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Introduction: The focus of cognitive and psychological approaches to narrative

has not so much been on the elucidation of important aspects of narrative, but

rather on using narratives as tools for the investigation of higher order cognitive

processes elicited by narratives (e.g., understanding, empathy, etc.). In this study,

we work toward a scalar model of narrativity, which can provide testable criteria

for selecting and classifying communication forms in their level of narrativity. We

investigated whether being exposed to videos with different levels of narrativity

modulates shared neural responses, measured by inter-subject correlation, and

engagement levels.

Methods: Thirty-two participants watched video advertisements with high-

level and low-level of narrativity while their neural responses were measured

through electroencephalogram. Additionally, participants’ engagement levels

were calculated based on the composite of their self-reported attention and

immersion scores.

Results: Results demonstrated that both calculated inter-subject correlation and

engagement scores for high-level video ads were significantly higher than those

for low-level, suggesting that narrativity levels modulate inter-subject correlation

and engagement.

Discussion: We believe that these findings are a step toward the elucidation of the

viewers’ way of processing and understanding a given communication artifact as

a function of the narrative qualities expressed by the level of narrativity.

KEYWORDS

narrativity level, engagement, inter-subject correlation, EEG, naturalistic stimuli

1. Introduction

Attention is involved in all cognitive and perceptual processes (Chun et al., 2011). To
some degree, an attentive state toward an external stimulus implies the silencing of internally
oriented mental processing (Dmochowski et al., 2012). Sufficiently strong attentive states
can hamper conscious awareness of one’s environment and oneself (Busselle and Bilandzic,
2009). In contrast to neutral stimuli, emotional stimuli attract greater and more focused
attention (see Vuilleumier, 2005 for a review of the topic). As stories can generate and
evoke strong feelings (Hogan, 2011), the pathos implicit in narratives could be considered
attention-seeking stimuli. In fact, people tend to engage emotionally with stories (Hogan,
2011). Attentional focus to a narrative stimulates complex processing (Houghton, 2021),
with narratives inducing “emotionally laden attention” (Dmochowski et al., 2012). In the
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narrative domain, attentional focus and the sense of being absorbed
into the story are part of narrative engagement (Busselle and
Bilandzic, 2009). Indeed, researchers have suggested that narratives’
inherent persuasiveness is related to the feelings of immersion
they evoke, a phenomenon that has been termed “transportation
effects” (Green and Brock, 2000). In this context, “transportation”
indicates a combination of attention, feelings, and imagery where
there is a convergent process of different perceptual, cognitive,
and affective systems and capacities to the narrative events (Green
and Brock, 2000). During narrative comprehension, involuntary
autobiographical memories triggered by the story in question
appear to impair attention only momentarily (Tchernev et al.,
2021). This is not the case for either internally or externally
generated daydreaming or distraction (Tchernev et al., 2021). Thus,
narrative engagement can be hampered when thoughts unrelated to
the narrative arise (Busselle and Bilandzic, 2009). In addition, the
degree to which audiences engage with a narrative varies based on
delivery modality (e.g., audio or visual) (Richardson et al., 2020),
during narrative comprehension (Song et al., 2021a), and across
individuals (Ki et al., 2016; Sonkusare et al., 2019). Nonetheless,
narratives are naturally engaging (Sonkusare et al., 2019), and they
reflect daily experiences, making them potentially useful devices for
understanding cognitive processes such as engagement.

The use of simplified and abstract stimuli has been common
in cognitive neuroscience for decades (e.g., Dini et al., 2022a).
Although such stimuli enable highly controlled experiments and
isolation of the study variables, they tend to lack ecological validity.
Hence, recent studies have employed stimuli that simulate real-
life situations, including narratives, termed “naturalistic stimuli”
(see Sonkusare et al., 2019, for a review of the topic). From
this perspective, advertising is considered a naturalistic stimulus
that is designed to be emotionally persuasive (Sonkusare et al.,
2019). Video ads provide narrative content in short period of
time; hence, advertisers focus on delivering a key message through
stories with different narrativity levels. In fact, companies use
narrative-style ads because stories captivate, entertain, and involve
consumers (Escalas, 1998; Coker et al., 2021). Researchers have
found that, at the neural level, narratives (particularly more
structured ones) tend to induce similar affective and cognitive
states across viewers (Dmochowski et al., 2012; Song et al., 2021a).
However, whether consumers perceive stories in similar ways is of
great interest, as this might affect whether they ultimately engage
with the advertisement as expected. To investigate the underlying
cognitive processes generated by narratives, many studies have used
traditional methods such as electroencephalogram (EEG) power
analysis (Wang et al., 2016). Though valid, the metrics provided by
traditional methods may not be ideal when considering narrative
as a continuous stimulus, given that such methods could generally
require stimulus repetition. In addition, they do not capture how
the same information is processed across individuals.

