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Robotic technologies for rehabilitating motor impairments from neurological

injuries have been the focus of intensive research and capital investment

for more than 30 years. However, these devices have failed to convincingly

demonstrate greater restoration of patient function compared to conventional

therapy. Nevertheless, robots have value in reducing the manual e�ort required

for physical therapists to provide high-intensity, high-dose interventions. In

most robotic systems, therapists remain outside the control loop to act as

high-level supervisors, selecting and initiating robot control algorithms to achieve

a therapeutic goal. The low-level physical interactions between the robot and

the patient are handled by adaptive algorithms that can provide progressive

therapy. In this perspective, we examine the physical therapist’s role in the

control of rehabilitation robotics and whether embedding therapists in lower-level

robot control loops could enhance rehabilitation outcomes. We discuss how

the features of many automated robotic systems, which can provide repeatable

patterns of physical interaction, may work against the goal of driving neuroplastic

changes that promote retention and generalization of sensorimotor learning in

patients. We highlight the benefits and limitations of letting therapists physically

interact with patients through online control of robotic rehabilitation systems,

and explore the concept of trust in human-robot interaction as it applies to

patient-robot-therapist relationships. We conclude by highlighting several open

questions to guide the future of therapist-in-the-loop rehabilitation robotics,

including howmuch control to give therapists and possible approaches for having

the robotic system learn from therapist-patient interactions.
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1. Introduction

One of the primary goals of neurorehabilitation is to promote neuroplasticity

in sensorimotor networks that generate lasting improvements in patients’ functional

movement. A key agent of neuroplasticity is a patient’s willful activation of neural pathways

to produce goal-directed movement (Kaelin-Lang et al., 2005). However, producing

voluntary movement with severe neurological impairments is challenging due to various

factors such as fatigue, discoordination, or pain. Physical assistance can help minimize

these adverse effects, allowing high-repetition training to maximize neuroplasticity and

motor recovery.
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Physical and occupational therapists are expertly trained to

provide manual facilitation, tactile feedback, and verbal coaching

to help patients practice functional movements. For example,

during gait training, promoting heel strike of the affected limb

for an individual who has experienced a stroke can be done by:

manually facilitating knee extension during late swing, encouraging

dorsiflexor activation by providing tactile feedback to the patient’s

shin, and providing verbal instruction to extend the knee and

strike the heel (Hesse et al., 1994). This active-assisted training

can help drive neuroplasticity and motor recovery (Forrester et al.,

2008; Mulroy et al., 2010). However, performing these actions over

hundreds of steps demands significant therapist physical effort and

cognitive attention, which can lead to acute and chronic overuse

injuries in therapists (Holder et al., 1999; McCrory et al., 2014).

Increasing the quantity of task-based practice by reducing

the physical demands borne by therapists provides a compelling

rationale for rehabilitation robots. The expectation is that by

providing assisted gait training similar to a therapist, robots

can drive neuroplasticity and produce beneficial outcomes.

Unfortunately, robotic rehabilitation has, in many cases, not

met these expectations. For example, for robotic locomotor

rehabilitation, a 2020 Clinical Practice Guideline concluded that

current robotic locomotor treadmill training approaches for stroke,

spinal cord injury, and brain injury are not recommended (Hornby

et al., 2020). There remains a significant need for new avenues of

scientific inquiry in robot-mediated rehabilitation.

In this perspective, we focus on the therapist’s role in

robotic rehabilitation. Early robotic control algorithms did

not incorporate human therapist expertise into their design.

Although these early robots could produce a large amount of

patient movement, the patients often habituated to the robot

assistance and decreased their volitional effort (Marchal-Crespo

and Reinkensmeyer, 2009; Reinkensmeyer et al., 2009).More recent

assist-as-needed algorithms may better mimic therapist approaches

to counter habituation by aiming to maximize patient voluntary

contributions through active participation (Blank et al., 2014).

However, current approaches still do not match the expertise and

adaptability of a trained therapist.

