AUTHOR=Wang Ximiao , Dai Xisheng , Liu Yu , Chen Xiangmeng , Hu Qinghui , Hu Rongliang , Li Mingxin TITLE=Motor imagery electroencephalogram classification algorithm based on joint features in the spatial and frequency domains and instance transfer JOURNAL=Frontiers in Human Neuroscience VOLUME=17 YEAR=2023 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2023.1175399 DOI=10.3389/fnhum.2023.1175399 ISSN=1662-5161 ABSTRACT=Introduction

Motor imagery electroencephalography (MI-EEG) has significant application value in the field of rehabilitation, and is a research hotspot in the brain-computer interface (BCI) field. Due to the small training sample size of MI-EEG of a single subject and the large individual differences among different subjects, existing classification models have low accuracy and poor generalization ability in MI classification tasks.

Methods

To solve this problem, this paper proposes a electroencephalography (EEG) joint feature classification algorithm based on instance transfer and ensemble learning. Firstly, the source domain and target domain data are preprocessed, and then common space mode (CSP) and power spectral density (PSD) are used to extract spatial and frequency domain features respectively, which are combined into EEG joint features. Finally, an ensemble learning algorithm based on kernel mean matching (KMM) and transfer learning adaptive boosting (TrAdaBoost) is used to classify MI-EEG.

Results

To validate the effectiveness of the algorithm, this paper compared and analyzed different algorithms on the BCI Competition IV Dataset 2a, and further verified the stability and effectiveness of the algorithm on the BCI Competition IV Dataset 2b. The experimental results show that the algorithm has an average accuracy of 91.5% and 83.7% on Dataset 2a and Dataset 2b, respectively, which is significantly better than other algorithms.

Discussion

The statement explains that the algorithm fully exploits EEG signals and enriches EEG features, improves the recognition of the MI signals, and provides a new approach to solving the above problem.