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Speech imagery recognition from electroencephalograms (EEGs) could

potentially become a strong contender among non-invasive brain-computer

interfaces (BCIs). In this report, first we extract language representations as

the difference of line-spectra of phones by statistically analyzing many EEG

signals from the Broca area. Then we extract vowels by using iterative search

from hand-labeled short-syllable data. The iterative search process consists of

principal component analysis (PCA) that visualizes linguistic representation of

vowels through eigen-vectors ϕ(m), and subspace method (SM) that searches

an optimum line-spectrum for redesigning ϕ(m). The extracted linguistic

representation of Japanese vowels /i/ /e/ /a/ /o/ /u/ shows 2 distinguished

spectral peaks (P1, P2) in the upper frequency range. The 5 vowels are aligned on

the P1-P2 chart. A 5-vowel recognition experiment using a data set of 5 subjects

and a convolutional neural network (CNN) classifier gave a mean accuracy rate

of 72.6%.

KEYWORDS

EEG, speech imagery, linguistic representation, vowels, labeling syllables

1. Introduction

In the field of neural decoding for direct communication in brain-computer
interfaces (BCIs), research is progressing for detecting spoken signals from multi-channel
electrocorticograms (ECoGs) at the brain cortex (Knight and Heinze, 2008; Pasley et al.,
2012; Bouchard et al., 2013; Flinker et al., 2015; Herff and Schultz, 2016; Martin et al.,
2018; Anumanchipalli et al., 2019; Miller et al., 2020). If we could instead detect linguistic
information from scalp EEGs, then BCIs could enjoy much wider practical applications, for
instance improving the quality of life (QoL) of amyotrophic lateral sclerosis (ALS) patients,
but this goal is hampered by many unsolved problems (Wang et al., 2012; Min et al., 2016;
Rojas and Ramos, 2016; Yoshimura et al., 2016; Yu and Shafer, 2021; Zhao et al., 2021).
While studies on spoken EEGs can leverage motor command information to help identify
speech-related signals, imagined speech EEGs (that is, EEGs of silent, unspoken speech) lack
that luxury (Levelt, 1993; Indefrey and Levelt, 2004), which necessitates identifying linguistic
representations solely from within the EEG.

Linear predictive coding (LPC) is the widely used international standard for speech
coding (Itakura and Saito, 1968; Ramirez, 2008). The LPC takes an analysis by synthesis
(AbS) approach. The authors believe that EEG signal analysis would similarly benefit from
linear predictive analysis (LPA) that incorporates brain wave production models (see the
section “2. Materials and methods”).
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FIGURE 1

The flow chart for extracting and evaluating linguistic
representation of vowels.

Speech recognition technology was propelled by phone-labeled
speech corpora such as those distributed by the Linguistic Data
Consortium (LDC).1 Speech imagery recognition technology also
needs speech corpora labeled at the phone or syllable levels. The
authors used a pooling process to combine multi-electrode spectra,
and manually identified and labeled chunks of discrete consonant-
vowel (CV) monosyllables found in the EEG signals (see section “2.
Materials and methods”).

EEG signals differ from speech signals in that unlike spoken
speech, EEG signals do not exhibit coarticulation. Instead,
sequences of discrete monosyllables 50 to 80 [ms] in duration are
found. In the section “2. Materials and Methods,” Figure 7 shows
an example of EEG spectrum of connected imagined speech, where
CV are observed with no coarticulation. Coarticulation occurs
at the muscular motor phase of speech production, where the
movements of vocal organs effectively slur into each other.

In our vowel classification experiment involving 5 male and
1 female human subjects, we saw no marked difference of EEG
signals with respect to the speaker’s sex or age. We intend to verify
this in future studies by collecting more EEG data and classifying
vowels. At this time, however, we attempted subject-independent
recognition of the 5 vowels in Japanese language by using linguistic
representations of vowels as input to the CNN.

2. Materials and methods

This section discusses extracting and evaluating linguistic
representation of vowels (Figure 1).

2.1. Data set and protocol

We recorded scalp EEG signals using model g.HIAMP
manufactured by g.tec (g.tec medical engineering, Graz, Austria).
Measurements were taken in a sound-proof and electromagnetic
interference (EMI)-proof chamber at Aichi Prefectural University

1 https://www.ldc.upenn.edu

FIGURE 2

Electroencephalogram (EEG) electrode positions shown in the
extended 10–20 system.

(APU). Figure 2 shows the placement of 21 electrodes in
the extended international 10–20 system using the modified
combinatorial nomenclature (MCN). The electrodes shown in
green were used to measure EEG in our experiment.

