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At present, fMRI studies mainly focus on the entire low-frequency band (0. 01–

0.08Hz). However, the neuronal activity is dynamic, and di�erent frequency bands

may contain di�erent information. Therefore, a novel multi-frequency-based

dynamic functional connectivity (dFC) analysis methodwas proposed in this study,

which was then applied to a schizophrenia study. First, three frequency bands

(Conventional: 0.01–0.08Hz, Slow-5: 0.0111–0.0302Hz, and Slow-4: 0.0302–

0.0820Hz) were obtained using Fast Fourier Transform. Next, the fractional

amplitude of low-frequency fluctuations was used to identify abnormal regions

of interest (ROIs) of schizophrenia, and dFC among these abnormal ROIs was

implemented by the sliding time window method at four window-widths. Finally,

recursive feature elimination was employed to select features, and the support

vector machine was applied for the classification of patients with schizophrenia

and healthy controls. The experimental results showed that the proposed multi-

frequency method (Combined: Slow-5 and Slow-4) had a better classification

performance compared with the conventional method at shorter sliding window-

widths. In conclusion, our results revealed that the dFCs among the abnormal

ROIs varied at di�erent frequency bands and the e�ciency of combining multiple

features from di�erent frequency bands can improve classification performance.

Therefore, it would be a promising approach for identifying brain alterations

in schizophrenia.

KEYWORDS

functional magnetic resonance imaging, multi-frequency bands, dynamic functional
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1. Introduction

Blood oxygen level-dependent (BOLD)-based functional magnetic resonance imaging

(fMRI) is a non-invasive brain function research method, which is characterized by high

temporal resolution and spatial resolution. For example, Biswal et al. (1995) first extracted

and analyzed the low-frequency range (<0.1Hz) of BOLD signals, and they investigated

the interaction among distributed brain regions using low-frequency fluctuations of BOLD

signals. In particular, the reason why Biswal et al. chose the frequency range of 0.01–0.08Hz

was that they found there were almost no fluctuations above 0.08Hz, and fluctuation was the

largest at 0.01Hz in the frequency domain.
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Most of the rs-fMRI studies for the analysis and diagnosis

of various psychiatric disorders focused on the entire low-

frequency band (0.01–0.08Hz) because it is believed to be

related to neural oscillations (Biswal et al., 1995; Lowe et al.,

1998). However, the human brain is a complex dynamic system

spontaneously generating a multitude of oscillatory waves. For

instance, some fMRI studies have revealed specific relationships

between distributed neural activity and frequency bands (Meda

et al., 2016; Braun et al., 2018), and the neuronal excitability

is larger during a certain phase of the low-frequency band

(Penttonen and Buzsáki, 2003). Frequency-dependent effects

were found in different brain regions (Gohel and Biswal,

2015), brain networks (Esposito et al., 2013), functional

hubs (Wang et al., 2018), and global signals (Wang et al.,

2020). Thus, some studies are beginning to investigate the

fMRI data in multi-frequency bands rather than conventional

frequency bands. With the purpose of gaining insights into

the neuropathogenesis behind many psychiatric disorders

including schizophrenia, we aimed to investigate the hypothesis

of whether the multi-frequency analysis can reveal more

neuropathological information than the conventional frequency

band. Thus, it may provide a potential way to study biomarkers for

schizophrenia identification.

With regard to the separation of frequency bands, we followed

the linear theory of natural logarithm (N3L), which was first

proposed by Penttonen and Buzsáki (2003). They suggested that an

independent frequency band was generated by distinct oscillators

with specific properties and physiological functions (Penttonen

and Buzsáki, 2003; Buzsáki and Draguhn, 2004). In this study, we

followed the N3L and referred to the code provided in the multi-

frequency analysis software for fMRI data named DREAM (https://

github.com/zuoxinian/CCS/tree/master/H3/DREAM) (Gong et al.,

2020). Thus, the fMRI signals were decomposed into several bands,

including Slow-6 (0.0040–0.0111Hz), Slow-5 (0.0111–0.0302Hz),

Slow-4 (0.0302–0.0820Hz), Slow-3 (0.0820–0.2231Hz), and Slow-2

(0.2231–0.25Hz), according to the N3L. However, the fMRI signals

<0.01Hz were reported to be associated with scanner-related

noise. Slow-6, Slow-3, and Slow-2 mainly reflect low-frequency

drift, white matter signals, and high-frequency physiological noises,

respectively (Zuo et al., 2010; Baria et al., 2011). Slow-5 and Slow-4

are investigated in this study as their combined frequency range is

similar to the conventional frequency band.

Although there are only a few rs-fMRI studies for neurological

diseases based on multi-frequency bands, they have achieved better

diagnostic effects than studies based on conventional frequency

bands. Most studies have adopted amplitude of low-frequency

fluctuations (ALFF) analysis, which is a classical method in fMRI

research and is widely used in the analyses of neurological diseases

(Yang et al., 2007). The study of Zuo et al. proved that ALFF and

fALFF have relatively high test–retest reliability (Xing and Zuo,

2018; Zuo X.-N. et al., 2019; Zuo X. N. et al., 2019). Through

applying ALFF analysis to a multi-frequency scheme, Parkinson’s

disease (Tian et al., 2020) is believed to be more associated with the

Slow-4 frequency band, while Alzheimer’s disease (Hu et al., 2017),

mild cognitive impairment (Han et al., 2011), depression (Wang

et al., 2016), and other diseases are believed to be more associated

with the Slow-5 frequency band. It was also found that Slow-4 and

Slow-5 are more responsive to specific pathological information in

schizophrenia (Hoptman et al., 2010; Yu et al., 2014).