Inter-subject correlation (ISC) is an appropriate neural metric
for investigating shared neural responses, especially when using
naturalistic stimuli, including media messages (see Schmälzle, 2022,
for a discussion of the topic). This data-driven method assumes
the occurrence of common brain reactions to a narrative, which
improves the generalizability of the findings. By correlating neural
data across individuals, this metric can identify localized neural
activities that react to a narrative in a synchronous fashion (i.e.,
in a time-locked manner) (Nastase et al., 2019). ISC is well-suited

to analysis of both functional magnetic resonance (fMRI) (Redcay
and Moraczewski, 2020) and EEG (Petroni et al., 2018; Imhof et al.,
2020) data. ISC obtained using naturalistic stimuli has been used
to investigate episodic encoding and memory (Hasson et al., 2008;
Cohen and Parra, 2016; Simony et al., 2016; Song et al., 2021a),
social interaction (Nummenmaa et al., 2012), audience preferences
(Dmochowski et al., 2014), information processing (Regev et al.,
2019), narrative comprehension (Song et al., 2021b), and, similar
to this study, attention and engagement (Dmochowski et al., 2012;
Ki et al., 2016; Cohen et al., 2017; Poulsen et al., 2017; Imhof et al.,
2020; Schmälzle and Grall, 2020; Grall et al., 2021; Song et al., 2021a;
Grady et al., 2022).

Inter-subject correlation calculated from EEG data has been
shown to predict levels of attentional engagement with auditory
and audio-visual narratives (Ki et al., 2016; Cohen et al., 2017).
Cohen et al. (2017) found that neural engagement with narratives
measured through ISC was positively correlated with behavioral
measurements of engagement, including real-world engagement.
Another study demonstrated that dynamic ISC aligns with reported
suspense levels of a narrative (Schmälzle and Grall, 2020). Attention
was shown to modulate (attended) narrative processing at high
levels of the cortical hierarchy (Regev et al., 2019). Ki et al. (2016)
found that ISC was weaker when participants had to concurrently
perform mental arithmetic and attend to a narrative than when
participants only attended to the narrative. This was especially
the case when participants attended to audiovisual narratives
compared to auditory-only narratives. They also reported that
the ISC difference between the two attentional states, as well as
its magnitude, was more pronounced when the stimulus was a
cohesive narrative than when it was a meaningless one. Moreover,
they demonstrated that audiovisual narratives generated stronger
ISC than audio-only narratives. In line with this finding, a recent
fMRI study indicated that sustained attention network dynamics
are correlated with engagement while attending audiovisual
narratives (Song et al., 2021a). However, this is not the case for
audio-only narratives. Nevertheless, in audio-only stimuli, ISC
is higher for personal narratives compared to a non-narrative
description or a meaningless narrative (i.e., a reversed version of
the personal narratives) (Grall et al., 2021). Furthermore, Song
et al. (2021a) found higher interpersonal synchronization of default
mode network activity during moments of higher self-reported
engagement with both audio-visual and audio-only narratives. In
addition, highly engaging moments of a narrative evoke higher ISC
in the mentalizing network compared to less engaging moments
(Grady et al., 2022). Finally, ISC was observed to diminish when
viewers watched video clips for the second time (Dmochowski et al.,
2012; Poulsen et al., 2017; Imhof et al., 2020), which was supported
by a study showing lower ISC when viewers were presented with a
scrambled narrative for the second time compared to the first time
(Song et al., 2021b).

In summary, while some previous studies have examined
the relationship between ISC and narrative engagement (or its
correlate, attention) (Dmochowski et al., 2012; Ki et al., 2016;
Cohen et al., 2017; Poulsen et al., 2017; Regev et al., 2019; Schmälzle
and Grall, 2020; Grall et al., 2021; Song et al., 2021a; Grady
et al., 2022), they assumed that “being a narrative” is an either-or
quality. For example, a cohesive narrative is considered a narrative,
whereas a meaningless narrative (e.g., a scrambled narrative) is
not considered one. From the narratological perspective, there
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has been increased interest in “narrativity” as a scalar property;
that is, artifacts (pictures, videos, stories, and other forms of
representation) may have different degrees of narrativity. In other
words, narrative may be a matter of more-or-less rather than
either-or (Ryan, 2007). Therefore, how different levels of narrativity
affect narrative engagement remains an open question. Moreover,
whether narrativity levels lead to different degrees of ISC, and
whether it is possible to predict narrativity level based on ISC
values, has not yet been explored. Therefore, our main research
question for this study is as follows: does narrativity level [high
(HL) vs. low (LL)] modulate self-reported engagement and ISC?
To answer this question, we asked 32 participants to watch
12 narrative, real video ads twice each (with sound removed)
varying in their degree of narrativity. We defined “narrativity
level” as the degree to which an artifact is perceived to evoke
a complete narrative script (Ryan, 2007). Essentially, this refers
the degree to which a story seems complete in all its structural
elements, such as the presence of defined characters in a stipulated
context, clear causal links between events, and a sense of closure
resulting from the intertwining of these events (Ryan, 2007). While
participants watched the videos, we recorded their EEG brain
signals to investigate shared neural responses to the video ads across
participants; that is, we investigated the interpersonal reliability
of neural responses (expressed by ISC). We further assessed how
narrativity level affected self-reported engagement with the ads.
Thus, we asked participants to rate how much each ad captured
their attention and how immersed in it they felt. Furthermore, we
examined how engagement and ISC differ for video ads watched for
the first time versus the second time. Based on the aforementioned
studies, which explore how narratives engage individuals and
indicate that ISC levels are higher during moments of higher
narrative engagement and, we postulate that HL video ads will have
higher ISC than LL video ads and that self-reported engagement
will be higher for HL ads than for LL ads. Moreover, we expect that
both engagement and ISC will be higher the first time the videos are
seen compared to the second time.

