state was obtained from thought probes.

The thought probe is a widely adopted paradigm. However, it
has the disadvantage of being intrusive (Weinstein, 2018). If the
goal is to build a classification model for real-time mind wandering
detection, additional challenges must be addressed. First, since
participants are more likely to mind wander with longer inter-
probe interval (Seli et al., 2013), probes cannot be used too often,
which limits data sample size. Additionally, the samples collected
may suffer from an imbalance of wandering versus not, which can
lead to poor classifier performance. For example, Dong et al. (2021)
reported an on-task versus mind-wandering sample size balance of
approximately 3:4, while Dhindsa et al. (2019) reported a ratio of
32:17.

To meet these challenges, some studies have developed new
methods to label samples based on the experimental task. In a
study conducted by Liu et al. (2013), 24 participants performed
English listening tests under 2 scenarios, one with interference
and the other without. The interference consisted of distracting
conversations, designed to induce an inattentive state. The actual
states experienced by the participants were confirmed via report
and via video footage examined offline, and EEG signals were
recorded via dry electrode. The authors reported classification
accuracy of 76.82% with a support vector machine (SVM) classifier.
Kaushik et al. (2022) conducted a study with 24 participants

performing Tibetan monastic debate tasks, and the attentional state
of the participants was rated by 3 observers of video recordings.
The group level decoding performance of attention vs. distraction
was high when using a long short-term memory neural network
classifier (95.86% accuracy); the authors acknowledged that a
limitation of the second-observer method was that only clear
instances could be annotated. Zhigalov et al. (2019) conducted
a magnetoencephalography study in which participants engaged
in mindful meditation, a future planning task, and an anxiety-
inducing task; the latter two tasks were used to induce wandering
thoughts. The authors found that connectivity- and spectral-based
classification approaches had similar accuracy, both around 60%.

Mind wandering is commonly thought to be an automatic
diversion of attention from a current task, but people can engage
in mind wandering intentionally (voluntarily). Intentional mind
wandering occurs frequently in everyday life (McVay et al., 2009).
A study conducted in a real classroom environment found that
more than half of the mind wandering occurrences were intentional
(Wammes et al., 2016a). For the content of mind wandering, Seli
et al. (2017) found that intentional mind wandering was more
future oriented than unintentional (self-initiated but involuntary)
mind wandering. Many factors may be related to mind wandering,
and their relationships have been shown to be complicated. For
example, participants’ motivational level was more relevant to
intentional mind wandering compared to unintentional mind
wandering, and they tend to reduce intentional mind wandering
under high motivation (Seli et al., 2015, 2016c; Robison et al., 2020).
Seli et al. (2016a) reported that participants experienced more
intentional mind wandering in easy tasks than in difficult tasks
and more unintentional mind wandering in difficult tasks than in
easy tasks. Thus these factors should be considered in experimental
design.

In the current study, we define mind wandering as thoughts
unrelated to video lecture content. A realistic video-lecture-based
distance learning scenario was created and an 8-channel gel-based
EEG system was used to record brain activity of participants under
2 conditions, focused learning and future planning, with the latter
condition designed to increase the probability of mind wandering.
An aim of this design was to avoid interrupting the ongoing
video watching while obtaining reliable labels for the EEG data.
We then applied Riemannian geometry-based feature generation
and machine learning methods to classify mind wandering versus
focused learning in a within-participant and cross-lecture fashion.
The high decoding performance of our classifier shows its feasibility
and the real world application potential of our pBCI paradigm.

2. Materials and methods

2.1. Participants

Fourteen participants were recruited (6 females; average age
23.36 ± 4.75). All participants reported no history of neurological
disorders, and had normal or corrected-to-normal vision. The
experiment was approved by the Ethics Review Committee of
the School of Psychology of Beijing Normal University (Approval
number: 20221121118). Written informed consent was obtained
from each participant before the experiment. Previous mind
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wandering classification studies, such as Dhindsa et al. (2019), have
used data from 15 participants. The small deviations in decoding
performance between participants (Supplementary Tables 1, 2)
suggest that the number of participants in our study was adequate.