With time, as algorithmic advances more closely resemble

the strategies employed by human therapists, therapists may

find themselves increasingly left out of the robotic control loop.

When therapists take on the role of robotic supervisors, removed

from direct physical interaction with patients, they lose critical

somatosensory information about patient performance and the

ability to make on-the-fly adjustments to therapeutic forces applied

to patients. We address whether embedding therapists in the

lower-level control loops of robotic rehabilitation can enhance

rehabilitation outcomes or if instead, we should embrace fully

automated robotic systems for clinical care.

2. Control of robots—Background

Neurorehabilitation robots are typically programmed to

interact with patients autonomously while under clinician

oversight; this ensures safety and proper selection of treatment

programs. Early approaches for robotic assistance employed

position control, using strong motors to move a patient along a

predetermined trajectory (Jezernik et al., 2003). While effective at

moving the patient, this approach can discourage active patient

contributions (Reinkensmeyer et al., 2009; Hornby et al., 2020).

In response, impedance-based control systems were developed to

increase patients’ active participation by modulating robot forces

proportionately to volitional movement (Fleerkotte et al., 2014;

Meng et al., 2015). Many of these control strategies are designed

to assist-as-needed in an attempt to replicate the adaptive training

provided by a trained clinician (Cao et al., 2014; Jamwal et al.,

2020).

Despite promoting patient involvement, limitations in the

ability of robot control algorithms to adapt to changes in patient

behavior led to the emergence of a wide variety of human-

in-the-loop adaptive control strategies. These algorithms use a

combination of sensors to obtain information about human

behavior, aided by machine learning, to predict movement

intention (Badesa et al., 2014; Khera and Kumar, 2020; Ai

et al., 2021; de Miguel-Fernandez et al., 2023). Often, robotic

rehabilitation systems require a therapist to tune controller

parameters to a patient’s needs (de Miguel-Fernandez et al., 2023),

but this manual parameter adjustment may occur without critical

haptic and kinesthetic feedback about a patient’s performance,

limiting effectiveness.

Although our aim here is not to exhaustively review robotic

control algorithms, we do want to make the point that as time

goes on, many robotic assistance strategies seem to more closely

mimic what therapists are thought to do, despite there being very

few quantitative studies on therapist assistive strategies (Galvez

et al., 2005). This begs the question: If an ideal robotic system

aims to mimic expert therapists’ adaptive training, why not just

allow therapists to utilize their clinical expertise via more direct

control over patient-robot interactions? We explore several key

topics related to this question and the nascent domain of therapist-

in-the-loop robotic rehabilitation.

3. Control of robots—Therapists
in-the-loop

3.1. The continuum of control

We look at therapist-in-the-loop control of rehabilitation

robots as a continuum that depends on the timescale of action

(Figure 1). Therapist robot control is generally at the highest levels

and longest timescales. In the high-level category, therapists are

limited to “button-pushers” who initiate, pause, or stop robotic

training (Esquenazi et al., 2017). In high-level control, therapists

can typically modify robotic routines to adapt to patient needs, for

example, if a patient begins to experience pain with a particular

movement. The therapist’s role is critical in accommodating the

non-stationarity of rehabilitation: a patient’s physiological status

may frequently change, even within a session, causing traditional

metrics like averages and variances to lose meaning. However, our

limited understanding of how to incorporate therapist feedback

may limit the effectiveness of high–level control (Pinheiro et al.,

2022).

In contrast to high-level control, there are fewer examples of

mid-level control, which operates on a shorter timescale. Instead

Frontiers inHumanNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1179418
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Hasson et al. 10.3389/fnhum.2023.1179418

FIGURE 1

The continuum of control for therapists interacting with a robotic rehabilitation system. At the present time, most systems enable therapist control at

mid- to high-levels. Although low-level control presents the largest sensorimotor challenge to therapists, it may provide benefits that the other levels

do not, as it permits the most natural physical interaction between a therapist and patient.

of monitoring patient progress over a series of exercises, mid-level

control allows the therapist to interject on a per-movement basis.