Functional connectivity (FC) analysis is also an effective tool

in clinical neuroscience research, which can reflect the relationship

between neural activities in distributed brain regions, and it is

an effective way to characterize the integration of brain functions

(Friston, 2011). At present, the analyses of brain FC mainly include

static functional connectivity (sFC) and dFC. Recently, ROI-wise

sFC, as a classic method, has been widely used. The first step is using

an atlas, such as Anatomical Automatic Labeling (AAL) (Tzourio-

Mazoyer et al., 2002), to parcellate the human brain into a total of

116 regions. Then, N ROIs are selected to conduct a correlation

analysis among the time series of each ROI, and a correlationmatrix

of N×N is obtained. The sFC assumes that the FC in the scanning

period is a fixed value, which cannot reflect the dynamics of the

internal information interaction in the brain (Calhoun et al., 2014).

To further explore the state of brain FC, researchers began

estimating time-varying FC, known as dFC, on timescales ranging

from seconds to minutes (Chen et al., 2017; Yang et al., 2022).

dFC can not only observe the variation of the connectivity strength

between different pairs of ROIs over time but also capture the

spontaneously and repeatedly generated FC patterns (Gu et al.,

2020). The sliding window correlation (SWC) technique is the

commonly used method to study dFC (Handwerker et al., 2012;

Allen et al., 2014). Many studies have found that brain diseases are

associated with abnormal resting-state brain connectivity, and such

abnormal resting-state brain connectivity associated with specific

diseases can be further used as neural markers for the diagnosis

and prediction of diseases (Nomi et al., 2016; Liu et al., 2017).

However, the dFC analysismethod is rarely used inmulti-frequency

band studies, but it also achieved good diagnostic and prediction

performance (Luo et al., 2020). For example, Kottaram et al. (2018)

adopted a dFC analysis based on sliding window correlation to

predict schizophrenia and achieved high accuracy.

The machine-learning approach has recently attracted more

and more attention in the investigation of brain connectivity

(Rashid et al., 2016; Khatri and Kwon, 2022). In order to yield

a higher accuracy rate, a more stable classifier, and investigate

the most discriminated features, an FS method is required

(Guyon et al., 2002; Rakotomamonjy, 2003). The recursive feature

elimination with 10-fold cross-validation (RFECV) was employed

to select features, and the support vector machine (SVM) optimized

by a 10-fold cross-validation grid search was applied for the

classification of schizophrenia patients and healthy controls.

Furthermore, the fALFF analysis was performed to determine the

findings for abnormal ROIs, while the dFC analysis was carried out

to investigate the correlation characteristics among the abnormal

ROIs from a time-varying perspective.

Therefore, we proposed a novel multi-frequency-based dFC

analysis method and applied it to a schizophrenia study. The

AAL atlas was adopted to parcellate the cortex into 90 ROIs,

and three frequency bands (Conventional: 0.01–0.08Hz, Slow-5:

0.0111–0.0302Hz, and Slow-4: 0.0302–0.0820Hz) were considered.

Then, fALFF analysis was used to identify brain regions of interest,

followed by dFC analysis between them. Finally, the classification

performance was compared between the Combined frequency

bands (Slow-4 and Slow-5) and the Conventional frequency band.
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2. Materials and methods

2.1. Participants

All the data were collected from the public database

OpenfMRI (https://openfmri.org/dataset/ds000030/). This study

was supported by the Consortium for Neuropsychiatric Phenomics,

and its accession number is ds000030 (Gorgolewski et al.,

2017). After receiving a thorough explanation, participants gave

written informed consent following procedures approved by the

Institutional Review Boards at UCLA and the Los Angeles County

Department of Mental Health. Demographic information and

clinical characteristics of the participants were presented as follows:

healthy Caucasian (non-Hispanic or Latino) adults, with ages

ranging from 21 to 50 years, from the Los Angeles area, who

had passed neuropsychological tests and had eight or more years

of education.

The following participants were excluded to ensure dependable

research results: people with nervous system disease, head trauma

with loss of consciousness or cognitive sequelae, people who

consumed drugs over the past 6 months, people with a mental

history of serious mental illness or attention deficit hyperactivity

disorder, major medical history, MRI contraindications (including

pregnancy), scan on any mood change medications, and those who

were left-handed. Finally, this study selected all 50 patients with

schizophrenia (12 women, 38men, average age± SD: 36.46 years±

8.79 years) and some matched healthy individuals. After the head

motion correction step of data preprocessing, four patients and

several controls were excluded. Finally, there were 46 patients with

schizophrenia (12 women, 34men, average age± SD: 36.46 years±

8.81 years) and 46 healthy individuals (12 women, 34 men, average

age± SD: 35.87 years± 7.88 years).

2.2. Data acquisition

All neuroimaging data were obtained using a 3T Siemens Trio

scanner. In the resting scan, participants were asked to remain

relaxed and keep their eyes open for 5min. They were protected

from any stimuli throughout the scan. Functional images were

obtained with a T2∗-weighted echoplanar imaging sequence with

the following parameters: time points = 152, slice thickness =

4mm, slice number = 34, TR = 2,000ms, TE = 30ms, flip angle

= 90◦, matrix = 64 × 64, and FOV = 192mm. The duration

was 304 s, and each subject produced 152 images. A T1-weighted

high-resolution anatomical scan was acquired with the following

parameters: slice thickness = 1mm, slice number = 176, TR =

1,900ms, TE = 2.26ms, flip angle = 7◦, matrix = 256 × 256, and

FOV= 250 mm.

