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Introduction: Motor imagery electroencephalography (MI-EEG) has significant

application value in the field of rehabilitation, and is a research hotspot in the

brain-computer interface (BCI) field. Due to the small training sample size of

MI-EEG of a single subject and the large individual differences among different

subjects, existing classification models have low accuracy and poor generalization

ability in MI classification tasks.

Methods: To solve this problem, this paper proposes a electroencephalography

(EEG) joint feature classification algorithm based on instance transfer and

ensemble learning. Firstly, the source domain and target domain data are

preprocessed, and then common space mode (CSP) and power spectral density

(PSD) are used to extract spatial and frequency domain features respectively,

which are combined into EEG joint features. Finally, an ensemble learning

algorithm based on kernel mean matching (KMM) and transfer learning adaptive

boosting (TrAdaBoost) is used to classify MI-EEG.

Results: To validate the effectiveness of the algorithm, this paper compared and

analyzed different algorithms on the BCI Competition IV Dataset 2a, and further

verified the stability and effectiveness of the algorithm on the BCI Competition

IV Dataset 2b. The experimental results show that the algorithm has an average

accuracy of 91.5% and 83.7% on Dataset 2a and Dataset 2b, respectively, which is

significantly better than other algorithms.

Discussion: The statement explains that the algorithm fully exploits EEG signals

and enriches EEG features, improves the recognition of the MI signals, and

provides a new approach to solving the above problem.

KEYWORDS

brain-computer interface (BCI), motor imagery (MI), joint feature, instance transfer,
ensemble learning, kernel mean matching (KMM), transfer learning adaptive boosting
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1. Introduction

In recent years, brain-computer interface (BCI) systems
have attracted great attention because they can provide another
communication channel for people who have lost independent
motor ability by decoding neural signals (Wolpaw et al., 2002).
This system converts electroencephalography (EEG) collected from
the scalp into control commands for computers or other external
devices, thereby achieving direct interaction between the brain and
external devices (Xu et al., 2018). In EEG-based BCI experiments,
motor imagery (MI) is a commonly used task paradigm.

Brain-computer interface based on MI means that there is
no actual physical behavior involved, but rather the thoughts
in the brain are used to imagine bodily movements, which are
then translated into actual operations through a controller. MI
activates brain regions that are similar to those activated during
actual physical movement (Holmes and Calmels, 2008; Miltona
et al., 2008), which can promote the repair or reconstruction of
damaged motor pathways, has great application value in the field
of rehabilitation. However, due to the small amount of Mi-EEG
sample data of a single subject and the large individual differences
among different subjects (Manali et al., 2020), the classification
model has low accuracy and poor generalization ability in the MI
classification task.

To solve these problems, researchers have conducted extensive
studies. Due to the asymmetric energy differences in the human
spatial brain area during motor imagery, researchers usually use the
Common Spatial Pattern (CSP) algorithm to extract distinguishable
spatial features from multi-channel EEG signals (Ramoser et al.,
2000; Amirhossein et al., 2016). In addition, EEG signals are
mainly rhythmic signals, and Event-Related Desynchronization
(ERD) (Zhang et al., 2021) and Event-Related Synchronization
(ERS) (Bastien et al., 2020) occur within specific frequency bands.
At the same time, the CSP algorithm directly filters spatially in
the frequency domain, so frequency domain information cannot
be ignored for MI classification. Therefore, many scholars have
proposed combining spatial and frequency domain features to
fully explore EEG and enrich EEG features. For example, Ai et al.
(2019) used the CSP algorithm and the local characteristic-scale
decomposition (LCD) algorithm to extract spatial and frequency
domain features, respectively, and combined the two types of
features. Finally, they used the Spectral Regression Discriminant
Analysis (SRDA) classifier for classification, achieving an average
classification accuracy of 74.5%. However, this method ignores
the personalized differences between subjects, resulting in poor
generalization ability of the classification model.