Mid-level control is used in some lower extremity exoskeletons,

by allowing a therapist to control the timing of when the robot

initiates a patient step, for example (Strausser and Kazerooni, 2011;

Milia et al., 2016). This intermediate level of control may be useful

for patients that have difficulty initiating movements. However,

like high-level control, a limitation of mid-level control is that the

therapist must rely on their eyes to judge the quality of patient

movement; they are unable to use somatosensory feedback as they

would if they had their hands on the patient to determine when to

alter how the robot is interacting with the patient.

Low-level therapist control of robotic rehabilitation systems

occurs on the shortest timescale. Here, the therapist controls

the physical interaction moment-to-moment (e.g., within a single

step or a single reaching movement). Only a few examples of

low-level control exist today. Teleoperation is one approach for

granting therapists low-level control of a robotic rehabilitation

system, which allows a therapist to simultaneously feel a patient’s

movements through haptic feedback and alter how force is applied

to the patient through the robotic system (Rahman et al., 2011;

Tao et al., 2020). For example, in the system of Koh et al. (2021),

the therapist holds onto a small manipulandum that follows the

scaled-down movement of a patient’s leg during treadmill walking

(Figure 2). The operator (or therapist) can assist by deflecting the

manipulandum as it follows the patient’s motion, and the robot

applies a force proportional to the deflection.

For the therapist, low-level robot control is distinguished

by a high sensorimotor challenge because the therapist must

continuously interact with the complex dynamics of a patient,

much like in traditional hands-on facilitation (Hasson and

Goodman, 2019). Instead of relying on a computerized controller,

the therapist is the controller. This could be viewed as a

limitation or an advantage, as the effectiveness of therapy becomes

dependent on the therapist’s skill at controlling the interactive

dynamics. Nonetheless, low-level robot control could provide

the most human-like interaction for patients, as patients can

feel the therapist’s actions through the robotic intermediaries. In

this way, low-level control preserves the “messiness” of therapist

control, which could be advantageous for neurorehabilitation, as

discussed next.

3.2. Embracing the messiness of human
therapists

One of the challenges of robotic rehabilitation is that patients

can adapt to assistance in detrimental ways. For example, if the

robot pulls the leg upward every step, as might be done to increase

step height, a patient may adapt to the presence of this force.

Therefore when the assistance force is removed, the patient’s

step height could become lower (Reinkensmeyer et al., 2006).

This phenomenon is explained by research suggesting humans

learn internal models (or neural representations) when exposed to

novel dynamics (Wolpert et al., 1995). Such models are learned

most effectively in deterministic environments, where the relation

between forces and motion remains predictable (Bays andWolpert,

2007).

We propose that the deterministic nature of therapeutic

robot control strategies may encourage patients to adapt to a

specific algorithm and therefore, improvements may not persist or

transfer to other situations and environments. In contrast, therapist

assistance is more stochastic and messy. We operationally define

messy in terms of the relatively high variability of human motor

output caused by sensorimotor noise (Faisal et al., 2008). As a result,

a human therapist will never apply the same time-varying assistance

force on any two steps (Galvez et al., 2005). This distinctly human

characteristic of force delivery could provide a tangible benefit to

patients, as variability can be conducive to motor learning and

counteract the habituation we previously noted that occurs with

deterministic algorithms (Galvez et al., 2011).