2.2. Data acquisition

An 8-channel gel-based EEG system was used for EEG
recording (Yiwu Jielian Electronic Technology Co., Ltd., China).
The channel locations were F3, F4, T3, C3, C4, T4, O1, and O2
(International 10–20 EEG system) and referenced to an electrode
at Cz. The impedance values of the electrodes were kept lower
than 80 k� as recommended by the manufacturer. While this is
higher than typical laboratory EEG standards, it reflects a practical
level of impedance achievable during real world usage. Sampled at
1,000 Hz, the EEG signal was high-pass filtered with a passive, 1st
order RC filter at 0.3 Hz and low-pass filtered with a 2nd order
Bessel filter at 80 Hz. Experiments were conducted in a sound and
electromagnetically shielded room.

2.3. Procedure

The lecture videos used in the current study were downloaded
from a Chinese domestic massive open online course platform1

and included 13 disciplines (Physics, Psychology, Chemistry,
Economics, Art, and others). We selected videos with length 5 to
10 min, obtaining 362 videos in total. A short video length was
chosen to (1) avoid the total experiment length from becoming too
long, and (2) to reduce the possibility of mind wandering during
the focused learning condition (Khan, 2012).

Prior to the experiment, each participant was first asked to
provide 2 images that were most related to his or her personal
future plans and frequently appeared in his or her mind wandering
episodes during the previous week. These images were to be
used as cues before the future planning condition videos. We
provided the titles of all videos as well as a brief introduction

1 https://www.icourse163.org/

to their contents, sorted by subject matter. Then each participant
was asked to select 2 videos that most interested him or her
(to be used for the focused learning condition) as well as 3
videos that were the most uninteresting (to be used for the future
planning condition). Then each participant watched all 3 selected
uninteresting videos and ranked them; the 2 most uninteresting
videos were used for the future planning condition. Note that this
means the participants watched the uninteresting videos twice,
once during selection and once during the experiment. This re-
watching paradigm (Martin et al., 2018) served a dual purpose in
our study. First, it helped confirm that participants were genuinely
disinterested in the videos, since the content may have exceeded
their expectations based on the title and description. Second, it
increased the likelihood of mind wandering during the second
viewing, which was crucial for our investigation.

The experimental environment is shown in Figure 1A. The
presentation of all stimuli occurred on an ASUS 23.8” LED monitor
that had a spatial resolution of 1,920 × 1,080 pixels; all stimuli
were presented on a gray background. All lecture videos had
480 p resolution (235 × 132 cm on screen), and cue images were
500 × 500 pixels (137 × 137 cm on screen). The participants were
positioned in front of the computer screen in such a way that their
eyes were around 60 cm away from the display.

For the focused learning condition, before video playing,
participants were instructed to focus attention on the lecture video
and press a key when they lost their attention, then immediately
focus attention back on to the video. A brief discussion with the
experimenter about the content of the lecture was held before
watching, and participants were told that 1 to 2 questions would
need to be answered after the video. The interest, discussion, and
expectation of questions combined to increase task demand and
reinforced motivation to maintain attention (Seli et al., 2019).

For the future planning condition, each participant was asked
to perform personal future planning related to the cue images
shown on the screen. Cue images were shown only before the
lecture and until participants were ready and pressed a button to
start the lecture video. During the playing of the lecture videos,
participants were instructed to press a key when they found
themselves engaged in the videos, then immediately continue
to plan. Thus, key press in both conditions indicated undesired
mental state, and marked data to be excluded from classifier

FIGURE 1

(A) Photo of experimental setup. (B) Timeline of experiment. Focused learning condition (FL) and future planning condition (FP) alternated, each
video lasted 5–10 min, with rating scale feedback and rest between videos. Half of the participants performed FL first and the other half performed
FP first.

Frontiers in Human Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1182319
https://www.icourse163.org/
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1182319 May 25, 2023 Time: 9:35 # 4

Tang et al. 10.3389/fnhum.2023.1182319

training and testing. The self-caught method was inspired by
Braboszcz and Delorme (2011); we use it here due to its simplicity
and compatibility with our goal of not disturbing the task.