In recent years, studies have shown that transfer learning
can improve model performance in target tasks by learning
and transferring information from source tasks (Feng et al.,
2022). Therefore, some researchers hope to reduce the individual
differences among different subjects through transfer learning (Cao
et al., 2021; Feng et al., 2023), so as to improve the performance of
the classification model. For example, He and Wu (2019) proposed
a weighted logistic regression transfer learning algorithm based on
Euclidean Space (EA), which aligns the EEG data of the source
domain and target domain in the data preprocessing stage to reduce
the differences between signals. In the feature extraction stage, the
CSP algorithm is used to extract the feature values of different

subjects, and then the Kullback-Leibler (KL) divergence of these
feature values is calculated. Finally, the KL is used to adjust the
Linear Discriminant Analysis (LDA) of the transfer learning for
classification, achieving an average classification accuracy of 73.5%.
However, this EA-CSP-LDA algorithm is not sensitive enough to
non-linear data, resulting in poor classification performance. In
addition, Zhou and Tian (2021) proposed a transfer multi-layers
convolutional neural networks (TMCNN) algorithm, which first
constructs a transfer network model capable of learning a large
number of common features of the source domain, and then
connects convolutional-pooling blocks to form four convolutional
network structures with different depths. These structures are
parallelly fused as a multi-level fusion feature extractor, and finally
classified to achieve an average classification accuracy of 80.9%.
However, this algorithm requires a large amount of data for model
training, and the model is prone to overfitting when the dataset is
small.

Due to the limited generalization ability of a single classifier,
it is easy to overfit, so some researchers proposed to use ensemble
learning to construct classifier. For example, Li et al. (2011) used
a BP neural network as a weak classifier under the AdaBoost
ensemble learning framework to form the BP-AdaBoost basic
network classifier model. The model first extracts EEG features
based on the Hilbert-Huang transform, and then introduces a
forgetting factor to improve the AdaBoost algorithm, enhancing its
temporal correlation by changing the initial weights of the samples.
Finally, the BP neural network is used as a weak classifier and
integrated into the BP-AdaBoost classifier. This model improves
the classification accuracy by 23.42% compared to the traditional
BP neural network, and achieves an average classification accuracy
of 81.1%. However, the training time of BP neural network is long
and it is prone to getting stuck in local optimal solutions, leading to
a decrease in the performance of the classifier.

Inspired by the above studies, in order to break through the
limitations of single domain EEG features to varying degrees,
provide more comprehensive and detailed EEG analysis, and
to simultaneously reduce the impact of small sample sizes of
MI-EEG samples from individual subjects and inter-individual
differences across subjects on MI task classification models, this
paper proposes an EEG joint feature classification algorithm based
on instance transfer and ensemble learning. The algorithm includes
three stages: the first stage is preprocessing of source and target
domain data; the second stage is to use the CSP algorithm and
Power Spectral Density (PSD) to extract spatial and frequency
domain features, respectively, and to combine the two features
as EEG joint features, so as to fully explore EEG and enrich
EEG features, and improve MI identification performance (Bin
et al., 2019; Qiu et al., 2022); The third stage is to classify MI-
EEG using an ensemble learning algorithm based on kernel mean
matching (KMM) (Xing et al., 2007) and adaptive enhancement
of transfer learning (TrAdaBoost) (Dai et al., 2007). Firstly, the
KMM algorithm is used to adjust the sample weights to make
the feature distribution of the source domain closer to that of the
target domain. Then, the obtained weight sample matrix is used
as the initialization weight matrix of the TrAdaBoost algorithm
to initialize the training samples. Next, several weak classifiers are
trained by using the initialized training sample data, and finally
a strong classifier is integrated by weighted voting strategy. The
algorithm makes full use of the EEG joint features and eliminates
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the individual differences of different subjects as much as possible.
Repeated validation and testing show that the proposed algorithm
can improve the classification performance of MI-EEG.

2. Materials and preprocessing

2.1. Data description

The MI-EEG data used in this paper is obtained from BCI
Competition IV Dataset 2a and BCI Competition IV Dataset 2b
(Tangermann et al., 2012).

The BCI Competition IV Dataset 2a is a dataset that collected
EEG signals from 22 electrodes and recorded the locations of three
electrooculogram (EOG) scalp electrodes for nine subjects. During
the experiment, the subjects were asked to perform four different
motor imagery tasks involving the left hand, right hand, foot, and
tongue. Subjects sat in a comfortable chair and completed sessions
consisting of six runs, with 48 motor imagery trials per run. In total,
each session had 288 trials, with 72 trials performed for each type
of motor imagery task.