The human subjects were 1 female [F1, 23 years old (y.o.)]
and 4 males (M1, M2, M3, M4, 23, 22, 22, 74 y.o, respectively),
all with normal hearing and right-handed. Written informed
consent was obtained from all subjects prior to data collection. The
experimental protocol was approved by the APU ethics committee.

Table 1 shows the imagined speech data set of 57 Japanese short
syllables.

Figure 3 shows the EEG data timing protocol. Each subject
imagines 57 short syllables 5 times.

2.2. Preprocessing of EEG data

Electroencephalogram data was preprocessed as follows. First,
we removed DC bias from the raw 21-channel EEG signal sampled
at 512 [Hz], where DC bias dc(n) is the averaged value at 100 [ms]
intervals, and is reduced from every sample (x(n) - dc(n)). Second,
a 128-point Fast Fourier Transform (FFT) of the 48 [ms] Hann-
windowed segment is applied every 24 [ms] after zero-padding
with 104 points to improve the frequency resolution. Third, noise
spectrum in EEG is reduced by using a noise spectral subtraction
(SS) algorithm (Boll, 1979). We obtain the mean noise spectrum
N(k) from the initial time slot before starting of the imagined
speech, which we subtract from the EEG spectrum X(k) to yield
a de-noised EEG (Figure 4 shows the EEG signal of /a/ measured
at TP7 before and after SS). Fourth, we apply a band-pass filter
(BPF) with a pass band of 80–180 Hz on X(k), and then convert
the spectrum to time waveform by applying inverse FFT (IFFT).
We use the EEG spectrum of the high-γ band because the literature
states that high-order cognitive functions are found in the over-γ
band (Heger et al., 2015).
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TABLE 1 Data set of 57 Japanese short syllables.

a ka sa ta na ha ma ya ra wa ga za kya

i ki shi chi ni hi mi – ri – gi zi –

u ku su tsu nu hu mu yu ru – gu zu kyu

e ke se te ne he me – re – ge ze –

o ko so to no ho mo yo ro – go zo kyo

FIGURE 3

Electroencephalogram data protocol timing.

FIGURE 4

(A,B) Electroencephalogram before and after spectral subtraction (SS).

2.3. Linear predictive analysis (LPA)

Figure 5 shows encoding and decoding process of linguistic
information L(k) that comprise the LPA of EEG signals in which
two-information sources of LPC is modified into one-information
source of random signal and then L(k) is convolved. (A) in Figure 5
shows the encoding process of L(k), where the EEG spectrum X(k)
is convolved with an input spectrum of random signal W(k) and the
spectrum L(k) of linguistic information. Linear prediction of order
p in EEG time series {x(n)} is represented by Eq. (1).

−̂x (n) = a1x(n− 1)+ a2x(n− 2)+ . . .+ apx(n− p) (1)

Eq. (1) shows that the predicted value x̂(n) is represented by linear
combination of {xn−p}. Here, the minus sign is for convenience of
formula transformation. The squared error e(n)2 is then obtained
by the following equation.

e (n)2
= {x (n)− x̂ (n)}2

= {a0x(n)+ a1x(n− 1)+ . . .+ apx(n− p)}2, a0 = 1 (2)

A set of {ap} is called linear predictive coefficients that
is obtained from autocorrelation coefficients of the EEG time

FIGURE 5

Linear predictive analysis (LPA) for EEG signal.

sequence {x(n)} by using Levinson-Durbin’s recursive algorithm
(Ramirez, 2008). (B) in Figure 5 shows the decoding process, where
the EEG spectrum X(k) is analyzed using an inverse filter H(k) with
L(k) in a feedback loop. The EEG spectrum X(k), or the linguistic
information spectrum L(k) of each electrode is obtained by Eq. (3):
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FIGURE 6

Linear predictive analysis spectrum of a vowel [a] in comparison
with DFT spectrum.

FIGURE 7

Monosyllable labels of phrase /koNnichiwa/ (good afternoon).

L
(
k
)
= 1/F

{
a0δ (n)+a1δ (n− 1)+. . .+a8δ

(
n− p

)}
, a0 = 1

(3)
where F {} is a discrete Fourier transformation (DFT). Eq. (3) is
called an all-pole model in LPC. LPC and LPA share an identical
framework except that LPA’s sole information source is random
noise. We analyze imagined-speech EEGs using LPA by positing an
encoding process where linguistic information is convoluted and
a decoding process where linguistic information is extracted using
an inverse filter. The LPA spectrum L(k) is calculated by Eq. (4)
after 0-padding {ap} to arrange the frequency resolution of EEG
spectrum.