The EEG data acquisition phase started with a 1-min recording
of resting state with eyes open. To average out order effects, half of
the participants started with the focused learning condition and the
other half started with the future planning condition (Figure 1B).
The selected learning videos had average length of 480.68 ±
95.86 s and the selected uninteresting videos had average length of
470.89 ± 82.60 s. The whole experiment lasted about 2 h (from
video selection to finish of all the tasks).

In all conditions, EEG signals and facial videos from a webcam
placed above the screen were recorded. The participants were told
that the experiment process would be recorded by the webcam.
They were allowed to adjust the audio volume at the beginning
of video playback. Participants could change video playback rate,
fast forward, and rewind during video playback via key press on
the computer keyboard. We allowed these actions to mimic real-
life video-based learning scenarios and to maintain an appropriate
level of difficulty.

After each video, participants were asked to provide feedback
via rating scales:

1. “What percentage of time were you focused on the video?”
2. “What percentage of time were you intentionally mind

wandering?”
3. “What percentage of time were you unintentionally mind

wandering?”
4. “What percentage of mind wandering occurrences were

marked with key presses?” (for focused learning); “What
percentage of video engagement occurrences were marked
with key presses?” (for future planning).

5. “For how long before each key press were you mind
wandering?” (for focused learning); “For how long before
each key press were you engaged in the video?” (for
future planning).

For the scale ranges, the first four questions’ ratings were
integers from 1 to 10, which represented 10 uniform intervals
from 0 to 100% (e.g., 1 represents <10%, 2 represents 10–20%,
3 represents 20–30%, and so on). A time range in seconds was
estimated for the 5th question. Before the experiment, the wording
of the rating scales was clarified to the participants (for example,
that “mind wandering” represents thoughts that are unrelated
to the lecture videos). While the responses to these subjective
rating scales were likely noisy, they still provide some useful
information for data quality estimation (question 1–4) and data
cleaning (question 5). We did not assess the quality of learning
after the task, because the video lectures were diverse in topic and
did not have associated testing material that was comparable across
lectures. Thus, we did not measure the detrimental effect of mind
wandering on learning in this study.

2.4. EEG data pre-processing

EEGLab (V2021.0) and MATLAB (2020.a, MathWorks Inc.,
Natick, MA, USA) were used for EEG signal processing. The raw

EEG signals were high-pass filtered at 1 Hz and down-sampled
to 256 Hz. A notch filter at 48–52 Hz was applied to remove
power line noise.

The Artefact Subspace Reconstruction (ASR) plugin of EEGLab
was used for de-noising. The resting state data (eyes open) recorded
at the beginning of every experiment were used as the reference
signal input for the ASR algorithm. All participants were included
in the analysis.

2.5. Feature extraction

2.5.1. Signal filtering
Electroencephalography frequency bands delta (1–4 Hz), theta

(4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) were obtained
by band-pass filtering the EEG signal using windowed-sinc finite
impulse response filters (pop_eegfiltnew function of EEGlab).

2.5.2. Signal segmenting and labeling
The continuous EEG data were then sliced into 2 s non-

overlapping segments. The 2-s window was based on a trade-off
between better feature extraction with longer windows versus the
need for real-time decoding with shorter windows. The choice of
a 2-s window duration is consistent with the approach taken by
Kaushik et al. (2022). The segments from the focused learning
condition were labeled as non-mind wandering and segments from
the future planning condition were labeled mind wandering (2-
class). Participants reported occurrences of out-of-task mental state
during each condition (that is, mind wandering in the focused
learning condition and focus on lecture in the future planning
condition) through key press, so based on the key press timings
and the duration range provided in the rating scales (we used the
higher value of the range given by each participant for a video),
any segments which overlapped any key press were excluded in
the following analysis. Specifically, let m be the high value of the
range and t be the time of a key press; any data segment which
overlapped with [t-m, t] was excluded. Participants had 468 ±
60 (mean ± std) samples in the focused learning condition and
424 ± 50 samples for the future planning condition. The sample
size comparison for each participant is shown in Figure 2A.