The BCI Competition IV Dataset 2b is a dataset that collected
EEG signals from three electrodes (C3, Cz, and C4) and recorded
the locations of three EOG scalp electrodes for nine subjects.
During the experiment, the subjects were asked to perform two
different motor imagery tasks involving the left hand and right
hand. Subjects sat in a comfortable chair and completed sessions
consisting of six runs, with 20 motor imagery trials per run. In total,
each session had 120 trials, with 60 trials performed for each type
of motor imagery task.

This study only used data from motor imagery tasks involving
the left and right hands. Prior to the start of each session, a 5 min
EOG recording was performed to eliminate the influence of eye
movement artifacts, followed by the start of the run. During each
trial, subjects were required to fixate on the screen for 2 s before
engaging in 4 s of motor imagery. The timing scheme of one session
is shown in Figure 1, and the timing scheme of the experimental
paradigm is shown in Figure 2. In addition, a sampling frequency
of 250 Hz and a bandpass and a bandpass filter of 0.5–100 Hz
were used during the experiment, along with a sensitive amplifier
of 100 µV and a 50 Hz notch filter.

In the experiment, a total of 22 scalp electrodes based on the
international 10–20 system were used, including Fz, FC3, FC1, FCz,
FC2, FC4, C5, C3, C1, Cz, C2, C4, C6, CP3, CP1, CPz, CP2, CP4, P1,
Pz, P2, and POz, left mastoid reference, right mastoid grounding, as
shown in Figure 3A. In addition, three EOG electrodes were used,
as shown in Figure 3B.

2.2. Data preprocessing

In the data preprocessing process of this study, the main
steps used include channel selection, bandpass filtering, and time
window processing. The detailed operation is as follows: In the
channel selection step, the data recorded from the three EOG
channels need to be removed, and the remaining EEG channels are
used. As the relevant rhythmic signals during motor imagery are
divided into µ rhythm signal of 8–12 Hz and β rhythm signal of 13–
30 Hz (Chen et al., 2022), in the bandpass filtering step, a bandpass

filter of 8–30 Hz is used to filter the selected EEG to improve the
signal-to-noise ratio. Based on the experimental paradigm, each
trial includes 4 s of motor imagery task time. Additionally, in the
time window processing step, EEG corresponding to the motor
imagery task time of 0.5–3.5 s after the cue are extracted, so as
to better adapt to the needs of subsequent analysis by using the
corresponding data from the 3 s time window in each trial, and
improve the efficiency of data processing. The data preprocessing
workflow is illustrated in Figure 4.

3. Related work

3.1. Spatial-frequency joint feature
extraction

In order to fully explore MI-EEG signals and enrich EEG
features, it is necessary to use multiple feature extraction methods
to extract various types of features. This study used the CSP
algorithm and PSD algorithm to extract spatial domain features
and frequency domain features, respectively, and combined the two
features as EEG joint features to provide more detailed and accurate
EEG features, which could offer more comprehensive data support
for subsequent signal processing and analysis.

3.1.1. Spatial domain feature extraction based on
CSP

common space mode is an algorithm for spatial filtering feature
extraction that is extensively applied to binary classification MI-
EEG tasks. It takes advantage of the characteristic of asymmetric
energy differences in spatial brain areas during motor imagery, and
projects the two types of EEG onto a subspace to decompose them
into different spatial patterns. The fundamental principle of CSP
algorithm involves diagonalization of matrices to obtain an optimal
set of spatial filters, and then project the feature matrix to maximize
the difference in variance between the two types of signals. This
ultimately extracts spatial feature vectors with high discrimination
ability, making it suitable for distinguishing between two types of
MI tasks. The main process is shown in Figure 5.