2.3. Data preprocessing

The resting-state fMRI raw data were preprocessed referring to

DPABIV5.1 (http://rfmri.org/dpabi) (Yan and Zang, 2010), which

integrates SPM12 (https://www.fil.ion.ucl.ac.uk/spm) and REST

(http://www.restfmri.net). The preprocessing using DPABIV5.1

includes the following eight steps: (1) The first 10 time points

were removed; (2) slice timing correction was performed; (3)

head motion correction was performed, and the participants with

head movement over 1.5mm and rotation over 1.5 degrees were

removed; (4) T1 structure images were registered to functional

image; (5) the images were divided into gray matter, white matter,

and cerebrospinal fluid by Diffeomorphic Anatomical Registration

Through Exponentiated Lie Algebra (DARTEL) (Ashburner, 2007);

(6) noise signals such as linear drift, white matter, and cerebrospinal

fluid were removed. Friston 24-parameter model was selected

to adjust head movement parameters, and SPM prior template

was used to remove global signals (Fox et al., 2005, 2006); (7)

The images were registered to Montreal Neurological Institute

templates, and the image voxels were resampled to 3× 3× 3 mm3;

and (8) a 6 × 6 × 6 mm3 FWHM Gaussian kernel is used for

spatial smoothing to reduce the registration error and increase the

signal-to-noise ratio.

2.4. Methods

The flowchart of this study is shown in Figure 1, including

preprocessing, fALFF analysis, and dFC analysis.

2.4.1. (Inverse) Fast Fourier Transform
Fast Fourier Transform (FFT) is an efficient method to calculate

the Discrete Fourier Transform. It was constructed by Cooley and

Tukey (1965) according to the periodicity and symmetry of the

twiddle factor. For the simple polynomial multiplication problem,

the most direct multiplication method needs 2(n2) time, while the

FFT algorithm needs 2(nlgn) time to complete the evaluation and

interpolation operation by using the special property of complex

unit roots.

The Discrete Fourier Transform formula for calculating the

signal vector x is presented as follows:

X
(

k
)

= DFT [x (n)] =

N−1
∑

n=0

x (n)Wnk
N , 0 ≤ k ≤ N − 1 (1)

The corresponding Inverse FFT is presented as follows:

x
(

k
)

= IDFT
[

X
(

k
)]

=
1

N

N−1
∑

k=0

X
(

k
)

W−nk
N

=
1

N
[

N−1
∑

k=0

Xn(k)Wnk
N ]

n

=
1

N
{DFT[XN(k)]}

n
, 0 ≤ k ≤ N − 1 n (2)

whereWkn
N is called the rotation factor and presented as follows:

Wnk
N = e−j 2πN nk (3)

2.4.2. Decomposition of the frequency band
Theoretically, the range of each frequency band is fixed, namely

frequency intervals. If the TR interval is not fast enough or there

are not enough time points, the precise value of the theoretical

frequency range cannot be extracted. To address this issue, the time
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FIGURE 1

The flowchart of the multi-frequency-based dynamic FC analysis method, which consists of fALFF analysis and DFC analysis. Among them, the fALFF

was used as the feature to select the brain regions with significant di�erences between SZ and HC in each frequency band by t-test and RFECV in the

fALFF analysis. Then, the functional connections between these brain regions under di�erent window-widths were calculated in the DFC analysis,

and the functional connections with significant di�erences between SZ and HC were further obtained by t-test and RFECV. Finally, the selected

features with the best classification performance using SVM were the time-varying correlation characteristics for the schizophrenia study.

points were increased in this study, because the TR interval cannot

be changed. Thus, zeros were padded to 2e12 after the time series

similar to padding zeros after the time series when performing an

FFT algorithm. Therefore, the frequency bands in this study have

higher resolution, and we were able to precisely decompose the

entire frequency of 0–0.25Hz into the seven frequency bands.

With regard to the decomposition of the frequency band, we

followed the N3L and referred to the code provided in DREAM

(Gong et al., 2020). According to the parameter description of

fMRI data involved in this study, each voxel has N = 142

time points at TR = 2 s interval. Hence, the maximal frequency

we can reliably investigate is no more than 0.25Hz [ = 1/(2

× TR)]. Furthermore, zeros are padded after the end of time

points to improve frequency resolution and the number of time

points is padded to 2e12. Thus, the lowest frequency can be

conservatively estimated using equation 1/(N × TR/2) and equals

2.44e-04Hz. Furthermore, the minimal reliable frequency equals

7.32e-04Hz [= 0.25/(2e12 + 1)]. Finally, the fMRI signals can be

divided into seven frequency bands, namely, Slow-8 (7.32e-04–

0.0015), Slow-7 (0.0015–0.0040), Slow-6 (0.0040–0.0111Hz), Slow-

5 (0.0111–0.0302Hz), Slow-4 (0.0302–0.0820Hz), Slow-3 (0.0820–

0.2231Hz), and Slow-2 (0.2231–0.25 Hz).

For each band, the range of frequencies is shown in Figure 2,

together with its term. The ratio between neighboring bands

is approximately equal to the natural logarithm e (Penttonen

and Buzsáki, 2003). Meanwhile, an arithmetic progression on

the logarithmic scale corresponds to a difference of 1. Thus, the

frequency bands form an arithmetic progression on the logarithmic

scale. For each band, the lower/upper limits were obtained by

dividing/multiplying the center frequency by 1.65. Particularly,

we could not get the upper limit in Slow-2 because the maximal

frequency we could reliably investigate was no more than 0.25Hz.

Thus, the range of Slow-2 was 0.2231–0.25 Hz.

FIGURE 2

Schematic representation of oscillatory classes involved in this

study. Frequency bands form an arithmetic progression on the

logarithmic scale.