2. Materials and methods

This study was approved by the local ethics committee
(Technical Faculty of IT and Design, Aalborg University) and
performed in accordance with the Danish Code of Conduct
for Research and the European Code of Conduct for Research
Integrity. All participants signed a written informed consent form
at the beginning of the session, were debriefed at the end of
the experiment, and were given a symbolic payment as a token
of gratitude for their time and effort. Data collection took place
throughout November 2020. This study was part of a larger study;
here, we report only the information relevant to the present study.

2.1. Participants and stimuli

We recruited 32 (13 women) right-handed participants of
16 nationalities between the ages of 20 and 37 (M = 26.84,
SD = 4.33). Regarding occupation, 69% were students, 16% were
workers, and 15% were both. Regarding educational level, 12% had

completed or were completing a bachelor’s degree, and 88% had
completed or were completing a master’s degree. We requested
that participants not drink caffeine products at least 2 h prior the
experimental session.

To select the stimuli, we initially pre-selected 22 video ads
(eight brands; Figure 1A) varying in the number of elements that
constitute different narrative levels according to Ryan (2007). The
narrativity levels of these video ads were then preliminarily rated
from 0 to 100 by an expert in the narrative field. Based on these
scores, we selected six brands that had the largest difference in
score between two of their ads (to maximize the difference in
narrativity level between two ads of the same brand), coinciding
with an absolute score below 50 for one ad and above 50 for the
other ad (Figure 1B). We then grouped the video ads into two
categories: HL and LL narrativity. Although not categorizing the
videos—thus considering continuity in narrativity level—would
better align with a scalar model of narrativity, our results would
suffer from statistical invalidity. Because the videos were real
and therefore not created specifically for the study, they had
idiosyncratic features separate from the narrativity level (e.g.,
different scenario, characters, and plot). These features could either
cover a potential effect of narrativity level or lead to a misattribution
of an effect. By categorizing the videos into two narrativity levels,
we sought to mitigate the potential effects of those individual
features and make the differences in narrativity level more salient.
The final selection consisted of six video ads with HL narrativity
(M = 83.17, SD = 10.70) and another six with LL narrativity
(M = 33.33, SD = 10.70), with each of the six brands contributing
one video to each of the two groups (Figure 1C). The videos
can be seen here: https://youtu.be/RBMo0wvFKoY. To validate
the categorization of the ads into these two categories, another
independent expert in the narrative field rated the narrativity level
of the 12 video ads from 0 to 100, and their ratings were consistent
with those of first expert (HL: M = 81.00, SD = 13.70; LL: M = 37.33,
SD = 15.37; Figure 1D). To assess whether the general public
would also perceive a difference in narrativity level between the
two categories of videos, we conducted an online validation test
using the Clickworker platform1 with an independent panel of
participants, which confirmed that our classification was valid (see
section “3. Results”). For the online test, a total of 156 participants
were assigned to one of four groups. Each group was assigned to
watch three video ads, each of which was from a distinct brand.
To capture the degree of perceived narrativity in each video ad,
participants were asked to answer five questions used by Kim et al.
(2017), such as “the commercial tells a story” and “the commercial
shows the main actors or characters in a story.” All questions were
rated from 0 (strongly disagree) to 100 (strongly agree). Average
responses to these five questions showed whether the videos ads
were indeed perceived to be in the HL (higher scores) or LL
(lower scores) category. The responses confirmed that our initial
categorization of the videos was valid (see results and Figure 1E).