(1) Sorting and segmenting the preprocessed
data.FN=[f1(t),f2(t),...,fk(t),]T represents the signal of experiment
N , with k electrodes and n trials per experiment. Trace(.) is used to
solve the matrix rank. The mixed-space covariance matrix Hc is
calculated as follows:

Hc =
1
n
(
∑ (F1FT1 )

trace(F1FT1 )
+

∑ (F2FT2 )

trace(F2FT2 )
) (1)

(2) The mixed covariance space matrix Hc is subjected to
orthogonal whitening transformation, where I. represents the
identity matrix, to obtain the whitened matrix R that satisfies the
following condition.

RHcRT = I (2)

(3) Performing Singular Value Decomposition (SVD) on
eigenvalue C1, C2 with C1=RH1RT , C2=RH2RT ,yields the diagonal
matrix P and the orthogonal matrix Q:

Cj = QPjQT (j = 1, 2) (3)
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FIGURE 1

Timing scheme of one session.

FIGURE 2

Timing scheme of the experimental paradigm. (A) Dataset 2a. (B) Dataset 2b.

FIGURE 3

Distribution maps of electrode positions. (A) Positions of electroencephalography (EEG) electrodes. (B) Positions of electrooculogram (EOG)
electrodes.

FIGURE 4

Data preprocessing workflow.
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FIGURE 5

Common Spatial Pattern (CSP) feature extraction process.

FIGURE 6

Power spectral density (PSD) feature extraction process.

FIGURE 7

Flowchart of electroencephalography (EEG) joint feature classification algorithm based on instance transfer and ensemble learning.

(4) As inferred from (3), I=C1+C2, P2=I−P1 . When any element
in Cj approaches I , the other elements of Cj will approach the zero
matrix. This maximizes the variance differences between the two
classes of signals. Therefore, the spatial filtering Z of the N-th EEG
is:

Z = QTQFN (4)

(5) Spatial feature fj of MI-EEG:

fj =
var(Zj)∑m
j=1 var(Zj)

(5)

Among them, Zj is the projection of FN onto the spatial filter, m is the
number of selected feature parameters, f is the feature value. Var(.)
is the variance of the matrix.

3.1.2. Frequency domain feature extraction based
on PSD

As the EEG are non-stationary random signals, this study used
the Welch method (Bin et al., 2019) in the PSD algorithm to

extract frequency domain features from the EEG. This method
reduces the random fluctuations in signals to obtain results
with smaller variance and smoother curves, aiming to extract
high-discriminative frequency domain features. The algorithm
involves segmenting complex signals, applying window functions
to calculate power spectral density, and finally outputting the
averaged results. The main process is illustrated in Figure 6.

(1) Segment the EEG f (m), m=0, 1, ..., K−1 into R segments, each
containing Ndata points, where the length of the EEG is K . Segment
j of data can be represented as:

fj(m) = f (jN − N + n), 0 ≤ j ≤ R, 0 ≤ m ≤ N (6)

(2) Apply a windowing function w(m) to each segment of data,
and then normalize the resulting periodogram P(λ).

P(λ) =
1
NU

∣∣∣∣∣
N−1∑
m=0

fj(m)w(m)e−i2πλ

∣∣∣∣∣
2

, j = 1, 2, ... , N − 1 (7)
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TABLE 1 Comparison of classification accuracy among the three methods for nine subjects in Dataset 2a and Dataset 2b in the first
group of experiments.

Subject Method CSP+SVM PSD+SVM CSP+PSD+SVM

Dataset 2a A01 75.7% 56.3% 86.8%

A02 62.5% 47.2% 73.6%

A03 80.6% 66.7% 87.5%

A04 65.2% 63.2% 79.9%

A05 50.7% 50.7% 51.4%

A06 63.2% 61.1% 52.8%

A07 66.7% 52.1% 77.8%

A08 77.8% 73.6% 69.4%

A09 59.0% 59.0% 79.2%

Mean± SD (66.8± 9.1)% (58.9± 7.9)% (73.2± 12.5)%

Dataset 2b B01 71.7% 73.3% 80.0%

B02 55.0% 56.7% 65.8%

B03 61.7% 52.5% 61.7%

B04 78.3% 62.5% 83.3%

B05 62.5% 56.7% 66.7%

B06 65.8% 66.7% 74.2%

B07 61.7% 57.5% 65.8%

B08 60.6% 56.9% 63.1%

B09 65.0% 60.8% 70.0%

Mean± SD (64.7± 6.4)% (60.4± 5.8)% (70.1± 7.1)%

FIGURE 8

Comparison of classification accuracy among three methods for nine subjects in the first group of experiments. (A) Dataset 2a. (B) Dataset 2b.