2.4.3. Fractional amplitude of low-frequency
fluctuation analysis

Analysis of low-frequency fluctuations was proposed by Zang

et al. (2007), which can be used to describe the strength of

local brain activities. However, there are some disadvantages, such

as excessive noise and energy accumulation. To improve ALFF

analysis, Zou et al. (2008) proposed fractional ALFF (fALFF), which

can be regarded as normalized ALFF. In each frequency band,

we performed fALFF analysis to identify those brain regions with

discriminative fALFF in schizophrenia.
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The specific method for calculating fALFF is described as

follows: First, read in the preprocessed time series x(t) [in equation

(4)]. Then, obtain the power spectral density by performing the

FFT algorithm on time series x(t). After that, ALFF is calculated

as the sum of amplitudes within a specific low frequency range [in

equation (5)]. Finally, fALFF can be calculated by dividing ALFF

across the entire frequency band to ALFF in the specific frequency

band [in equation (6)].

x (t) =

N
∑

k=1

[

ak cos
(

2π fkt
)

+ bk sin
(

2π fkt
)]

(4)

ALFF =
∑

k : fk=band range

√

a2
k

(

f
)

+ b2
k

(

f
)

N
(5)

fALFF =
∑

k : fk=band range

√

a2
k

(

f
)

+ b2
k

(

f
)

N
/

N
∑

k=1

√

a2
k

(

f
)

+ b2
k

(

f
)

N

(6)

In fALFF analysis, a total of 271,633 voxels (3 × 3 × 3 mm3

spatial resolution) were considered first. The fALFF per voxel

was calculated by applying the function mentioned above on the

preprocessed time series. Then, a matrix of subjects × voxels

could be obtained from fALFF estimations in each of the three

frequency bands (Conventional: 0.01–0.08Hz; Slow-5: 0.0111–

0.0302Hz; Slow-4: 0.0302–0.0820Hz). Next, the representative

fALFF per ROI was calculated by averaging voxel-based time series

within every ROI. Thus, the feature matrix from fALFF estimations

at each band was subjects×ROIs. Practically, the Combined (Slow-

4 and Slow-5) scheme had a feature of subjects× ROIs× 2 and the

Conventional scheme had a feature of subjects× ROIs.

After applying feature selection and classification methods

to the feature sets, abnormal ROIs would be found in the

Combined and Conventional schemes, respectively. The selected

features with the best classification performance were the abnormal

ROIs and would be the targeted ROIs for dynamic functional

connectivity analysis.

2.4.5. Dynamic functional connectivity analysis
For the Combined scheme, the time series of the abnormal

ROIs in Slow-5 and Slow-4 were extracted, respectively. Then,

the time-varying characteristics in the two frequency bands were

combined, which was the feature set for dFC analysis. For the

Conventional scheme, the abnormal ROIs in Slow-4 and Slow-

5 were utilized to extract their time series in the Conventional

scheme. Then, twomatrices of the time-varying characteristics were

combined, which was the feature set for dFC analysis.

The sliding window correlation (SWC) technique is the most

commonly used method for dFC analysis, which is reflected by

measuring the FC of ROIs in each temporal segment. The formula

for calculating the FC correlation coefficient matrix is as follows:

rt (t) = corr
(

xt+w−1
t , yt+w−1

t

)

(7)

where rt(t) represents the coefficient of the sliding window

correlation between two groups of time series, w is the sliding

window-width, xt+w−1
t and yt+w−1

t represent the time series from

time t to t + w− 1, and corr( ) refers to PCC.

Laumann et al. (2016) found that the correlation was relatively

stable if they were calculated in a short period of time. The sliding

window-width of 30–60 s achieved the best ability to identify the

correlation characteristics and to reflect the cognitive state of

people (Shirer et al., 2012). For example, Yu et al. (2015) obtained

good research results at 20TRs sliding window-width analyzing

fMRI data of schizophrenia patients.

In dFC analysis, four sliding window-widths (15 TRs, 20 TRs,

25 TRs, and 30 TRs) with five TRs step lengths were considered. For

each kind of sliding window-width, the time series per voxel was

calculated by applying equation (7) to the preprocessed time series.

Then, the representative time series per ROI was calculated by

averaging the voxel-based time series within every ROI. After that,

correlation coefficients among the abnormal ROIs per temporal

segment were calculated. Thus, a matrix of subjects × (temporal

segments × abnormal ROIs × abnormal ROIs) can be obtained in

a certain frequency band at a certain sliding window-width.

The results of the fALFF analyses were used to make decisions

as to what regions should be used in the dynamic functional

connectivity analyses. Combined and Conventional were used in

both fALFF analyses and dFC analyses. In fALFF analyses, the

abnormal regions were extracted using frequency domain signals.

In dFC analyses, the abnormal functional connectivities were

extracted using time domain signals.

2.4.6. Feature selection and classification
An increasing number of fMRI studies are starting to use a

machine-learning approach (Bae et al., 2018; Antonucci et al., 2019;

Kumar et al., 2022). The recursive feature elimination with 10-

fold cross-validation was employed to select features. The support

vector machine tuned by a 10-fold cross-validated grid search was

applied for classification.

The RFECV is a wrapper algorithm with two sections: recursive

feature elimination and cross-validation. The specific steps of RFE

in this study are as follows: (1) The initial feature set is all available

features. (2) An external estimator, linear support vector regression,

was given to assign weights (the coefficients of the estimator) to

features. (3) Delete the feature with the lowest weight, then update

the feature set. (4) Skip to step 2 until we have finished rating the

importance of all features.