Given the potential benefits of a therapist’s messy force delivery

(compared to a deterministic robotic system), we should consider

embracing the stochastic (less predictable) nature of assistance

from human therapists. There may also be psychological benefits of

this variability, as it may convey the “humanness” of the therapist,

and foster patient trust. Without these human qualities, a patient
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FIGURE 2

Example of a telerobotic gait training system that gives a physical therapist continuous low-level control over the robotic interaction. In this

embodiment, a robotic arm is attached to the patient with a magnetic coupling. Although attached to the leg here, a magnetic attachment facilitates

robotic interaction with almost any part of the body if a suitable garment embedded with ferrous material is worn. The motion of the robotic arm is

transferred to a small robotic manipulandum held by a therapist (bottom left), so the therapist can feel the patient’s motion in near real-time. If the

therapist pushes and deflects the manipulandum, the robotic arm will simultaneously apply force to the leg of the patient. This force is amplified and

proportional to the therapist’s manipulandum force; therefore, the system preserves the time-varying nature of the therapist force, including the

natural variability inherent in human interactions.

may feel as though they are interacting with an automated robotic

system that is emotionless and indifferent to their psychological

state andwellbeing. Additionally, these factorsmay improve patient

buy-in to participate in robotic interventions and motivate them

to achieve rehabilitation goals. However, the actuality of these

benefits remains an open question, as too much messiness and

unpredictability could become detrimental to patients.

3.3. Therapists teaching machines

The multifariousness of patients may be the most compelling

rationale for keeping therapists in the loop, as even the

most sophisticated machine learning algorithms can fail when

unexpected, contradictory, or complex situations are encountered.

Self-driving automobile technology provides a good analogy. For

example, on a two-way undivided highway that does not have lane

markings, self-driving cars may decide to drive in the center of the

lane despite being in the way of oncoming traffic (Linja et al., 2022).

Thus, a simple matter for a human driver may become dangerous

when left to artificial intelligence to intervene. In our view, the issue

is even more complex in robotic rehabilitation.

Unlike self-driving cars, in rehabilitation, the thing being

controlled is another living adaptive system, i.e., the patient. In

robotic rehabilitation, the controlled entity (the patient) can adapt

its behavior drastically from moment to moment in unpredictable

ways. Perhaps the best antidote for addressing the unpredictable

nature of patient rehabilitation is to use a controller that is equally,

if not more, adaptable than the patient (Atashzar et al., 2018).

Fortunately, this controller already exists in the form of a human

therapist. A therapist is able to adapt how they assist a patient based

on patient performance and indicators of a patient’s affective state,

as well as the level of challenge, fatigue, and pain the patient reports

(Sawers and Ting, 2014). At any given time, a therapist may choose

to assist, resist, or simply not interact with the patient to promote

desired behaviors. The ability of therapists to perform this complex,

real-time systems analysis exceeds the current state of the art in

adaptive patient-in-the-loop control strategies.

Although human therapists are highly adaptable, continuous

low-level robot-mediated physical interaction with patients may

place significant attentional and cognitive loads on the therapist.

A brief lapse in attention could, for example, result in a resistive,

instead of assistive, force being applied to patients. However, a

therapist does not need to maintain continuous low-level control if

the robot can learn from the therapist. Recently, a learn-and-replay

framework has been proposed that includes a therapist-in-loop

phase in which the therapist interacts directly with the patient via

haptic teleoperation, and a therapist-out-of-loop phase, in which a

therapist’s previous actions are automated by the robot (Tao et al.,

2020). Though sparse in the field of robotic rehabilitation, this type
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of robotic training represents a form of imitation learning (Schaal,

1999; Fang et al., 2019).

As a final consideration for hybridizing therapist-machine

rehabilitation systems, it may be advantageous to envision a system

that slides along the continuum of control. For example, machine

learning could detect when the algorithmic control of robotic

interaction is insufficient, and therapist input is needed. A therapist

could also indicate their involvement through their actions. For

example, if a therapist is engaged in low-level control by wielding

a control interface (e.g., a manipulandum; Figure 2), they could

just let go, and the robotic system would take over control.

Understanding how aspects of control are shared between the

therapist, the patient, and the robot has enormous implications

for therapist-in-the-loop systems and, more broadly, the field of

rehabilitation robotics.

3.4. Who do you trust?

Few would argue that a patient’s trust is an essential mediator

of therapeutic outcomes. However, how this trust is affected by

integrating therapists into robotic control loops is unknown. The

specific relationships occurring in human-robot interactions are

essential to understand. Exploring trust in social interactions

with robots is still a relatively new area of study. Established

models of trust in human-robot interaction cover much ground by

exploring the human-, robot-, and environmental-related factors

influencing trust (Schaefer et al., 2016; Hancock et al., 2021).