(3) The final estimate of power spectral density Pwelch(λ) is:

Pwelch(λ) =
1
R

R∑
j=1

P(λ) (8)

Where U is the normalization factor, λ is the frequency, P(λ) is the
normalized periodogram, and Pwelch(λ) is the power spectral density.

3.2. Ensemble learning classification

In this study, an ensemble learning algorithm based on KMM
and TrAdaBoost (K-T) was used to classify MI-EEG. First, the
sample weight matrix obtained by the KMM algorithm was used
as the initial sample weight matrix for the TrAdaBoost algorithm.
Then, several weak classifiers were trained using the initialized
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TABLE 2 Comparison of classification accuracy between the proposed method and the comparative experimental method in Dataset 2a and Dataset 2b.

Subject Method CSP+PSD+SVM CSP+PSD+TrAdaBoost CSP+PSD+KMM Ours

Dataset 2a A01 86.8% 86.4% 93.1% 97.6%

A02 73.6% 79.5% 79.8% 86.4%

A03 87.5% 84.1% 83.3% 95.5%

A04 79.9% 84.1% 84.7% 87.0%

A05 51.4% 65.9% 72.2% 86.4%

A06 52.8% 81.8% 86.1% 88.6%

A07 77.8% 84.1% 85.4% 93.2%

A08 69.4% 81.8% 93.1% 97.7%

A09 79.2% 84.1% 80.6% 90.9%

Mean± SD (73.2± 12.5)% (81.3± 5.8)% (84.3± 5.8)% (91.5± 4.4)%

Dataset 2b B01 80.0% 83.3 82.5 91.7

B02 65.8% 72.2 72.5 77.8

B03 61.7% 63.9 69.2 75.0

B04 83.3% 86.1 89.2 91.7

B05 66.7% 75.0 71.7 80.6

B06 74.2% 83.3 82.5 88.9

B07 65.8% 77.8 75.8 86.1

B08 63.1% 68.8 68.1 75.0

B09 70.0% 75.0 75.8 83.3

Mean± SD (70.1± 7.1)% (76.2± 6.8)% (76.4± 6.6)% (83.7± 6.3)%

training samples. Finally, a strong classifier was obtained using a
weighted voting strategy.

3.2.1. KMM algorithm
Due to individual differences, different subjects may have

different feature distributions in their EEG. KMM can adjust the
sample weights to make the feature distribution of the source
domain similar to that of the target domain. Firstly, the raw feature
Space was mapped to Reproducing Kernel Hilbert Space (RKHS)
(Gertton et al., 2012), and then the mean difference between the
source domain samples and the target domain samples in the RKHS
was computed, resulting in a set of weight parameter matrices.
These matrices can be used to re-assign weights to the training
samples, aiming to achieve the feature distribution of the source
domain approaching that of the target domain under the action
of the nuclear space. The process can be expressed as follows:

min ||
1
n

n∑
i=1

βi8
(
xsi
)
−

1
m

m∑
i=1

8
(
xti
)
||

2
H (9)

Where,xsi is a set of samples from the source domain, i=1, 2, ... , n,

xti
is a set of samples from the target domain, i=1, 2, ... , m. βi∈[0,1]

TABLE 3 T-test results of the proposed method and the comparative
experimental method.

Paired T-test P-value

Dataset 2a Dataset 2b

Ours vs. CSP+PSD+SVM 0.001 0.000

Ours vs. CSP+PSD+TrAdaBoost 0.000 0.000

Subject vs. CSP+PSD+KMM 0.001 0.000

P < 0.05 indicates significant results.

is the weight for the i−th sample from the source domain. H is a
RKHS with a feature kernel K , 8(•) is the mapping function from
the original space to the RKHS, and satisfies the following relation:

〈8(x),8(y)〉H=K(x,y), where K(x,y) is the Gaussian kernel function.

