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Magnetic Resonance Imaging (MRI) T2-weighted white matter hyperintensity

(WMH) is a marker of small vessel cerebrovascular pathology and is of ischemic

origin. The prevalence and severity of WMH is associated with cardiovascular risk

factors, aging, and cognitive injury in mild cognitive impairment (MCI), vascular

dementia, and Alzheimer’s disease (AD). WMH especially affects executive

function, with additional effects on memory and global cognition. Apolipoprotein

E (apoE) plays a role in cholesterol metabolism and neuronal repair after injury.

Human and animal studies support a role for apoE in maintaining white matter

integrity. In humans, there are three major human apoE isoforms, E2, E3, and

E4. Human apoE isoforms differ in risk to develop AD and in association with

WMH. In this Mini Review, we propose an increased focus on the role of WMH in

cognitive health and cognitive injury and the likely role of apoE and apoE isoform

in modulating these effects. We hypothesize that apoE and apoE isoforms play

a role in modulating WMH via apoE isoform-dependent effects on oxylipins and

7-ketocholesterol, as well as amyloid related vascular injury, as seen in cerebral

amyloid angiopathy.

KEYWORDS

white matter hyperintensity, white matter integrity, apolipoprotein E, magnetic
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1. Introduction

In humans, Magnetic Resonance Imaging (MRI) T2-weighted white matter
hyperintensity (WMH), a marker of small vessel cerebrovascular pathology (Pantoni,
2010), is of ischemic origin, and regions of white matter with reduced blood flow have been
shown to develop new WMH on follow-up imaging (Bernbaum et al., 2015; Promjunyakul
et al., 2015). The prevalence and severity of WMH is associated with cardiovascular risk
factors like hypertension (Liao et al., 1996) and with aging and cognitive injury in mild
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cognitive impairment (MCI) (Vettore et al., 2021), vascular
dementia (Alber et al., 2019), and Alzheimer’s disease (AD)
(Prins and Scheltens, 2015; Boyle et al., 2016; Lee et al., 2016;
Schoemaker et al., 2022). The predominant impact of WMH on
cognition is in executive function, although relationships with
memory and global cognition have also been observed (Hedden
et al., 2012; Debette and Markus, 2010). The concept of reserve
may explain variability in the impact of WMH on cognitive
function, with results from a previous study demonstrating that,
for a given level of performance on neuropsychological testing,
WMH were higher in those with greater cognitive and brain
reserve (Brickman et al., 2011). Additional mediating factors
may include age (van Dijk et al., 2008; Garnier-Crussard et al.,
2020), sex (de Leeuw et al., 2001; Brickman et al., 2011), and
lesion location (Mortamais et al., 2013; Lampe et al., 2019).
Confluent WMH seems more associated with cognitive injury
than non-confluent WMH (Kumar et al., 2020) and genetic
and environmental factors modulate this relationship (Prins and
Scheltens, 2015).