2.5.3. Riemannian feature extraction
The Riemannian geometry-based approach has achieved state-

of-the-art results on various EEG-based BCI, for example, for BCI
based on motor imagery (Zanini et al., 2018; Chu et al., 2020),
P300 (Li et al., 2020), and SSVEP (Chevallier et al., 2020). It
has shown superiority in many related applications, such as for
respiratory state classification (Navarro-Sune et al., 2017), EEG
artifact detection (Saifutdinova et al., 2019), and decoding of the
directional focus of attention (Geirnaert et al., 2021). The approach
processes the covariance matrices estimated from EEG segments
in their native space, a Riemannian manifold. This manifold
can be conceptualized as a “curved space” where calculating the
distance between two points (covariance matrices) and calculating
the mean of points (mean of covariance matrices) requires a
different approach than in Euclidean space (Lotte et al., 2018).
The Riemannian approach offers several advantages, including
(1) Riemannian manipulations performed in the sensor space are
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FIGURE 2

(A) Total sample size comparison between future planning (FP, orange) condition and focused learning (FL, green) condition after data cleaning for
each participant. Horizontal dotted line represents balanced level (0.5:0.5). Overall, sample sizes were fairly balanced. (B) An illustration of the
selection of a proportion of the training set, according to temporal order, to test the effect of sample size on classification performance. The two
rows of color blocks indicate the EEG samples from 1 FP video and 1 FL video that were used as the training set for cross-lecture prediction. The
samples pointed to by the blue arrow were abandoned to keep the training set balanced.

equivalent to those performed in source space (assuming equal
dimensionality), which means source localization is not needed
(unless the localization process can add information from other
aspects), (2) Robustness of the Riemannian mean to outliers,
(3) good cross-participant and cross-session generalization ability
(Congedo et al., 2017). These characteristics make it a potential tool
for pBCI systems. For the conventional usage of the Riemannian
approach for EEG feature extraction, one key step is to calculate the
geometric mean PG of covariance matrices Pi, the solution to the
following optimization problem [eq. (1)]. In practice, this is solved
by an iterative algorithm (Fletcher and Joshi, 2004).

PG = G (P1, . . . , Pm) = argmin
P∈P(n)

m∑
i=1

δ2
R (P, Pi) (1)

Here, δR denotes the Riemannian distance. Then, to use
standard classifiers, which assume Euclidian space, we must project
the data points (covariance matrices) to the Riemann manifold’s
tangent space, which captures the local geometry of the manifold
at a tangent point by linear approximation. This is performed by
eq. (2) and (3) (Barachant et al., 2013):

logP (Pi) = P
1
2 log

(
P−

1
2 PiP−

1
2

)
P

1
2 (2)

si = upper
(

P
−

1
2

G logPG
(Pi) P

−
1
2

G

)
(3)

Here the mean covariance matrix PG, is the mean calculated
from training data. The n by n (number of EEG channels
used) covariance matrices are then mapped into n(n + 1)/2
dimensional vectors s by the upper(.) operator. The python package
“pyRiemann” (Barachant et al., 2022) was used to calculate the
above steps.

2.6. Classification, performance metric,
and statistics

Five kinds of features and 2 classification pipelines were
explored in the current study. Riemannian features based on the

4 frequency bands (delta, theta, alpha, and beta) separately as well
as their combination were tested. That is, the covariance matrix
(across channels) of EEG data from a frequency band was calculated
for a data segment (2 s), and the covariance matrix was then
processed using the Riemannian approach to obtain a feature vector
(sample). For the combination of frequency bands, the vectors from
the four bands were concatenated. The two classification pipelines
were:

1) Within participant classification. All samples from one
participant were used in five-fold cross-validation.

2) Cross-lecture prediction (within participant). Each
participant watched 2 different lecture videos for each
condition, so there were 4 total videos. Samples from 2 of
the 4 videos (one learning, one planning) were used as the
training set and samples from the other 2 videos were used
as the test set (4 combinations). Here, we further tested the
effect of sample size on cross-lecture prediction performance:
the datasets corresponding to the two videos used as training
were first shortened to the duration of the shorter dataset (to
obtain a balanced training set). Then, along the timeline of
the video from 10 to 90%, at 10% per step, we took different
proportions of samples as the training set, and predict on the
entire test set (Figure 2B).