K
(
x, y

)
= exp(

− ||x-y ||2

2σ2 ) (10)

Where, σ represents the size of the Gaussian kernel. By
combining equations (9) and (10), we can finally obtain the mean
difference between each source domain and target domain:

min

 1
n2

( n∑
i=1

βi8
(
xsi
))2

−
2
nm

m∑
i=1

βi8
(
xsi
) m∑
i=1

8
(
xti
)
+ c


(11)

Where, σ represents a constant.

3.2.2. TrAdaBoost algorithm
Instance transfer learning selects samples from the source

domain that are consistent with the target sample space
distribution, and improves the performance of the model on the
target task by transferring information from the source domain.
TrAdaBoost algorithm is an instance transfer learning algorithm
based on AdaBoost algorithm. During its operation, it uses source
domain samples and some target domain samples as training set
samples, and the remaining target domain samples as test set. The
model is trained based on the training samples, and then tested
on the test set. Meanwhile, Hedge algorithm weighting mechanism
is used to deal with samples from the auxiliary domain (Chen
et al., 2021). That is, in each iteration of training, if the model
misclassifies a sample from the source domain, we consider that this
sample have a large difference with the target domain sample, and
therefore need to reduce the weight of this sample. By multiplying
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FIGURE 9

Comparison of classification accuracy between the proposed method and the comparative experimental method. (A) Dataset 2a. (B) Dataset 2b.

this sample with a weight between 0 and 1, the impact of this
sample on the classification model will be reduced in the next
iteration through the weight value. After a series of iterations, the
weight of the source domain samples that are helpful for classifying
the target domain will be increased, while the weights of other
source domain samples will be decreased. This achieves the goal
of enhancing valuable auxiliary samples and gradually weakening
the distribution-dissimilar auxiliary samples. Finally, by further
training several weak classifiers based on the modified weight
data and weighting them, a strong classifier is obtained, thereby
improving the classification performance of the model on the target
task by transferring information from the source domain.

Let As={(xi,yi)} be the sample from the source domain with
i=1, 2, ... , n, and At={(xi,yi)} be the sample from the target domain
with i=n+1, n+2, ... , n+m, where yi represents the sample label and xi
represents the sample instance. Let T be the testing data. The sample
space of Tand As are of the same distribution, while T and At are of
different distributions. During operation, a classifier will be trained
with a large number of As and a small number of At to minimize
classification errors on T .

(1) Initialize the weights of training samplesA={As,At}:

w1
i =

{
1/n i = 1, 2, 3..., n
1/m i = n+ 1, ..., n+m

(12)

(2) Setting the parameters β for the auxiliary samples:

β = 1/(1+
√

2 ln n/N) (13)

(3) Utilize A, T, and normalized weight w to train a weak
classifier ht .

(4) Calculate the error rate εt of ht using the training data set in
the target domain At :

εt =

n+m∑
i=n+1

wi
∣∣ht(xi)− c(xi))

∣∣∑
wt
i

(14)

(5) Setting βt=εt/(1−εt) results in a new weight value w of:

wi+1
i =

{
wt
iβ
|ht(xi−c(xi))| i = 1, 2, 3, ... , n

wt
iβ
−|ht(xi−c(xi))|
t i = n+ 1 , ... , n+m

(15)

(6) After N iterations, the resulting strong classifier h(x) is:

h(x) =


1,

∑N
t=dN/2e ln(1/βt)ht(x) ≥ 1

2
∑N

t=dN/2e ln(1/βt)

0, other
(16)

3.3. Our algorithm

The proposed EEG joint feature classification algorithm based
on instance transfer and ensemble learning in this study consists
of three parts: data preprocessing, spatial-frequency joint feature
extraction, and ensemble learning classification. The main process
is as follows, as shown in Figure 7.

(1) In the data preprocessing part, channel selection, band-pass
filtering, and time window processing will be performed on the raw
EEG data from the source and target domains.

(2) In the feature extraction part, the preprocessed data from
the source and target domains will be used for feature extraction.
The spatial features will be extracted based on the CSP algorithm,
and the frequency features will be extracted based on the PSD
algorithm using Welch’s method. Finally, the spatial and frequency
features will be combined to form the joint EEG features.