The stimuli therefore comprised 12 2D video ads from
six brands (Barilla, Coke, Disney, Kellogg’s, Nike, and
Oculus), with two video ads from each brand, one for each
narrativity level. We selected different brands to mitigate
the influence of brand and product category. The ads were

1 https://www.clickworker.com
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FIGURE 1

Video ads selection procedure, division into high (HL) and low (LL) categories, results of the ratings, and the resulting design. (A) The eight
pre-selected brands from which we chose 22 video ads. (B) Process of selecting videos based on expert’s rating. Suppose that, from brand X, we
pre-selected three videos that were rated by the expert. The videos that had the maximum difference (df1) in score, for which one score was >50
and the other was <50, were selected as the final videos from brand X. (C) The six selected brands with average scores. For each brand, the video
with a higher score was assigned to the HL category (six videos) and the video with a lower score was assigned to the LL category (six videos).
(D) Average of the second expert’s ratings across the six selected videos. (E) Average scores (across participants and stimuli) for narrativity level, rated
by 124 participants. An independent sample t-test showed that the narrativity scores of the HL videos were significantly higher than those of the LL
videos (p < 0.001). The black error bars represent the standard deviation of the sample. (F) The 2 × 2 experiment design consisted of the following
conditions: HL–PC, HL–VR, LL–PC, and LL–VR. *p < 0.05.

real commercials retrieved from YouTube. We removed the
audio and edited some of the videos slightly to adjust the
length (which varied from 57 to 63 s). We selected non-
verbal narratives in video format because motion picture
narratives are less susceptible to interindividual differences
and generate more homogeneous experiences across individuals
than verbal (oral) narratives (Jajdelska et al., 2019). This may
be because the visual images are directly related to the narrative
content, which reduces personal interpretations of the story
(Richardson et al., 2020).

2.2. Design, data collection, and task

We conducted a 2 × 2 full factorial within-subjects study
with two levels of narrativity [high level (HL) vs. low level
(LL)] and two media [computer screen (PC) vs. virtual reality
(VR)]. The study included four conditions: six HL video ads
presented on a PC (HL–PC), six HL video ads presented
in VR (HL–VR), six LL video ads presented on a PC (LL–
PC), and six LL video ads presented in VR (LL–VR). See
Figure 1F.

Initially, the EEG device (32-channel, 10–20 system) was
placed on each participant’s scalp, and the impedance of the
active electrodes was set to less than 25 k� using a conductive
gel, according to the manufacturer’s guidelines. The signals were
recorded at a sampling rate of 500 Hz using Brain Products
software. The HTC Vive Pro VR headset was placed on top of
the EEG electrodes, and the impedance of the electrodes was
checked again. The task comprised two sessions of approximately
25 min each, separated by a 20 min interval. During one
session, participants watched ads on a PC; during the other

session, they watched ads in VR. During each session, participants
watched all of the video ads and answered a questionnaire
after each. A 2-s fixation cross was shown before each new
video. The videos were displayed first on a PC for half of the
participants. The video presentation order was counterbalanced
across participants but the same across media. The ten-item
questionnaire included two questions of interest for this study:
(i) “this commercial really held my attention” and (ii) “this
ad draws me in”; both were scored from 0 (strongly disagree)
to 100 (strongly agree). We retrieved these questions from
the “being hooked” scale (Escalas et al., 2004), and they
were meant to capture consumers’ sustained attention to the
advertisement (Escalas et al., 2004). High levels of focused attention
and high levels of immersion (feelings of transportation) can
indicate high levels of narrative engagement. Thus, we calculated
our engagement metric by averaging attention and immersion
scores.

2.3. Preprocessing

We performed all preprocessing and processing steps using
Matlab R2020b (The Math Works, Inc, Natick, MA, USA) with in-
house codes and tools from the FieldTrip 202101282 and EEGLAB
2021.03 toolboxes. To remove high and low frequency noise,
we applied a third-order Butterworth filter with 1–40 Hz cut-
off frequencies to the raw data. Next, we detected bad channels
using an automated rejection process with voltage threshold
+500 µV and, after confirmation by an expert, rejected them

2 http://fieldtriptoolbox.org

3 https://eeglab.org/
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from the channel list. We then interpolated the removed channels
using the spherical spline method based on the activity of six
surrounding channels in the FieldTrip toolbox. The average
number of rejected channels per participant was 1.92 + 1.48. One
participant was excluded from the analyses due to having more
than five bad channels, and two participants were excluded due
to missing trials. Subsequently, we segmented the filtered EEG
data corresponding to the 12 video ads and concatenated the
data. We then excluded the EEG data corresponding to the time
when participants were answering the questionnaires. Next, we
conducted independent component analysis on the concatenated
data to remove remaining noise. We estimated source activity using
the second-order blind identification method. We then identified
eye-related artifacts and other noisy components, which were
confirmed by an expert and removed from the component list.
Applying the inverse independent component analysis coefficients
to the remaining components, we obtained the denoised data.
Finally, we re-referenced the denoised data to the average activity
of all electrodes.