FIGURE 9

Reference vectors of five vowels.
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(
k
)}

/
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(
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)
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}
(4)

Figure 6 compares an example of an LPA spectrum versus
DFT spectrum. Figure 6 shows three types of LPA spectra that
have different lag windows in autocorrelation domain. In this
section, we do not use the lag-window, because the LPA spectrum
with sharp peak is adequate for converting LPA spectrum to
line-spectrum. The LPA spectrum patterns are lastly converted to
LPA line-spectrum patterns by using local maximum values and
inflection point that are derived from first derivative 1(k) and
second derivative 11(k); see LPA line-spectra in Figure 6.

2.4. Labeling monosyllables

In the case of spoken speech (that is, phones or phrases said
aloud) observers can synchronize the audio and EEG signals to label
speech. In the case of imagined speech however, because there is
no reference time signal corresponding to the exact moment the

FIGURE 8

Iterative search for vowel spectra by using principal component analysis (PCA) and subspace method (SM).
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FIGURE 10

P1-P2 chart of five vowels.

speech was imagined (that is, spoken silently in the human subject’s
mind), we need to discover how and where phones or phrases
are represented in the multi-channel EEG signal. After analyzing
many EEG line-spectra of phones, words, and sentences, we learned
that when we integrate (or pool) multi-channel data, chunks of
discrete open syllables (that is, consonant-vowel combinations, or
CV) having durations of 7–9 frames (56–72 [ms]) become apparent.

Figure 7 shows an EEG line-spectrum sequence that was
integrated from 21 electrodes by pooling line spectra. The human
subject imagined the Japanese sentence /koNnichiwa/ ("good
afternoon"). Because vowels remain stable across multiple frames,
CV line spectra resemble V line spectra after pooling. Also
noteworthy is the fact that numerous pseudo- (or false or quasi-)
short syllables appear in imagined sentences. These pseudo-short
syllables seem to arise from sentence-initial /koN/ (N: the Japanese
moraic nasal); /ko/ (appearing in frames 282, 320, 332,340, 360),
and /N/ (appearing in frames 293, 355). When CV are imagined,
many pseudo-short syllables appear alongside true (or real or
genuine) speech imagery within the interval of imagined signal.
In the next section, we show how we search for vowels from
line-spectra data of 21-electrodes with 9 frames.

2.5. Iterative search of vowels from
labeled data using PCA and SM

Figure 8 shows the iterative search process for vowel spectra
{X(k)} using principle component analysis (PCA) that visualizes

linguistic information through eigen-vectors ϕ(m) and subspace
method (SM) that searches the appropriate spectra of vowel for
recomposing {X(k)} and redesigning the eigen-vector set. Eq. (5)
shows the similarity between a vector X and eigen-vector ϕ(m) in
SM.

S =
M∑

m = 1

< X, ϕ(m) >2

||X(k)||2||ϕ(m)||2
,M = 8 (5)

Search range is fixed to the last 6 of 9 frames. The iterative
search proceeds as follows:

1. Design initial eigen-vectors ϕ(m) of each vowel from all 21
electrodes and 6 frames.

2. Calculate similarity S between ϕ(m) and spectra of 21
electrodes and 6 frames.

3. Select spectrum X(k) with maximum S.
4. Recompose {X(k)} from all samples and redesign an eigen-

vector set by PCA in each vowel.
5. Repeat steps 2, 3, 4 for 4 iterations.
6. Repeat all steps for all vowels.

Lastly these steps give an eigen space ψ(v, m); v = i, e, a, o, u;
m = 1, 2,. . ., M that represents vowel v.

3. Results

3.1. Linguistic representation of vowels

The resultant eigen space ψ(v, m) likely contains the linguistic
representation of vowels. The referencing vector of vowel v is given
as Eq. (6).

G (v) = [
∑M

m=1

λ(m)

λ(1)
ψ(v, m)2

]

1/2
(6)

G(v) is the accumulated spectrum with the weight λ(m)/λ(1).
The magnitude of eigen-value λ(m) represents the degree of
contribution to G(v).

Figure 9 shows G(v) for 5 vowels /i/ /e/ /a/ /o/ /u/. The 2
spectral peaks (P1, P2) in the upper frequency range remind us
of the 2 formant frequencies (F1, F2) in audio spectra of spoken
vowels.

FIGURE 11

Block structure diagram of subject-independent vowel recognition system prototype.
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FIGURE 12

Convolutional neural network (CNN) parameters.