Apolipoprotein E (apoE) plays a role in cholesterol metabolism
and neuronal repair after injury (Mahley, 1988). ApoE, a
component of lipoprotein particles, binds to surface receptors
like low-density lipoprotein receptor (LDLR) family members as
part of this role. In addition, apoE modulates synaptic function,
glucose metabolism, and cerebrovascular function (Yamazaki
et al., 2019). Some effects of apoE outside the brain may
ultimately affect the brain. For example, apoE is expressed
in the adrenal gland and modulates the adrenal secretion of
corticosterone and regulation of the hypothalamic-pituitary-
adrenal axis (Raber et al., 2000). ApoE is also expressed in
the gut (Niemi et al., 2002) and modulated inflammation,
gastrointestinal health, and the gut microbiome composition (Tran
et al., 2019). Outside the brain, most apoE is expressed in
the liver and apoE secreted from the liver can also affect the
brain, as illustrated in humanized liver mice (Giannisis et al.,
2022; Kessler et al., 2023). In humans, there are three major
human apoE isoforms, E2, E3, and E4. Compared to E3, E4 is
associated with increased risk to develop cardiovascular disease
and AD (Farrer et al., 1997). These E4 effects are sex- and
ethnicity-dependent (Farrer et al., 1997; Turney et al., 2020).
In contrast, compared to E3, E2 is associated with reduced
risk of developing AD (Farrer et al., 1997). However, E2 is
associated with slightly reduced LDL-cholesterol levels and in
the presence of other risk factors homozygous E2 carriers can
develop type III hyperlipoproteinemia, an atherogenic disorder
characterized by an accumulation of remnants of triglyceride-
rich lipoproteins (Khalil et al., 2021). In those cases, E2 is also
associated with increased risk of developing type II Diabetes
Mellitus (Santos-Ferreira et al., 2019), which especially in E4
carriers is associated with cognitive injury and AD risk (Jangra and
Tople, 2022). In patients with cerebral amyloid angiopathy (CAA),
a degenerative vasculopathy associated with lobar intracerebral or
sulcal hemorrhage, E2 is associated with a higher incidence of
intracerebral hemorrhage under oral anticoagulation (Charidimou
et al., 2015; Block and Dafotakis, 2017).

In this Mini Review, we hypothesize the role of WMH in effects
of apoE and apoE isoform on cognitive injury.

1.1. ApoE isoform and WMH in humans

In cognitively healthy adults (45–75 years of age), pathological
WMH is seen in E4 homozygotes but not E4 heterozygotes,
suggesting a gene-dose effect (Rojas et al., 2017; Operto et al., 2018).
While aging, hypertension and cardiovascular and dementia risk
scales are also associated with pathological WMH, they do not
modulate the effect of E4/E4 homozygosity (Rojas et al., 2017).
However, in participants of the United Kingdom Biobank (mean
age: 62 years of age), E3/E4 heterozygous carriers, in addition to
E4/E4 homozygous carriers, had greater WMH burden than E3/E3
carriers. Of note, E2/E4 heterozygosity was not related to greater
WMH burden, consistent with a relative protective E2 effect on
white matter integrity (Lyall et al., 2020). In a longitudinal study,
WMH increased more over a 3-year period in E4 than non-E4
carriers, defined as having at least one e4 allele thus including
heterozygous carriers (Cox et al., 2017). However, no effect of E4
carrier status (E2/E4, E3/E4, and E4/E4) on WMH burden was seen
in a much smaller study (Lyall et al., 2015). In this latter study E2/E4
carriers were included, while they were not in the earlier study in
which WMH was seen in both E4/E4 and E3/E4 carriers. Based on
their relative protective effect of E2 versus the relative enhanced risk
of E4, as compared to E3 (Farrer et al., 1997; Wisdom et al., 2011),
including E2/E4 carriers can make the results harder to interpret.

Microstructural integrity disruption of the white matter, as
measured by diffusion tensor imaging (DTI), is thought to be
a sensitive indicator of early white matter damage that precedes
macrostructural T2 WMH formation (Promjunyakul et al., 2018).
Using DTI, decreased fractional anisotropy (indicating diminished
WM directionality), greater radial diffusivity (indicating myelin
disruption) and greater mean diffusivity (indicating greater
water diffusion regardless of direction) are common indicators
of diminished white matter integrity. DTI radial diffusivity
seems especially increased in cognitively healthy E4/E4 carriers,
suggesting a disruption in the myelin sheath rather than axonal
damage (Operto et al., 2018). However, in different studies
including heterozygous E4 carriers or only E3/E4 but not E2/E4
heterozygous carriers distinct alterations of white matter in E4
carriers have been reported. In 20–35 and 50–78 year-old E4
carriers, a reduction in fractional anisotropy and an increase in
mean diffusivity, as compared to age-matched non E4 carriers, were
reported (Heise et al., 2010). A decrease in fractional anisotropy in
E4 versus non-E4 carriers were reported in people over 60 (Westlye
et al., 2012) and between 49 and 79 years of age (Persson et al.,
2006), respectively. However, in 21–70 year old E3/E4 versus E3/E3
carriers, so excluding E2/E4 carriers, an increase in mean and radial
diffusivity were reported (Westlye et al., 2012). In general, those
studies support that E4 affects white matter in an age-independent
fashion. However, other studies support age-dependent E4 effects
on the white matter (Ryan et al., 2011; Adluru et al., 2014).
These divergent findings highlight the need for longitudinal and
environmentally controlled human apoE animal studies.