2.4. Inter-subject correlation

To evaluate whether the evoked responses to the stimuli
were shared among participants, we calculated the ISC of neural
responses to the video ads by calculating the correlation of

EEG activity among participants. Researchers have established
that, for an evoked response across participants (or trials) to
be reproduceable, it is necessary that each participant (trial)
provides a reliable response (Ki et al., 2016). In this sense,
ISC is similar to traditional methods that capture the reliability
of a response by measuring the increase in magnitude of
neural activity; the important difference is that, by measuring
reliability across participants, we avoid presenting stimuli multiple
times to a single participant. In addition, this method is
compatible with continuous naturalistic stimuli such as video
ads. Therefore, the goal of ISC analysis is to identify correlated
EEG components that are maximally shared across participants.
By “EEG component,” we mean a linear combination of
electrodes, which can be considered “virtual sources” (Ki et al.,
2016). This correlated component analysis method is similar to
principal component analysis, for which, instead of the maximum
variance within a dataset, the maximum correlation among
datasets is considered. Like other component extraction methods,
this method identifies components by solving a eigenvalue
problem (Parra and Sajda, 2003; de Cheveigné and Parra, 2014).
Below, we explain our ISC calculation procedure for multiple
stimuli [provided in Cohen and Parra (2016) and Ki et al.
(2016)].

To construct the input data, we combined data from
participants in all four conditions (six videos for each condition;
see Figure 2A for one stimulus) and obtained 24 three-dimensional

FIGURE 2

The inter-subject correlation (ISC) calculation and component activity estimation procedure. We repeated this procedure separately for each
stimulus. (A) We first concatenated the EEG activity of all participants together. (B: upper line) For each subject, we calculated the rb and rw [using
(Eqs. 1, 2), respectively] based on the cross-covariance matrices. By solving the eigenvalue problem (Eq. 3), we computed eigenvectors of each
subject. The red arrows represent each subject’s eigenvector (v′). Therefore, we obtained 29 v′, corresponding to the number of participants. Note
that each v′ i is a 32-dimensional matrix corresponding to the number of electrodes (for simplicity, the vectors are shown in two dimensions).
(B: lower line) We summed all the rb across all participants to calculate Rb and did the same for rw to calculate Rw. Then, by solving the eigenvalue
problem, we obtained vi, which represents maximal correlation across participants. Note that v is a 32-dimensional matrix corresponding to the
number of electrodes (for simplicity, the vectors are shown in two dimensions). (C) We calculated the similarity between the representative vector of
all participants (v) and each of the vectors corresponding to each subject (v′1v′29) to obtain ISC. (D) Using the calculated eigenvectors and forward
model, we calculated the scalp activity of each component, which are linear combinations of electrode activity (32 components were calculated
with the order from strongest to weakest). In sum, the activity of first two strongest components is displayed here.
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FIGURE 3

(A) Summed ISC over the first two strongest components in four conditions. This shows that, in the PC condition, the ISC of HL video ads was
significantly higher than that of LL video ads (p = 0.029), and in the VR condition, the ISC of HL video ads was still higher than that of LL video ads,
but not statistically significant (p = 0.638). (B-top) Calculated ISC separately for each component and within each condition. This shows that, for the
first component, the difference between HL and LL video ads is not significant in either the PC or the VR condition. However, in the second
component, the ISC of HL video ads was significantly higher than that of LL video ads (p = 0.002) in PC condition, but not in the VR condition
(p = 0.313). The gray bars show the average over phase randomized iterations. (B-bottom) Scalp activity of first two strongest components. Activity
in component 1 is throughout the anterior and posterior regions, while in component 2, activity is concentrated in the posterior region. In both
figures, the colored dots represent the calculated ISC values for each participant. *p < 0.05.

EEG matrices (channel × data samples × participants). For each
of these 24 matrices, we separately calculated the between-subject
cross-covariance using Eq. 1:

Rb =
1

N (N − 1)

N∑
k = 1

N∑
l = 1,l 6= k

Rkl (1)

where Rkl is as follows:

Rkl =
∑

t
(xk (t)− xk) (xl (t)− xl)

T

Rkl indicates cross-covariance among all electrodes of subject
k with all electrodes of subject l. The matrix xk (t) contains 32
electrode activities (pre-processed data) of subject k measured in
time, and xk is the average of xk (t) over time. Additionally, we
separately calculated the within-subject cross-covariance for each
of the abovementioned matrices using Eq. 2:

Rw =
1
N

N∑
k = 1

Rkk (2)

Rkk is calculated in an identical manner to Rkl, except it
considers only the electrode activity of subject k. We then summed
the calculated Rb and Rw of all 24 matrices to obtain the pooled
within- and between- subject cross-covariances, representing
data on all stimuli.

Then, to improve the robustness of our analysis against outliers,
we used the shrinkage regularization method to regularize the
within subject-correlation matrix (Blankertz et al., 2011) Eq. 3:

Rw ← (1− γ) Rw + γλI (3)

where λ is the average of eigenvectors of Rw, with γ equal to 0.5.
Next, by solving the eigenvalue problem for R−1

w Rb (Eq. 4),
we obtained eigenvectors vi. Such eigenvectors are projections

indicating the maximum correlation among participants, from
strongest to weakest, provided by eigenvalues λ i.(

R−1
w Rb

)
vi = λivi (4)