(3) In the ensemble learning classification part, the sample
weights of the joint features obtained from the source and target
domains will be adjusted using the KMM algorithm to make the
source and target domains as close as possible, and the sample
weight matrix will be obtained. Then, this matrix will be used as the
initialization weight matrix in the TrAdaBoost algorithm and used
to initialize the training samples. Next, multiple weak classifiers will
be trained using the initialized training data, and finally, a strong
classifier will be obtained using a weighted voting strategy based
on the weights of each weak classifier, achieving the goal of using
ensemble learning for MI-EEG classification.
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TABLE 4 Comparison of classification accuracy of the method presented in this paper and the methods proposed by other researchers on
brain-computer interface (BCI) competition IV dataset 2a.

Subject Method CSP-LCD-SRDA EA-CSP-LDA TMCNN Ours

Dataset 2a A01 87.5% 87.5% 91.6% 97.6%

A02 65.3% 56.3% 69.8% 86.4%

A03 90.3% 98.6% 91.0% 95.5%

A04 66.7% 73.6% 76.5% 87.0%

A05 62.5% 50.0% 72.7% 86.4%

A06 45.5% 64.6% 59.9% 88.6%

A07 89.6% 68.8% 92.9% 93.2%

A08 83.3% 89.6% 81.8% 97.7%

A09 79.5% 72.9% 82.4% 90.9%

Mean± SD (74.5± 14.5)% (73.5± 15.0)% (80.9± 10.5)% (91.5± 4.4)%

4. Experiment analysis

4.1. Result evaluation index

In this study, The Accuracy (ACC) was selected as an indicator
to evaluate the performance of the classification model, and the
calculation formula is as follows:

Acc =
TP + TN

TP + TN + FP + FN
(17)

Where, TP and TN represent the number of samples correctly
classified as positive labels and negative labels, respectively. FP and
FN are the number of samples misclassified as positive labels and
negative labels, respectively.

4.2. Comparative experiment and results
analysis

In this study, EEG data from nine subjects (A01, A02,..., A09) in
the BCI Competition IV Dataset 2a, as well as EEG data from nine
subjects (B01, B02,..., B09) in the BCI Competition IV Dataset 2b,
will be selected as research data. During each experiment targeting
each dataset, EEG data from eight subjects were selected as source
domain data, and data from another subject was selected as target
domain data. To validate the effectiveness of our proposed EEG
joint feature classification algorithm based on instance transfer and
ensemble learning (Ours), several comparative experiments will
be designed, including CSP+SVM, PSD+SVM, CSP+PSD+SVM,
CSP+PSD+KMM, and CSP+PSD+TrAdaBoost.

(1) CSP+SVM, PSD+SVM, and CSP+PSD+SVM were taken
as a group of comparative experiments. The spatial domain
features, frequency domain features, and EEG joint features
were, respectively classified by SVM algorithm. The average
classification accuracies for these three experiments are 66.8, 58.9,
and 73.2% in Dataset 2a, and 64.7, 60.4, and 70.1% in Dataset 2b,
respectively. The CSP+PSD+SVM achieved the best classification
effect, indicating that the joint spatial and frequency domain
features can improve the classification performance of MI-EEG.
However, its classification accuracy is lower than Ours by about
18 and 13% in Dataset 2a and Dataset 2b, respectively, mainly
due to the large individual differences in MI-EEG among different

subjects, and the trained models of other subjects cannot be well-
applied to the current subject. This also confirms that the K-T
algorithm utilizing instance transfer method can effectively solve
the problem of individual differences among different subjects.

(2) CSP+PSD+TrAdaBoost algorithm: The average
classification accuracy obtained by using the TrAdaBoost
algorithm to classify the joint features of EEG is only 81.3 and
76.2% in Dataset 2a and Dataset 2b, respectively, which is lower
than the classification accuracy of Ours. The main reason is that
the distribution of data in source domain and target domain is
different, and the TrAdaBoost algorithm uses the same weight
as the initial weight matrix during classification initialization,
which leads to unreasonable sample weights. In this case, if KMM
algorithm is used to adjust the sample weight matrix, the data can
be distributed more reasonably.