The frequently used machine learning methods in related
works (Dong et al., 2021; Chen et al., 2022; Kaushik et al.,
2022) were (1) linear support vector machine [SVM(linear)], (2)
radial basis function kernel support vector machine [SVM(rbf)],
(3) random forest (RF) and (4) logistic regression (LR). We
evaluated and compared their classification performance, as
measured by the area under the receiver operating characteristic
curve (AUC). The classifiers were implemented in scikit-learn
(Pedregosa et al., 2011) v0.23.2. Feature standardization was
done by referring to the mean and the standard deviation
of the training samples. Between condition comparisons were
conducted by paired-sample t-test and repeated measures analysis
of variance (ANOVA) in SPSS (v23). When the assumption
of sphericity was violated (Mauchly’s Test of Sphericity), the
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degrees of freedom were adjusted using the Huynh-Feldt correction
(Abdi, 2010).

3. Results

3.1. Behavioral data

Figure 3A shows rating scores (collected after each video)
corresponding to percent of time focused on the video (1
corresponding to <10%, 10 corresponding to 90–100%, see 2.3).
The average values were 9.43 ± 0.73, (focused learning condition)
and 2.04± 1.21, (future planning condition). Paired-sample t-tests
showed significantly higher [t(27) = 29.752, p < 0.001] scores in the
focused learning condition.

Figure 3B gives the intentional and unintentional mind
wandering frequency ratings under each condition. Two-
way, repeated measures ANOVA with condition type and
mind wandering type (intentional vs. unintentional) as
within-participant factors revealed a significant main effect of
wandering type [F(1,27) = 43.872, p < 0.001] and condition
type [F(1,27) = 268.927, p < 0.001]; significantly higher mind
wandering rates were reported in the future planning condition.
The interaction effect was also significant [F(1,27) = 40.673,
p < 0.001]. Bonferroni-adjusted comparisons indicated that,
participants reported significantly higher intentional mind
wandering rates in the future planning condition compared
to the focused learning condition (p < 0.001, 95% CI of the
difference = 5.183 to 6.817), and they also reported significantly
higher unintentional mind wandering rates in the future planning
condition compared to the focused learning condition (p = 0.001,
95% CI of the difference = 0.722 to 2.492). Moreover, under the
future planning condition, intentional mind wandering rates
were significantly higher than unintentional mind wandering

rates (p < 0.001, 95% CI of the difference = 2.933 to 5.567),
while there was no significant difference between intentional and
unintentional mind wandering in the focused learning condition.
These trends accord with prior work and support the validity of
our experimental paradigm.

3.2. Classification

3.2.1. Within participant classification
Figure 4A shows AUC of within participant classification,

comparing frequency bands and classifiers. When using
Riemannian features, SVM(rbf) classifier with the concatenation
of all bands’ features had the highest performance AUC = 0.876±
0.070, the performance for each participant is provided in
Supplementary Table 1. A repeated measures two-way ANOVA
with frequency bands and classifiers as the within-participant
factors revealed a significant main effect of frequency bands
[F(1.603,110.577) = 130.929, p < 0.001] as well as classifiers
[F(1.492,102.95) = 46.810, p < 0.001]. The interaction effect was
not found to be significant [F(5.948,410.379) = 1.884, p = 0.083].
Post-hoc tests (Bonferroni-adjusted) indicated differences between
SVM(rbf) and the other classifiers, LR, RF, and SVM(linear),
were significant (p < 0.001), and differences between all pairwise
combinations of the five bands (p < 0.05) were significant, except
for all vs. beta band, delta vs. theta band.

3.2.2. Cross-lecture classification
Figure 4B shows AUC of cross-lecture classification,

comparing frequency bands and classifiers. The SVM(rbf)
classifier with the concatenation of all bands’ features again had
the highest performance AUC = 0.703± 0.108, performance for
each participant is provided in Supplementary Table 2. Half of
participants had higher average (across combinations) AUC than

FIGURE 3

(A) Error bar and scatter plot of participant rating scores for percent of time focused on the video under the focused learning condition (FL) and
future planning condition (FP). 1: < 10%, 2:10% to 20%, 3: 20% to 30%, etc. Each dot is a score from one video, error bar represents plus and minus
one standard deviation. (B) Error bar and scatter plot of rating scores for percent of time in intentional and unintentional mind wandering. Score
meanings are the same as above.
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FIGURE 4

(A) Boxplots showing the AUC scores of within-participant classification based on different classifiers and frequency bands. An individual data point
represents the result of one fold of cross-validation, so the total number of data points for each frequency band and each classifier was
14(participants) × 5(folds) = 70. (B) Same as above but for cross-lecture prediction AUC. The total number of data points for each frequency band
and each classifier was 14(participants) × 4(train-test video combinations) = 56.