After this step, we obtained the projections that are
maximally correlated among all participants considering all
stimuli (Figure 2B). Next, to measure the reliability of individual
participants’ EEG responses, we calculated the correlation of
projected data for each subject with projected data for the group
separately for each stimulus (Figure 2C). This metric shows how
similar the brain activity of a single subject was to that of all other
participants. Next, we calculated the ISC using the correlation of
such projections for each stimulus (video ads) and component,
averaged across all possible combinations of participants. Thus, for
each stimulus and each subject, we obtained a component matrix.
By summing the first two strongest components, we obtained the
ISC for each subject, as follows (Eq. 5):

ISCk =

2∑
i = 1

rki (5)

where

rki =
1

N (N − 1)

N∑
l = 1,l 6= k

∑
t yik (t) yil(t)√∑

t y2
ik(t)

√∑
t y2

il(t)

rki is the Pearson correlation coefficient averaged across all
pairs of participants applied to component projection yik, which is
defined as follows (Eq. 6):

yik (t) = vT
i (xik (t)− xk) (6)

Next, we summed the first two strongest components to
represent the ISC of each subject for each stimulus (i = 1:2) and

Frontiers in Human Neuroscience 06 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1160981
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1160981 May 3, 2023 Time: 15:23 # 7

Dini et al. 10.3389/fnhum.2023.1160981

ignored the weaker components because they were below chance
level in one condition. Finally, we summed the calculated ISC over
the six stimuli of each condition to obtain the ISC of all participants
in each of the four conditions. To illustrate the scalp activity of each
component, we used the corresponding forward model following
previous studies (Parra et al., 2005; Haufe et al., 2014; Figure 2D). In
Figure 3A, the bars illustrate the sum of the two first components.

To determine chance-level ISC, we first built up phase-
randomized EEG data using a method that randomizes EEG signal
phases in the frequency domain (Theiler et al., 1992; Ki et al., 2016).
Using this method, we obtained new time series where the temporal
alterations were not necessarily aligned with the original signals and
therefore not correlated across participants. We then implemented
the aforementioned steps on the randomized data, identically:
for each condition, we computed within- and between-subject
cross-covariances, projected the data on eigenvectors, calculated
ISC, and summed them over stimuli.

We generated 5000 sets of such randomized data and continued
the process as described above to obtain a null distribution
representing the random ISC activity. Next, we tested the actual ISC
values against the null distribution to evaluate whether the actual
ISCs are above the chance level. To do this, we used a two-tailed
significance test with p = (1 + number of null ISC values≥ empirical
ISC) / (1 + number of permutations). See Supplementary Figure 1.

Some studies have reported that ISC values are higher in lower
frequency bands and vice versa (Lankinen et al., 2014; Thiede et al.,
2020). Although in this study we do not aim to evaluate the effect
of narrativity levels on the ISC of different frequency bands, it is
worth exploring it. For this, we filtered the EEG data into different
frequency bins using the abovementioned Butterworth filter. The
frequency bins comprise 1–2 Hz, 2–3 Hz, 3–4 Hz, 4–5 Hz, 5–6 Hz,
6–7 Hz, alpha (8–12 Hz), low-beta (13–20 Hz), and high-beta (21–
40 Hz). We employed a high resolution in the lower frequency
bands to verify whether our results aligned with previous findings
in these frequency bands (Lankinen et al., 2014). After filtering
the signal, we repeated the same procedure of ISC calculation as
mentioned above and obtained the ISC for the frequency bands.

To explore whether the ISC differences are derived by either
change in engagement scores or a change in narrativity levels, we
implemented two correlation analyses: one for ISC vs. engagement
scores and one for ISC vs. narrativity levels. To do this, we
used a partial correlation approach considering subjects and
engagement/level of narrativity as covariates depending on the
correlation (e.g., for the correlation of ISC vs. engagement, the level
of narrativity is considered as a covariate).

2.5. ISC based on a model trained only by
HL data (ISC-HL)

We also tested whether we could assign a single participant to
the HL or LL group based on participant’s neural brain activity.
In other words, we tested whether we could predict the level
of narrativity the participant was exposed based on EEG activity
when participants attended to HL and LL videos. To do so, we
calculated the projections vi using only the data from the HL
group. We then calculated the ISC of each participant (from both
the HL and LL groups) based on the projections calculated only
from the HL group and called the result “ISC-HL.” Therefore, in