In Alzheimer’s disease, WMH is more widespread in E4
carriers (E2/E4, E3/E4, and E4/E4) but more focal (posterior
predominant) in non-E4 carriers (Slattery et al., 2017). In contrast,
while WMH was not different between E4 and non-E4 AD patients
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in one study, WMH volume was associated with worse cognitive
performance in all cognitive domains in E4 carriers only with
AD or Lewy Body dementia (Mirza et al., 2019). On the other
hand, in a combined cohort from cognitively healthy to probable
AD patients, E4 homozygotes showed more WMH accumulation
per year than non-E4 carriers (Sudre et al., 2017). In addition, in
prodromal AD patients, E4 carriers had higher global, temporal,
and occipital WMH and poorer memory than non -E4 carriers
and E4 strengthened the inverse relationship between WMH and
episodic memory (Kumar et al., 2022).

The relationship between WMH and risk of disease and
biomarkers of disease seems apoE isoform-dependent. In a meta-
analysis, E4 carrier status and E4 homozygosity was associated
with increasing WMH and cerebral microbleeds (Schilling et al.,
2013). In the same analyses, E2 carrier status was associated
with increasing WMH and risk to develop a brain infarct
(Schilling et al., 2013).

Amyloid β (Aβ) plaques (Pietroboni et al., 2020) are a hallmark
of AD pathology. The AD biomarker tau, not Aβ, is associated with
changes in anterior temporal WM integrity (Strain et al., 2018).
Remarkably, while WMH is associated with axonal damage, tau
independently contributed to the model and decline in white matter
is associated with early tau accumulation (Strain et al., 2018).

In E4/E4 carriers with MCI or AD, there was a negative
association between WMH and cerebrospinal levels of Aβ42
(Sharms et al., 2022). In contrast, in E3/E3 carriers, WMH was
associated with lower levels of total and phosphorylated tau
(Sharms et al., 2022). In E2 carriers, including those with MCI,
more WMH is seen (Sharms et al., 2022). E2 carriers, like E4
carriers, show an association with WMH but, compared to E3,
E2 reduces while E4 increases AD risk. These results suggest that
risk to develop AD and to develop cognitive impairments due to
WMH are two distinct phenomena. Consistent with this notion,
severe WMH is associated with profound cognitive impairments
in conditions that like seen in cerebral autosomal dominant
arteriopathy with subcortical infarcts and leukoencephalopathy
(CADASIL), a rare monogenic cerebral small vessel disease
(Jouvent et al., 2020), that is not related to AD (Jolly et al., 2022).
Especially in AD, apoE isoform-dependent pathologies related to
cortical Aβ and hyperphosphorylated tau might be important to
develop cognitive injury that is additive to that resulting from white
matter injury alone.

White matter capillaries might play an important role in WMH.
White matter capillary width is increased in AD, dementia with
Lewy bodies, Parkinson’s disease with dementia, vascular dementia,
mixed dementias, and post-stroke dementia (Hase et al., 2019).
This was suggested to represent a compensatory change to retain
white matter perfusion under hypoperfusion conditions (Hase
et al., 2019). WMH and cognitive impairments are core features of
CAA (Charidimou et al., 2022). In CAA, E4 carriers are at greater
risk of Aβ40 deposition in the vasculature, while E2 carriers are
at increased risk for vessel breakdown and subsequent cerebral
hemorrhage (Greenberg et al., 2020). Amyloid related imaging
abnormalities (ARIA) in the setting of anti-amyloid monoclonal
antibody therapy for AD consist of punctate WMH (ARIA-
E) and often co-localized cerebral microhemorrhages (ARIA-H)
(Sperling et al., 2011). The most significant risk factor for ARIA-
E in those participating in monoclonal antibody therapeutic trials
is E4 carrier status (Sperling et al., 2011; Sevigny et al., 2016;