Cross-validation begins by dividing dataset D into K identical,

disjoint subsets, each called a “fold,” and using one of them as a test

set and the others as training sets in turn for each training session.

In this way, it is equivalent to obtaining K groups of training sets

and test sets, and the final prediction result is the average of K

test results. Particularly, 10-fold cross-validation was performed

to avoid problems caused by the improper partition of datasets

(Shelatkar et al., 2022). Finally, we could obtain a robust rank of

the features from most important to least important.

The RFE with 10-fold cross-validation was employed from the

Scikit-learn toolkit to rank and weigh every feature according to

its strength to distinguish between patients with schizophrenia and

healthy controls. TheN (1≤N ≤ extracted features) ROIs with the

highest weight were selected as features for classification.
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SVM tuned by cross-validation grid-search was employed from

the Scikit-learn toolkit for classification. Similarly, the specific steps

of the algorithm were as follows: (1) Some hyperparameters are

set as candidate values; (2) each hyperparameter combination is

utilized to build an independent SVMmodel; and (3) themodel and

hyperparameter setting that produces the best results are selected,

and three kernel functions are employed to set hyperparameters,

including linear kernel function, polynomial kernel function, and

radial basis kernel function.

In the classification step, the method of hyperparameter

optimization was used to obtain better prediction effects and

classification model performance. The grid search was used to

adjust the parameters of SVM, and the 10-fold cross-validation

was performed to avoid overfitting. The candidate values of the

hyperparameters were set as the following 22 commonly used

groups: linear (C = 1, 10, 100, 1,000), poly (C = 1, degree = 2, 3),

or rbf (C= 1, 10, 100, 1,000, gamma= 1 or 0.1, 0.01, 0.001). As 10-

fold validation could subdivide samples randomly, we repeated it 50

times in order to estimate the average and more reliable accuracy.

In fALFF analysis, the extracted features were ranked and

weighted by RFECV with 10-fold cross-validation. After that, The

TABLE 1 The definition of TP, TN, FP, and FN in classification.

Case Prediction Reality (truth)

False positive (FP) Anomaly Normal

False negative (FN) Normal Anomaly

True positive (TP) Anomaly Anomaly

True negative (TN) Normal Normal

N (1 ≤ N ≤ extracted features) ROIs with the highest weight

were selected as features for classification by using the SVM

optimized by 10-fold cross-validation grid-search. The features

were investigated when the classification framework was applied

to a specific frequency band or if the sliding window-width

performed best. In fALFF analysis, the selected features with the

best classification performance were the abnormal ROIs. The same

cross-validation scheme for the dFC analysis was followed as for

the fALFF analysis. In dFC analysis, the selected features with the

best classification performance were the time-varying correlation

characteristics for schizophrenia, which were thought to be the

biomarkers for schizophrenia in this study.

2.4.7. Model evaluation
Table 1 shows a contingency table of the types of errors and

successes in classification for the presence of some anomaly, in

general for the output of a binary classifier. Prediction can also

be stated in general as “positive/negative.” The performance of

classification was evaluated using accuracy (ACC), precision, recall,

f1-score, receiver operating characteristic (ROC) curve, and area

under the ROC curve (AUC).

3. Results and analysis

3.1. Fractional amplitude of results of
low-frequency fluctuations

The initial fALFF feature set was 92 (46 + 46) × 90 (ROIs) per

frequency band. Then, the RFECV with 10-fold cross-validation

FIGURE 3

Classification accuracy obtained using di�erent numbers of abnormal brain regions ranked by importance in the Conventional (A), Slow-5 (B),

Slow-4 (C), and Combined (D) schemes.
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was performed to rank and weigh the ROIs in the Conventional

scheme according to their strength to differentiate between the two

groups. Similarly, the ROIs in the Slow-4, Slow-5, and Combined

schemes were ranked and weighted.

Thereafter, the SVM optimized by a 10-fold cross-validation

grid search was applied to the feature set for identifying abnormal

ROIs. Figure 3 depicts the classification accuracy of using the

N (1 ≤ N ≤ ranked features) ROIs with the highest weight

in the Conventional, Slow-5, Slow-4, and Combined schemes,

respectively. The horizontal axis represents the number of top-

ranked abnormal ROIs ranked for classification and the vertical

coordinates represent the corresponding classification accuracy.

The results showed that the highest classification accuracy in the

Conventional scheme was 75.78% and the top-ranked 23 ROIs were

abnormal. The 23 ROIs (ranked) were as follows: Occipital_Mid_R,

Occipital_Inf_R, Calcarine_L, Cuneus_L, Parietal_Sup_R,

Frontal_Mid_Orb_L, Parietal_Inf_R, Occipital_Sup_R,

Temporal_Pole_Mid_L, Calcarine_R, Postcentral_R, Lingual_L,

Frontal_Inf_Tri_L, Occipital_Mid_L, Postcentral_L, Angular_R,

Frontal_Mid_Orb_R, Occipital_Inf_L, Paracentral_Lobule_L,

Temporal_Pole_Sup_R, Lingual_R, Occipital_Sup_L, and

Putamen_L. Furthermore, the highest classification accuracy

was 71.78% in Slow-5 and 72.78% in Slow-4. This indicated

that neither Slow-5 nor Slow-4 contained enough pathological

information for schizophrenia identification. The highest

classification accuracy in the Combined scheme was 77.00%, and

the top-ranked 15 ROIs were abnormal. The 15 ROIs (ranked)

were as follows: Frontal_Mid_Orb_L(Slow-5), Occipital_Mid_R

(Slow-4), Occipital_Inf_R(Slow-5), Parietal_Sup_R(Slow-4),

Calcarine_L(Slow-4), Parietal_Sup_L(Slow-4), Cuneus_L(Slow-

4), Frontal_Mid_Orb_R(Slow-5), Occipital_Sup_L(Slow-4),

Parietal_Inf_R(Slow-4), Calcarine_R(Slow-4), Lingual_L

(Slow-4), Occipital_Inf_R(Slow-4), Rectus_R(Slow-5), and

Cingulum_Ant_L(Slow-5). The names, important coefficients,

and other information about the abnormal ROIs are portrayed

in Table 2. An interesting observation is that Occipital_Inf_R

was the abnormal cortical ROI in both Slow-5 and Slow-4 for

schizophrenia identification.