0.7. Two-way, repeated measures ANOVA indicated that the
main effect of classifier was significant [F(1.260,69.288) = 8.425,
p = 0.003]; the main effect of frequency bands was also significant
[F(1.979,108.857) = 12.564, p < 0.001]. There was no significant
interaction effect found [F(4.154,228.489) = 0.890, p = 0.474].
Post-hoc tests (Bonferroni-adjusted) indicated differences between
SVM(rbf) and the other classifiers were significant (p < 0.001); in
terms of frequency bands, the combination of the four bands had
significantly higher AUC than the delta, theta, and alpha bands
alone (p < 0.05).

3.2.3. Training sample size effects for
cross-lecture classification

The AUC of cross-lecture prediction for different proportions
of training samples is shown in Figure 5. The AUC of all four
classifiers increased as the training sample size increased, with
SVM(rbf) performing the best. When 70% of the training samples
were used, the average cross-lecture prediction AUC was close to
that based on the full training set (mean AUC 0.689).

4. Discussion

We used Riemannian geometry based features and several
machine learning methods to discriminate focused learning from
mind wandering during video lecture viewing. The SVM(rbf)
classifier performed best among the classifiers, and by combining
Riemannian-based features from delta, theta, alpha, and beta bands,
the classifier could detect mind wandering at 0.876 AUC for within
participant prediction and 0.703 AUC for within participant cross-
lecture prediction, on average.

The primary contribution of our study lies in the use of
Riemannian geometry for feature extraction, which resulted in
higher accuracy in detecting mind wandering states. Furthermore,
we were able to achieve this performance using data collected
by a limited-channel EEG system that is deployable in realistic
conditions. Our findings also indicate that our methods for
collecting training data sets in a short time period suitable for

future online use, while carefully controlling conditions during data
collection, can offer a viable solution for real-time decoding of mind
wandering states.

Regarding online learning (or similar) scenarios, Conrad and
Newman used auditory odd-ball stimuli while participants watched
lecture videos (Conrad and Newman, 2021), but decoding was not
done in that work. Dhindsa et al. (2019) conducted an experiment
in a real classroom setting, used common spatial patterns to
extract features, and found slightly higher than random-chance
level average F1 scores for mind wandering state classification,
partly due to limited and imbalanced training sets. Our paradigm
of focused learning versus future planning conditions was designed
to collect non-mind-wandering and mind wandering data while
avoiding interruption of the ongoing task process, which makes our
results more generalizable to real video-based learning scenarios.
Additional advantages include more balanced sample sizes between
mind wandering and non-wandering states (Figure 2A) and better
control of the order of conditions. Compared to Dhindsa et al.
(2019) decoding performance was high under our realistic video-
based distance learning scenario. Figure 5 shows that reliable

FIGURE 5

Error bar plot of AUC scores for different proportions of the training
set. Error bars indicate plus and minus one standard deviation
across participants.
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prediction could be made with as short as 9 min of EEG recording
for parameter fitting, allowing a system based on our method to
be practically deployed to help learners or supervisors improve the
efficacy of learning. In addition, our methods are also useful for
investigating the role of mind wandering in the learning process,
since our methods realize near-real-time detection (2-s update rate)
of the occurrence of mind wandering.

We separately tested decoding performance using different
frequency bands, which may subserve different functional roles
during mind wandering (Kam et al., 2022), and we observed that
beta band gave the highest prediction performance among the
4 frequency bands in both classification pipelines. Kaushik et al.
(2022) reported theta and alpha gave the highest performance.
Dhindsa et al. (2019) compared alpha, theta, and beta band
(beta1:13–18 Hz, and beta2: 19–30 Hz), and their results showed
that beta band (both beta1 and beta2) had the highest performance
in a portion of the participants. From these disparate findings,
the relative contribution of beta band activity may vary across
individuals and experimental tasks.