van Dyck et al., 2023). Combined, these findings indicate a critical
role of apoE isoform on vascular amyloid deposition and risk for
related WMH and hemorrhage in both spontaneous CAA and
therapeutic interventions that lead to greater amyloid deposition
within the vasculature. Figure 1A illustrates potential pathways
involved in WMH and cognitive injury in E4 carriers.

1.2. E4 and WMH in mice

To study E4 and WMH in mice, a bilateral carotid artery
stenosis model of cerebral hypoperfusion was used in mice with
targeted replacement (TR) of E3 or E4. In this mouse model
Dr. Sullivan generated (Sullivan et al., 1997; Knouff et al., 1999),
human apoE is expressed under control of a mouse apoE promoter.
White matter blood flow, local hypoxia and white matter injury
were more severely affected in E4 mice than E3 or wild-type
mice (Koizumu et al., 2018). In addition, hippocampus-dependent
spontaneous alternation in the Y maze and object recognition
involving 24 hour delay between learning and memory testing
were more severely affected in E4 mice than E3 or wild-type
mice (Koizumu et al., 2018), supporting the likely relationship
between WMH and cognition. Comparing E4 to E3 or wild-type
mice, the following results were observed: (1) More demyelination
in the corpus collosum; (2) more reduced levels of the myelin-
associated glycoprotein; (3) a higher ratio of myelin basic protein
to the axonal marker SM1312; and (4) more reduced levels
of the oligodendrocyte marker Olig2. Consistent with these
findings, a more profound loss of integrity of the nodes of
Ranvier were observed in a model of cerebral hypoperfusion
(Koizumu et al., 2018).

1.3. ApoE and white matter integrity

Studies in mice lacking apoE support a role for apoE in white
matter integrity following in the controlled cortical impact model
of traumatic brain injury. ApoE-deficient mice showed impaired
white matter integrity, analyzed as reduced fractional anisotropy
levels, 28 days following traumatic injury and this was associated
with cognitive injury (Huang et al., 2020). This effect was delayed,
as no genotype difference in fractional anisotropy was seen three
days following traumatic brain injury. The beneficial effects of
apoE on white matter integrity involve intracellular adaptor protein
Disabled-1 (Dab1), which is normally phosphorylated when apoE
binds the very-low density lipoprotein receptor and the apoE
receptor 2 (Abadesco et al., 2014; Figure 1B). Reduced fractional
anisotropy is also seen in completely denervated nerve segments
compared to uninjured sciatic nerve and restored toward normal in
regenerating nerve segments (Lehman et al., 2010) and associated
with cognitive performance in the water maze test in mice 2 months
following hypoxia-ischemia at day 9 (Cengiz et al., 2011).

1.4 ApoE, oxylipins, 7-ketocholesterol,
and white matter integrity

Effects of distinct human apoE isoforms on white matter
integrity might be mediated by oxylipins and 7-ketocholesterol
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FIGURE 1