The abnormal ROIs in the Conventional and Combined

schemes are mapped in Figure 4 using BrainNet Viewer (Xia

et al., 2013). Particularly, a larger radius of nodes indicated higher

importance. For the ROIs in both Slow-4 and Slow-5, only the

one with higher importance coefficient was mapped. In fact, there

were 23 ROIs in the Conventional and 15 ROIs in the Combined

schemes. Specifically, there were five abnormal ROIs in Slow-5 and

10 abnormal ROIs in Slow-4. It can be seen that the extracted

ROIs in the Combined scheme were similar to the ones in the

Conventional scheme. Moreover, most of the extracted ROIs with

high-importance coefficients in the Combined scheme also enjoyed

a high ranking in the Conventional scheme.

3.2. Dynamic functional connectivity results

Table 3 shows the frequency band scheme, the searching

area of the width of the sliding window, the step length, the

number of temporal segments per case, and the number of

features per case. Two frequency band schemes (Conventional

and Combined) were considered and four sliding window-

widths (15 TRs, 20 TRs, 25 TRs, and 30 TRs) were analyzed.

Figure 5 is the schematic diagram for investigating time-varying

FC characteristics. For the Combined scheme, the processed time

series of five targeted ROIs in Slow-5 and 10 targeted ROIs in

Slow-4 were extracted from both the schizophrenia and healthy

groups. For the analysis in the Conventional scheme, the five

targeted ROIs in Slow-5 and 10 targeted ROIs in Slow-4 were

utilized to extract their time series in the Conventional scheme.

Then, the time-varying correlation coefficients among abnormal

ROIs were calculated at each sliding window-width with five

TRs step length. Thereafter, the two matrices (10 × 10, 5 × 5)

obtained from each of the temporal segments were concatenated

as the features for each subject. Particularly, each of the 92

subjects has 55 [10 × (10 – 1)/2 + 5 × (5 – 1)/2] correlation

features at each temporal segment because the PCC matrices are

symmetric.

The specific number of time-varying correlation characteristics

in each pair of abnormal ROIs per case is shown in

Figure 6. In each grid, a number was presented to show

the amounts of temporal segments with discriminative

FC PCC between a specific pair of ROIs. This indicated

that not all pairs of abnormal ROIs had correlation

characteristics for schizophrenia. Moreover, the discriminative

time-varying correlation coefficients were not exactly the

same at the different temporal segments of the same

sliding window-width.

Table 4 shows the classification results. In the Combined

scheme, ACC and AUC were the highest at 20 TRs sliding window-

width (91.89%, 0.9250). In the Conventional scheme, ACC and

AUC were also the highest at 20 TRs sliding window-width

(88.67%, 0.9205). It should be noticed that the highest ACC in

the Conventional (88.67%) was lower than the highest ACC in

the Combined (91.89%) scheme. In addition, the ACC in the

Combined scheme was almost identical to that in the Conventional

scheme at 25 TRs or 30 TRs sliding window-width, indicating

that there was no significant difference between classification

performance in both schemes. For the analysis on a certain

sliding window-width, the important coefficients obtained from

the time-varying correlation coefficients between the same pair of

abnormal ROIs were similar in different cases of window-widths.

This phenomenon indicated that the interaction of the human

brain regions was dynamic as well as relatively stable. Therefore,

our results supported the hypothesis that the multi-frequency-

based dFC analysis method could provide more neuropathological

information than the conventional band.

Furthermore, we also proposed a hypothesis that combing

multiple frequency bands at distributed sliding window-widths

may also be worthy of consideration, instead of the same sliding

window-width. We carried out further analysis at 15 TRs and 20

TRs sliding window-widths because of their better performance in

the Combined scheme. First, sliding window-width in Slow-5 was

selected as 15 TRs while that of Slow-4 was selected as 20 TRs.

Then, feature selection and classification methods were performed.

Finally, the results of AUC and ACC were 0.9117 and 89.30%,
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TABLE 2 The abnormal ROIs of schizophrenia in the distributed frequency bands.