However, investigating trust toward robots has been focusedmainly

on cognitive factors, such as beliefs of reliability or capability (Ruff

et al., 2002; de Visser and Parasuraman, 2011; Desai et al., 2013).

Less is known about how trust is affected when a robotic system is

placed between the patient and therapist.

To understand the role of trust in therapist-in-the-loop robotic

rehabilitation, we must expand our concept of trust from a dyad

between the patient and the robot into a triad that adds the

physical therapist (Cameron and Collins, 2021). In their expert role,

physical therapists bring many qualities that impact patient trust.

Therapists emphasize building a therapeutic alliance with their

patients to create an affective bond and mutual agreement on goals

and treatment plans (Kinney et al., 2020). Therapists also constantly

evaluate their patients for verbal and nonverbal cues for indications

that an alteration is needed. In the parlance of trust in human-

robot interaction, the therapist acts as an interested external agent

in the therapist-patient-robot triad (Cameron and Collins, 2021),

whose actions and relationship with the patient shapes the human-

robot interaction. Thus, the therapist is responsible for the robotic

system and enabling the patient-robot interaction to occur in the

form it does.

One might expect that a patient’s trust in rehabilitation robots

will increase with the therapist-in-the-loop. However, reality might

not be so straight forward. For example, even if the robot

malfunctions by no fault of the therapist, the experience may

destroy the trust the patient has for the therapist. Thus, work in

this area of trust and rehabilitation robotics would allow us to

better pick which kinds of human-in-the-loop systems to design. By

learning how trust impacts the continuum of control, it will become

clearer how the robot is trusted as an extension of the therapist, and

the influence trust has on robotic rehabilitation outcomes.

4. Discussion

In this perspective, we explored how embedding therapists

in the lower-level control loops of robotic rehabilitation systems

may improve neuroplasticity and rehabilitation outcomes. The

tight integration of therapists in robotic control embraces the

variability of human therapists, leverages their vast clinical

experience, and maintains a distinctly human link with patients

that could enhance patients’ trust in robotic technology. Below,

we pose a set of forward-looking questions for which answers will

take an interdisciplinary investigative approach from multiple

stakeholders, including patients, therapists, neuroscientists,

and engineers:

Questions for patients:

• How is patient perception mediated by knowledge of whether

the robot is under therapist or automated control?

• Does giving therapists more control of robotic interactions

inspire greater patient engagement in task-based practice and

better help them achieve their rehabilitation goals?

• How does the level of therapist control affect patient trust in

using robotics for rehabilitation?

Questions for physical therapists:

• How much control over physically-assisted robotic

interventions do therapists want?

• What training is needed for therapists to safely manage

low-level physical interactions using a robotic rehabilitation

system?

• How can therapists maintain trust and a solid therapeutic

alliance with patients using robotic systems?

Questions for neuroscientists:

• What aspects of traditional hands-on therapy (variability,

adaptability, etc.) are critical to promoting neuroplasticity and

behavioral modification with robotic systems?

• How much control do therapists need to maximize their

effectiveness at promoting neuroplasticity?

• What kind of feedback about the robotic system and patient

performance is optimal to guide therapist intervention?

Questions for engineers:

• How should the therapist interface be constructed for optimal

transmission of therapist assistance?

• Can algorithms be designed so the robotic system can learn

from therapist trainers (and vice-versa)?

• How can a robotic system be programmed to mimic the

variability inherent in therapist-provided assistance and

feedback?

Frontiers inHumanNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1179418
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Hasson et al. 10.3389/fnhum.2023.1179418

A question for all:

• How can each stakeholder, i.e., therapists, neuroscientists,

and engineers, best incorporate feedback from other

stakeholders to optimize rehabilitation outcomes

for patients?
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