(3) CSP+PSD+KMM algorithm: The average classification
accuracy obtained by using the KMM algorithm to classify the
joint features of EEG is only 84.3 and 76.4% in Dataset 2a and
Dataset 2b, respectively, which is lower than the classification
accuracy of Ours. The main reason is that KMM needs to estimate
a kernel density ratio, and the error of this ratio estimate negatively
affect the performance of domain adaptation. In this case, if the
TrAdaBoost algorithm is used to reassign different weights to

FIGURE 10

Comparison of classification accuracy between the proposed
method and other methods.
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the source domain and target domain to reduce the influence of
estimation errors in KMM algorithm, the performance of domain
adaptation can be improved.

From Table 1, Figure 8, it can be seen that for the
same classification method, using the EEG joint features
as the feature vector can significantly improve the average
classification accuracy by 6–14% and 5–10% in Dataset 2a
and Dataset 2b, respectively, compared to using the feature
vector from a single domain. It shows that EEG joint features
can break through the limitations of single domain EEG
features, provide more comprehensive and detailed EEG
analysis, and improve the classification performance of MI-
EEG.

According to Tables 2, 3, and Figure 9, when EEG joint
features are used as feature vectors, the average classification
accuracy obtained by Ours algorithm in Dataset 2a is 18.3,
10.2, and 7.2% higher than that obtained by SVM algorithm,
TrAdaBoost algorithm and KMM algorithm, respectively. They
were 13.6, 7.5, and 7.3% higher in Dataset 2b. It is explained
that Ours, considering that TrAdaBoost algorithm can improve
the performance of classifier and reduce the classification error
rate through sample weighting. At the same time, it is also
considered that the KMM algorithm can further improve the
matching of sample distribution by distributing the importance
weight of samples. Therefore, by using K-T ensemble learning,
several weak classifiers can be integrated into strong classifiers
through sample importance weight allocation and weighted
classifiers, so as to eliminate individual differences among
different subjects, so as to improve the generalization ability of
classification model and improve the classification performance of
MI-EEG.

4.3. Comparison with state-of-the-art
methods

In order to verify the superiority of the algorithm proposed
in this paper, it is compared with algorithms proposed by other
researchers in the same data set (BCI Competition IV Dataset 2a),
and the experimental results are shown in Table 4 and Figure 10.
As can be seen from the table, the accuracy of subjects five and
six is very low in other literatures, but in Ours, it is significantly
improved by more than 13%. In addition, compared with the
methods of other researchers, the average classification accuracy
of Ours was increased by more than 10%, indicating that Ours
outperforms other algorithms in the classification performance of
MI-EEG.

5. Conclusion

During the process of motor imagery, there are asymmetric
energy differences in the spatial brain area. Therefore, researchers
usually use the CSP algorithm to extract distinctive spatial
features from multi-channel EEG. In addition, since EEG are
mainly rhythmic signals, ERD and ERS occur within specific
frequency bands, and CSP algorithm directly performs spatial
filtering on frequency domain signals, so frequency domain

information is crucial for MI task classification and cannot be
ignored. Therefore, in order to fully explore EEG and enrich
EEG features and improve the recognition of MI signals, this
paper proposes to use CSP and PSD to extract spatial and
frequency domain features, respectively, and combine them to
obtain EEG joint features, providing a more comprehensive
and detailed analysis of EEG. In addition, the sample size
of individual training for MI-EEG is small, and there are
great individual differences among different subjects. This paper
proposes a joint feature classification algorithm for EEG based
on instance transfer and ensemble learning. After obtaining
the EEG joint features, KMM and TrAdaboost are combined,
and an ensemble learning strategy is used to integrate a
classifier with strong generalization ability. The experimental
results show that the algorithm has an average accuracy of
91.5 and 83.7% on Dataset 2a and Dataset 2b, respectively,
which is significantly better than other algorithms and provides
a new approach to solving the above problems. However, it
may not be applicable to other EEG data such as P300 and
emotion recognition data. Therefore, in future research, we
can make the algorithm applicable to other EEG signal data
by improving the alignment between the source domain and
the target domain.
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