Band ROI Weight Band ROI Weight

Conventional Occipital_Mid_R 0.5997 Slow-5 Frontal_Mid_Orb_L 0.5322

Conventional Occipital_Inf_R 0.5840 Slow-4 Occipital_Mid_R 0.4904

Conventional Calcarine_L 0.5114 Slow-5 Occipital_Inf_R 0.4483

Conventional Cuneus_L 0.4804 Slow-4 Parietal_Sup_R 0.4412

Conventional Parietal_Sup_R 0.4431 Slow-4 Calcarine_L 0.4359

Conventional Frontal_Mid_Orb_L 0.3927 Slow-4 Parietal_Sup_L 0.4244

Conventional Parietal_Inf_R 0.3766 Slow-4 Cuneus_L 0.4096

Conventional Occipital_Sup_R 0.3660 Slow-5 Frontal_Mid_Orb_R 0.3950

Conventional Temporal_Pole_Mid_L 0.3609 Slow-4 Occipital_Sup_L 0.3760

Conventional Calcarine_R 0.3420 Slow-4 Parietal_Inf_R 0.3732

Conventional Postcentral_R 0.3037 Slow-4 Calcarine_R 0.3418

Conventional Lingual_L 0.3002 Slow-4 Lingual_L 0.3314

Conventional Frontal_Inf_Tri_L 0.2999 Slow-4 Occipital_Inf_R 0.3107

Conventional Occipital_Mid_L 0.2911 Slow-5 Rectus_R 0.3087

Conventional Postcentral_L 0.2902 Slow-5 Cingulum_Ant_L 0.3082

Conventional Angular_R 0.2901

Conventional Frontal_Mid_Orb_R 0.2829

Conventional Occipital_Inf_L 0.2791

Conventional Paracentral_Lobule_L 0.2719

Conventional Temporal_Pole_Sup_R 0.2705

Conventional Lingual_R 0.2659

Conventional Occipital_Sup_L 0.2624

Conventional Putamen_L 0.2566

FIGURE 4

The distribution of abnormal ROIs obtained from Conventional and Combined schemes.

respectively. Similarly, the sliding window-width of Slow-5 was

selected as 15 TRs while that of Slow-4 was selected as 20 TRs.

In this turn, both the AUC and ACC were 0.9154 and 90.07%,

respectively. Table 5 indicates that it may also be meaningful to

combine multiple frequency bands at distributed sliding window-

widths.
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TABLE 3 The frequency band scheme, sliding window-width, temporal segments, and number of dFC characteristics in each step of the feature

selection per case.

Frequency band
scheme

Sliding window-width Temporal
segments

Feature set dFC characteristics

Combined 15 TRs 26 92× 1,430 41

Combined 20 TRs 25 92× 1,375 42

Combined 25 TRs 24 92× 1,320 31

Combined 30 TRs 23 92× 1,265 23

Conventional 15 TRs 26 92× 1,430 33

Conventional 20 TRs 25 92× 1,375 35

Conventional 25 TRs 24 92× 1,320 30

Conventional 30 TRs 23 92× 1,265 28

FIGURE 5

(A) Extracting PCC among five abnormal ROIs found in Slow-5. (B) Extracting PCC among 10 abnormal ROIs found in Slow-4. (C) Applying the

proposed multi-frequency-based dFC method to the combined time-varying correlation coe�cients.

4. Discussion

Previous rs-fMRI studies for identifying abnormal ROIs of

schizophrenia mostly focused on the Conventional scheme. For

example, Bluhm et al. (2007) found abnormalities in the default

network, Huang et al. found abnormalities in the frontal lobe and

occipital lobe in patients with schizophrenia (Huang et al., 2010),

and Scheinost et al. (2019) also found a similar set of regions with

schizophrenia and controls. These findings are consistent with our

findings that the Frontal_Mid_Orb_L, Frontal_Inf_Tri_L,

Frontal_Mid_Orb_R, Occipital_Mid_R, Occipital_Inf_R,

Occipital_Mid_L, Occipital_Inf_L, and Occipital_Sup_L were

the abnormal brain regions in the Conventional scheme, while

there were few rs-fMRI studies based on the method of multi-

frequency bands. Meanwhile, most of these studies concentrated

on exploring the neuropathological mechanism of schizophrenia

from a frequency-specific perspective. For instance, Yu et al. (2014)

found that there were significant distinctions in the basal ganglia,

midbrain, and ventromedial prefrontal cortex between Slow-4 and

Slow-5. They also found that there were distinctions in interactions
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FIGURE 6

The number of time-varying correlation characteristics for schizophrenia in two frequency schemes at four sliding window-widths, as showed in

(A-D) for Combined and (E-H) for Conventional. In each sub-figure, there were 10 × 10 and 5 × 5 matrices. The number in each grid represents the

amounts of temporal segments with discriminative PCC in a certain frequency band scheme at a certain sliding window-width.

TABLE 4 The classification performance of di�erent frequency band schemes in the cases of four sliding window-widths.

Frequency band
scheme

Sliding window-width AUC ACC f1 Precision Recall

Combined 15 TRs 0.9222 91.21% 88.93% 89.29% 88.63%

Combined 20 TRs 0.9250 91.89% 89.49% 88.91% 90.16%

Combined 25 TRs 0.9052 85.91% 84.81% 85.43% 86.34%

Combined 30 TRs 0.8907 84.72% 82.35% 83.15% 84.27%

Conventional 15 TRs 0.9170 88.11% 86.10% 86.96% 86.20%

Conventional 20 TRs 0.9205 88.67% 84.35% 86.52% 89.57%

Conventional 25 TRs 0.8964 83.44% 84.26% 85.98% 85.87%

Conventional 30 TRs 0.8910 82.93% 82.58% 83.59% 85.43%

among the inferior occipital gyrus, precuneus, and thalamus.

Moreover, the significant interaction effects between frequency and

group were observed in the left calcarine cortex, bilateral inferior

orbitofrontal gyrus, and anterior cingulum cortex (Luo et al.,

2020) in Slow-5 and Slow-4. These results demonstrated that the

abnormalities of brain regions and dFCs in schizophrenia patients

rely on different frequency bands.

Furthermore, there are also some multi-frequency

scheme researches from a feature fusion view. For example,

Huang et al. (2018) acquired fALFF data in multi-frequency bands

and combined them for classification. The biomarkers from Slow-4

and Slow-5 could achieve a classification accuracy of 85.3% on 34

subjects. These abnormal ROIs were consistent with our findings:

Frontal_Mid_Orb_L (Slow-5), Cingulum_Ant_L (Slow-5),

Cuneus_L (Slow-4), Calcarine_L (Slow-4), and Occipital_Sup_R

(Slow-4). Wang et al. (2019) also demonstrated that the multi-

frequency scheme shows promising performance in brain disease

classification. These abnormal ROIs were consistent with our
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TABLE 5 The classification performance in Slow-5 and Slow-4 at distributed sliding window-widths.