each group, each participant had an ISC-HL value showing how
similar their neural activity was to the activity of all participants
in the HL group. The difference between ISC-HL and ISC is
that, while calculating ISC, we explored how similar the activity
of a participant was to their own group (whether HL or LL).
When calculating ISC-HL, however, we calculated how similar the
activity of participants in both groups (HL and LL) was to the
activity of only the participants in the HL group. We hypothesized
that the brain activity of participants from the HL group would
be more similar to the overall activity of all participants in the
HL group (meaning higher ISC-HL) and that the brain activity
of participants from the LL group would be less similar to the
overall activity of all participants in the HL group (meaning lower
ISC-HL). To avoid bias in this procedure, we excluded the test
subject from the HL group while computing the projections vi
and then calculated the ISC-HL for the corresponding subject. As
described in the previous section, we summed the two first stronger
components of ISC-HL and also summed the six stimuli for each
condition. Additionally, we assessed classification performance
for both groups (HL vs. LL) using the area under the curve
(AUC) characteristics of a fitted support vector machine model
with leave-one-out approach. To determine the chance-level AUC,
we randomly shuffled the labels 1,000 times. In each iteration,
AUC was calculated through an identical process, starting from
extracting the correlated components of HL-labeled group and
following all subsequent steps described above. We calculated
p-values using (1 + number of null AUC values ≥ actual AUC) /
(1 + number of permutations) to see whether the observed AUC
is above chance level. We repeated all the aforementioned steps
separately for the PC and VR conditions.

2.6. Statistical analysis

To test statistical differences across narrativity levels, we
conducted a two-way ANOVA. Based on the study design, our
independent variables were narrativity level (HL vs. LL) and
medium (PC vs. VR). The dependent variables were the scores
from the two questionnaires (i.e., attention and immersion) and
calculated neural reliability (as expressed by ISC). The output
of such a comparison includes the main effects of “narrativity
level” and “medium” and the interaction effect of “narrativity
level × medium.” The same procedure and dependent variables,
but with narrativity level (HL vs. LL) and viewing order (first
vs. second) as independent variables, were used to test statistical
differences across viewing order. Participants watched each video
twice: once in one medium and once in the other medium.
The medium that was used first was counterbalanced across
participants. For the analysis, we created a group for the first
viewing and a group for the second viewing, regardless of the
medium used. In both of these groups, participants watched the
same videos, including both HL and LL video ads. In the present
study, we focused on the effect of narrativity level and viewing order
on brain activity patterns by comparing the calculated features in
HL vs. LL conditions, and first vs. second viewing. Therefore, we
do not report results for the main effect of medium. Nevertheless,
we included medium type as a factor in the statistical analyses
to control for its effect. Additionally, we performed post hoc
analysis when we identified interaction effects but also when we
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FIGURE 4

Participants’ self-reported scores. Each bar is the average of the scores across participants and across corresponding video ads. The colored dots
represent the score for each participant averaged across the corresponding videos. (A) Self-reported attention scores. (B) Self-reported immersion
scores. (C) Engagement scores (average of attention and immersion scores). This shows that the HL engagement scores were significantly higher
than the LL engagement scores in both PC (p < 0.001) and VR (p < 0.001) conditions. *p < 0.05.

judged it appropriate to report simple effects. We corrected the
p-values of the post-hoc tests using the Bonferroni method. Finally,
to avoid multiple comparison error of multiple statistical tests
(such as comparing HL and LL within two extracted components;
see results), we corrected the p-values based on the number
of statistical test repetition errors (FDR correction) using the
Benjamini-Hochberg method (Gerstung et al., 2014).

3. Results

3.1. Online validation test

Of the 156 participants who completed the online test, we
considered 124 responses to be valid as the remaining participants
answered too fast or failed to answer the attention question
correctly. Results of the online test confirmed that the general
public also perceived ads in the HL category as having a high
narrativity level (MHL = 70.95, SDHL = 10.79) and adds in the
LL category as having a low narrativity level (MLL = 47.71,
SDLL = 13.52; see Figure 1E in the section “2. Materials and
methods”). All six of the HL ads received higher scores than any
of the six LL ads. An independent sample t-test confirmed that the
difference between the two categories was statistically significant
[t(61) = 7.554, p < 0.001].

3.2. Narrativity level modulates
self-reported engagement

We first report our descriptive analysis of the attention,
immersion, and engagement scores for each of the four conditions
(HL–PC, HL–VR, LL–PC, and LL–VR; see section “2. Materials
and methods” for abbreviations), then report results of the
statistical analysis conducted on engagement scores. Note that our
engagement metric is the average of the attention and immersion
scores. Attention scores for the PC conditions were as follows:
MHL−PC was 57.03 (SDHL−PC = 14.76), and MLL−PC was 44.16
(SDLL−PC = 13.92). The attention scores for the VR conditions were

as follows: MHL−VR was 56.26 (SDHL−VR = 14.19), and MLL−VR was
46.28 (SDLL−VR = 14.41). Figure 4A shows the average attention
scores in each of the four conditions. Immersion scores for the PC
conditions were as follows: MHL−PC was 54.26 (SDHL−PC = 13.28),
and MLL−PC was 42.53 (SDLL−PC = 15.09). Immersion scores
for the VR conditions were as follows: MHL−VR was 53.67
(SDHL−VR = 10.81), and MLL−VR was 44.56 (SDLL−VR = 14.15).
Figure 4B shows the average immersion scores in each of the
four conditions. Engagement scores for the PC conditions were
as follows: MHL−PC was 55.65 (SDHL−PC = 13.54), and MLL−PC
was 43.35 (SDLL−PC = 14.04). Engagement scores for the VR
conditions were as follows: MHL−VR was 54.97 (SDHL−VR = 12.16),
and MLL−VR was 45.42 (SDLL−VR = 14.00). Results of the 2 × 2
repeated measures ANOVA showed a main effect of narrativity
level on perceived engagement [F(1,28) = 19.779, p < 0.001]. Post
hoc analysis showed that participants engaged more with HL ads
than with LL ads in both PC [F(28,1) = 17.03, p < 0.001] and VR
[F(28,1) = 20.320, p < 0.001] conditions. See Figure 4C.