TABLE 2 Recognition accuracies of imagined speech vowels.

Human subjects and recognition accuracies [%] Descriptive statistics

Male 1 Male 2 Male 3 Male 4 Female 1 Mean Standard
deviation

Classifier Subspace method (SM) 63.5 64.2 68.4 52.6 63.5 62.8 5.25

Convolutional neural
network (CNN)

73.4 72.3 76.1 64.6 70.9 72.6 3.83

Figure 10 is a scatter plot of P1-P2 values for each of the 5
vowels, with data points from human subjects (4 male, 1 female)
and their mean values (1f = 3.9Hz). Of note is the fact that the 5
vowels in the P1-P2 scatter plot roughly form a line, while cardinal
vowels in a F1-F2 plot for spoken speech form a quadrilateral. Also
of note is that male and female data points overlap in the P1-
P2 scatterplot, while they differ in the spoken vowel F1-F2 plot
(Kasuya, 1968).

3.2. Subject-independent recognition

Figure 11 shows a block structure diagram of a subject-
independent vowel recognition system prototype that was built
to evaluate subject-independent recognition of imagined speech
vowels. The vowel classifier compares recognition results of SM
and CNN. The CNN is composed of 2-dimensional CNN layers,
subsampling layers (2-dimensional pooling), and fully connected
layers (multi-layer perceptron or MLP).

Figure 12 shows CNN parameters. Recognition accuracies of
SM and CNN were measured by using an imagined speech corpora
of 5 human subjects. Each human subject imagined the speech of /i/
/e/ /a/ /o/ /u/ 50, 50, 65, 60, 60 times respectively, for a total of 285
samples per human subject, yielding 285× 5 = 1425 samples in the
entire data set. These vowels were taken from the 57 CV in Table 1.

We trained and tested using a so-called jack-knife technique,
where 4 of the 5 human subjects were used as training data,
the remaining 1 human subject was used as the test data, and
we repeated training and testing by alternating training and test
data for all human subjects, resulting in cross-validation across 5
human subjects (that is, 1425 × 4 = 5700 samples for training, and
1425 × 1 = 1425 samples for testing). Table 2 shows results of 2
recognition experiments for imagined vowels.

4. Discussion

Until now, measurements of linguistic activity in the brain have
been limited to where information, that is, location measured by
using PET or fMRI for instance. By contrast, what information,
that is, how linguistic information is being realized, has been largely
neglected. This paper described the following:

1. Hand-labeled short syllable data is extracted from the LPA
line-spectra of scalp EEG signals after a pooling process.

2. Iterative search processes of PCA and SM derive eigen-vector
sets for 5 vowels.

3. The reference vector G(v) of each vowel calculated from an
eigen-vector set ϕ(m) of line spectra probably contains vowel-
specific information.

Frontiers in Human Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1163578
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1163578 May 19, 2023 Time: 17:27 # 7

Nitta et al. 10.3389/fnhum.2023.1163578

4. Two prominent spectral peaks (P1, P2) are observed in the
upper frequency range, and the 5 vowels are aligned on
the P1-P2 chart.

5. The P1-P2 chart suggests that there are no differences in
speech imagery between male and females, which would be
consistent with the lack of sex differences in EEG signals.

6. A CNN-based classifier obtained a mean recognition accuracy
of 72.6% for imagined speech vowels collected from 4
male and 1 female human subjects (however, Male 4 had
lower accuracy).

Lopez-Bernal et al. (2022) recently reviewed studies of decoding
the EEG of imagined 5 vowels. Recognition results are divided
curiously into 2 groups: (1) poor performance below 40%
(Cooney et al., 2020), and (2) better performance exceeding
70% (Matsumoto and Hori, 2014). Techniques that do not use
labeled EEG data have no choice but to use the whole time
duration (typically 1 to 2 [s]) of imagined speech to train
the recognizer. Because numerous pseudo-short syllables appear
alongside imagined speech, the better-performing recognizers,
particularly for vowel recognition, benefit from an abundance of
the same short syllables containing the vowel to be recognized. By
contrast, when sentences are imagined, only the short syllable at the
beginning of the sentence is abundant, and because it differs from
other short syllables within the sentence, recognition accuracy may
deteriorate.

Our next steps for discovering the linguistic representation
in EEGs are (a) extract consonant information, (b) improve
recognition accuracy of vowels and consonants, partly by
increasing the imagined speech corpora, and (c) build decoding
modules for isolated words and/or connected phrases for the
purpose of BCI applications.

Incidentally, we are fascinated that EEG line spectra and atomic
line spectra closely resemble each other.
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