Frequency band scheme AUC ACC f1 Precision Recall

Slow-5 (15 TRs) 0.9222 91.21% 88.93% 89.29% 88.63%

Slow-4 (15 TRs)

Slow-5 (20 TRs) 0.9250 91.89% 89.49% 88.91% 90.16%

Slow-4 (20 TRs)

Slow-5 (15 TRs) 0.9117 89.30% 86.36% 88.23% 86.24%

Slow-4 (20 TRs)

Slow-5 (20 TRs) 0.9154 90.07% 89.45% 90.52% 89.60%

Slow-4 (15 TRs)

findings: Cingulum.Ant.L (Slow-5), Occipital.Mid.R (Slow-4), and

Parietal.Inf.L (Slow-4).

In recent years, an increasing number of studies have used

dFC analysis to explore changes in neural activity patterns of

schizophrenia (Nomi et al., 2016; Liu et al., 2017). A multi-

frequency-based dFC analysis may further provide more evidence

to explore the pathogeny of schizophrenia (Luo et al., 2020). For

example, Zou and Yang (2019) performed their proposed dynamic-

weighted FC networks to 130 subjects and obtained a classification

accuracy of 82.31%. In this study, the first proposed multi-

frequency-based dFC analysis could obtain a better classification

performance than the Conventional scheme in some cases. For

example, ACC and AUC were the highest at 20 TRs sliding

window-width (86.89%, 0.9150). For the time-varying correlation

characteristics, the interaction between Frontal_Mid_Orb_L and

Rectus_R in Slow-5 was discriminative at four kinds of sliding

window-width. Furthermore, in Slow-4, the interaction between

Calcanie_L and Parietal_Inf_R at 15 TRs, and the interaction

between Parietal_Inf_R and Occipital_Sup_L at 20 TRs and many

interactions of other pairs of abnormal ROIs were discriminative.

Some of these ROIs are included in the default mode network

and cortical areas, which were the regions that found a remarkable

difference between the two bands (Slow-4 and Slow-5) (Wang et al.,

2017).

In this study, some abnormal ROIs found in the Conventional

scheme were the same as the ones in the Combined scheme, as well

as their rank and weight according to their importance coefficients.

For example, Occipital_Mid_R, Occipital_Inf_R, Calcarine_L,

Cuneus_L, and Parietal_Sup_R were abnormal and ranked highest

in both Conventional and Combined schemes. This phenomenon

is similar to previous studies (Huang et al., 2018; Wang et al., 2019;

Tian et al., 2020). It reflected that the neuronal activities within

each of the ROIs were variable but did not change significantly

in dierent frequency bands (Fox et al., 2005; Sadaghiani and

Kleinschmidt, 2013). For the importance coefficients of the time-

varying correlation coefficients between the same pair of the

abnormal ROIs, they were similar at some temporal segments of

a certain sliding window-width but not at each temporal segment.

This indicated that the interaction of the neuronal activities was

dynamic but relatively stable. These phenomena proved that our

experiments were reasonable and revealed some neuropathological

mechanisms of schizophrenia.

Step length and sliding window-width are the key parameters

affecting the SWC technique, and their selection will have a

significant impact on the results of the dFC analysis. Therefore,

the statistical comparison betweenDFCs corresponding to different

frequency bands with four different window-widths was considered

in the study. Considering the fact that there are significant

differences in DFC between different frequency bands with

different window-widths, this study mainly analyzes the case of

the step length with 1TR, which was used in many studies,

while the influence of different step lengths on the results of this

study will be further investigated when more data are obtained

in future. Furthermore, as a classical blind source separation

method, independent component analysis has a good performance

in the detection of abnormal brain functional areas, thus, the DFC

influence between brain functional networks in different frequency

bands on SZ also needs to be further explored based on this study

in future.

5. Conclusion

In this study, we proposed a novel multi-frequency-based

dynamic FC analysis for schizophrenia using resting-state

fMRI data, which involves two parts: feature selection and

classification for identifying abnormalities in ROIs. The same

scheme was applied to the interactions of the abnormal ROIs

for investigating time-varying characteristics. Experiments from

92 subjects demonstrated that the multi-frequency schemes

had a promising performance in revealing meaningful disease-

related biomarkers for schizophrenia. The experimental results

suggested the performance of combining multiple features

from different frequency bands is better than the conventional

scheme in some cases: Slow-4 may contain additional useful

information compared to Slow-5, and the combined scheme

may provide more potential implications than the conventional

scheme. Significantly, the abnormal brain regions in Slow-5 were

Frontal_Mid_Orb_L, Occipital_Inf_R, Frontal_Mid_Orb_R,

Rectus_R, and Cingulum_Ant_L, and the abnormal brain regions

in Slow-4 were Occipital_Mid_R, Parietal_Sup_R, Calcarine_L,

Parietal_Sup_L, Cuneus_L, Occipital_Sup_L, Parietal_Inf_R,

Calcarine_R, Lingual_L, and Occipital_Inf_R. Moreover, the

time-varying correlation characteristics for schizophrenia were

Frontiers inHumanNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1164685
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Shi et al. 10.3389/fnhum.2023.1164685

also investigated in a multi-frequency scheme, which may provide

objective and quantitative biomarkers for schizophrenia and

valuable references for auxiliary psychiatric diagnosis.
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