(A) Potential pathways involved in WMH and cognitive injury in E4 carriers. All comparisons are to E3/E3 carriers. In cognitively healthy adults
(45–75 years of age), pathological WMH is seen in E4 homozygotes (Rojas et al., 2017; Operto et al., 2018) and in participants of the United Kingdom
Biobank (mean age: 62 years of age), there is a greater WMH burden in E3/E4 and E4/E4 than E3/E3 carriers. WMH also increased more over a
3-year period in E4 than non-E4 carriers (Cox et al., 2017). E4 affects cholesterol metabolism and DTI radial diffusivity seems especially increased in
cognitively healthy E4/E4 carriers, suggesting a disruption in the myelin sheath (Operto et al., 2018). In E4/E4 carriers with MCI or AD, there is a
negative association between WMH and cerebrospinal levels of Aβ42 (Sharms et al., 2022). E4 is a risk factor for cardiovascular disease (Li et al.,
2021) and effects on WMH and cognitive injury might involve the cardiovascular system and associated inflammation as well. Atherosclerosis and
atrial fibrillation are associated with more WMH and this might involve decreased cerebral perfusion (Emrani et al., 2020). E4 is associated with
pathological processes possibly linked to WMH and cognitive injury, including Aβ and tau pathologies. E4 also causes increased mitochondrial Ca2+

and reactive oxygen species (ROS) levels, mitochondrial dysfunction, and neurotoxicity (Pires and Rego, 2023), which might mediate this effect. (B) A
role for apoE in white matter integrity in the controlled cortical impact model of traumatic brain injury was revealed 28 days following traumatic
injury. The beneficial effects of apoE on white matter integrity involve intracellular adaptor protein Disabled-1 (Dab1) (Abadesco et al., 2014). (C) The
effects of distinct human apoE isoforms on white matter integrity might be mediated by oxylipins and 7-ketocholesterol. In cognitively healthy
hypertensive study participants, docosahexaenoic acid oxylipins are associated with white matter integrity (Silbert et al., 2020). APOE genotype
modifies the plasma oxylipin response to Omega-3 Polyunsaturated Fatty Acid [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)]
supplementation in cognitively healthy people, with E4 carriers showing the greatest increase in plasma oxylipin levels 12 months following the diet
supplement (Saleh et al., 2021). For more details, see main text.

(Figure 1C). Oxylipins are a class of bioactive lipid mediators
derived from the oxidation of long-chain polyunsaturated
fatty acids (PUFAs). They act as modulators of vascular tone
and inflammation and are potential therapeutic targets in AD
and related dementias (for a review, see Shinto et al., 2022).
In cognitively healthy hypertensive study participants,
docosahexaenoic acid oxylipins are associated with white matter
integrity (Silbert et al., 2020). APOE genotype modifies the
plasma oxylipin response to Omega-3 Polyunsaturated Fatty Acid
[eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)]
supplementation in cognitively healthy people, with E4 carriers
showing the greatest increase in plasma oxylipin levels 12 months
following the diet supplement (Saleh et al., 2021).

Oxysterols are oxidized metabolites of cholesterol. They
can penetrate the blood-brain barrier and modulate cholesterol
metabolism in the brain (Björkhem, 2013). Levels of the oxysterol
7-ketocholesterol increase with disease progression in the frontal
cortex of AD patients (Testa et al., 2016). Levels of 7-ketocholesterol
in the cerebrospinal fluid are associated with white matter integrity
in cognitively healthy people (Iriondo et al., 2020); higher levels of

7-ketocholesterol are associated with lower fractional anisotropy
(Iriondo et al., 2020). In apoE TR mice, cortical levels of 7-
ketocholesterol were increased following chronic variable stress, an
animal model of post-traumatic stress disorder, in E4, but not E2
or E3, mice (Torres et al., 2022). Chronic variable stress increased
7-ketocholesterol levels in the liver of E2, E3, and E4 mice (Torres
et al., 2022). In addition, independent of chronic variable stress, 7-
ketocholesterol levels in plasma were much higher in E2 than E3 or
E4 mice (Torres et al., 2022).

2. Conclusion

WMH is associated with cognitive injury in various
neurological conditions. We hypothesize that apoE plays a
critical role in modulating WMH via apoE isoform-dependent
effects on oxylipins and 7-ketocholesterol, as well as amyloid
related vascular injury, as seen in CAA (Figure 1). We recognize
that as there are relatively few reported studies regarding some of
the topics we discussed in this review. Therefore, future studies are
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warranted to determine the pathways involved in the relationship
between apoE isoform, WMH, and cognitive injury.
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