Compared to former studies that used a single lecture video and
ignored individual differences (Conrad and Newman, 2019, 2021),
for the focused learning condition, we ensured high engagement
through lecture content related discussion, facial video recording,
expectation of post-lecture questions, and choice of self-selected
learning materials of interest. For the future planning condition,
cue images provided by the participants were highly personally
relevant and thus better able to provide an environment conducive
to mind wandering thoughts. Figure 3A shows that our methods
for increasing motivation to pay attention during the focused
learning condition were fairly successful, though the occurrence of
mind wandering is inevitable during task (Seli et al., 2016b), the
vast majority of participants reported that less than 10% of total
focused learning condition duration was spent on mind wandering
thoughts. Interestingly, the proportions of the two kinds of mind
wandering (intentional and unintentional) under both conditions
was similar to numbers from Seli et al. (2016a), with our focused
learning condition corresponding to their difficult task and our
future planning condition corresponding to their easy task, though
there are differences in the tasks (Seli et al., 2015).

In the future planning condition, we took measures to
increase the likelihood that the participants self-generate thoughts
unrelated to the lectures. Any future planning thoughts generated
by following the instructions (cue-initiated) do not conform to
the traditional definition of mind wandering thoughts, which
are self-initiated (Smallwood and Schooler, 2015). However, we
expect participants to also generate self-initiated mind wandering
thoughts under this experimental environment because they are
watching videos which are very uninteresting and have no need
to answer questions afterward. We confirmed the presence of
self-initiated mind wandering via rating scales at the end of
the videos. Our paradigm is similar to that of Zhigalov et al.
(2019), which instructed future planning in contrast to mindfulness
meditation. We chose future planning instructions to build
an environment conducive to mind wandering, because mind
wandering predominantly involves self-relevant and goal-directed
planning (Baird et al., 2011). Seli et al. (2017) also found that the
content of both unintentional and intentional mind wandering
tend to be future-oriented.

We used the ASR method mainly to correct large-amplitude
artifacts, and since this method is not perfect, some residual

effects of noise can leak through this step. Some research
have reported that eye-related information is useful for mind
wandering detection (Bixler et al., 2015; Chen et al., 2022).
Since our main purpose is accurate detection and a practical
system, not necessarily one solely limited to signals of neural
origin, we did not pursue perfect noise removal. Though eye-
movement artifacts may have played a role, covariance-based
features are known to be less sensitive to noise (Aydarkhanov et al.,
2020).

There are several limitations to the current study. First, in
our rating scales, many participants reported less than 10% of
time spent in intentional and unintentional mind wandering
during the focused learning condition, but participants may have
been able to give more detailed information had we used a
continuous rating scale instead of a 10-point scale. We asked
participants to report the percentage of time spent in intentional
and unintentional wandering after each video, but the accuracy
of this estimate may need to be verified with the aid of key
press during the experiment, i.e., the key press protocol currently
used does not distinguish between intentional and unintentional
wandering. Second, it is possible that the similarity in video
content related neural activity underpinned the classification,
instead of activity related to mind wandering. We have analyzed
the selection of the interesting and uninteresting videos by
participants, and found that, for interesting videos, 2 videos
were repeatedly selected (the most-commonly selected video was
selected 4 times). For uninteresting videos, 1 video was repeatedly
selected (2 times). Future studies should verify our results on larger
samples and with different lecture contents. Third, our study only
conducted within individual classification, as a step toward the
more generalizable inter-individual classification, which we plan
in future work.

An ideal pBCI system for daily usage should be usable at
any moment. However, noise from hardware, variability of brain
activity, and inter-individual variability make this very difficult
to achieve. A solution is reflected in the work of Aricò et al.
(2016), in which a short calibration period was used to collect
task-related signals. The result of the current 8-channel study
shows that even when the training data duration is limited
to 9 min, our methods could still obtain high cross-lecture
prediction accuracy. The approach combining a limited-channel
EEG system with a short calibration period shows promise for
future research.
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