3.3. Narrativity level modulates posterior
inter-subject correlation

First, we tested whether the actual ISC values are significantly
above the chance level and the results indicated that all the
calculated ISCs are significantly higher than the generated
null distribution (see Supplementary Figure 1 for detailed
information). Next, we applied the same statistical analysis used
for the self-reported data to assess whether our neurological
metric (ISC) changed according to narrativity level. To do so,
we used summed ISC over the first two strongest components
(see section “2. Materials and methods”) as a representative of
neural reliability. Results of the 2 × 2 repeated measures ANOVA
showed a main effect of narrativity level, where ISC was higher
when participants watched the HL ads than when they watched
the LL ads [F(1,28) = 4.467, p = 0.044]. Although the interaction
effect was not significant, we then conducted post hoc analysis
to determine whether this difference occurred in the PC or VR
condition. Results of the post hoc analysis showed that ISC was
significantly higher for the HL ads (MHL = 0.031, SDHL = 0.019)
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FIGURE 5

Inter-subject correlation of different frequency bins for the four conditions (see the figure legend). The stars above the bars indicate a significant
difference between the two conditions (p < 0.05). The frequency bands are indicated above the bar charts of the four conditions. The figure
indicates that in the lower frequency bands, the ISC values are higher compared to the ISC of higher frequency bands. In addition, the effect of the
narrativity level on ISC values in the frequency bands is the same as its effect in wide-band EEG: In the PC condition, the ISC of HL is higher than the
ISC of LL [in all frequency bins except for 3–4 Hz and low-beta; in alpha and high-beta, it is marginally significant (p = 0.052; p = 0.056,
respectively)]. *p < 0.05.

FIGURE 6

Results of viewing order (first and second) considering narrativity level (HL and LL). (A) Results of engagement scores, where for videos in the HL
condition, engagement scores upon first viewing were significantly higher than those upon second viewing. Moreover, HL videos received
significantly higher engagement scores than LL videos upon both first and second viewings. (B) Results for calculated ISC of viewing order, where
the only significant difference was between the second viewing of HL videos and that of LL videos. *p < 0.05.

than for the LL ads (MLL = 0.020, SDLL = 0.016) in the PC condition
[F(28,1) = 5.266, p = 0.017]. In the VR condition, the ISC of HL ads
(MHL = 0.052, SDHL = 0.027) was still higher than that of LL ads
(MLL = 0.050, SDLL = 0.023), but this difference was not significant
[F(1,28) = 0.226, p = 0.638]. See Figure 3A.

Furthermore, to investigate which factors affect neural
reliability, we compared the ISC of HL video ads to that of LL
video ads separately for each component. We corrected the p-values
because we repeated our calculations twice for the two components,
and results can be seen in the top part of Figure 3B. Results showed
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that, for the first component, the main effect of narrativity is not
significant [F(1,28) = 1.145, corrected p = 0.294]. However, for the
second component, the main effect of narrativity was significantly
higher in HL video ads than in LL video ads [F(1,28) = 5.412,
corrected p = 0.045]. Post hoc analysis of the second component
revealed that the ISC of HL ads (MHL = 0.015, SDHL = 0.010) was
significantly higher than that of LL ads (MLL = 0.005, SDLL = 0.009)
in the PC condition [F(1,28) = 13.676, corrected p = 0.002];
however, there was no significant difference between HL and LL
ads in the VR condition [F(1,28) = 1.056, corrected p = 0.313]. In
addition, different correlated components had different patterns of
scalp activities (Figure 3B, bottom part).

The correlation analysis revealed that for the correlation
between ISC and engagement, neither on the PC (r = −0.101,
corrected-p = 0.421) nor on the VR (r = 0.047, corrected-
p = 0.722) conditions there was a statistically significant correlation
(Supplementary Figure 2A). However, for the correlation between
ISC and narrativity level, the PC condition showed a significant
correlation (r = 0.314, corrected-p = 0.017), and the VR condition
did not show a significant correlation (r = 0.055, corrected-
p = 0.678), as shown in Supplementary Figure 2B.

3.4. Narrativity level modulates ISC of
different frequency bands

The results for the ISC in different frequency bands indicate
similar effects of narrativity level on ISC of different frequencies as
of on a wide EEG band. They are illustrated in Figure 5.

In the PC condition, the ISC of some frequency bands are
significantly higher in the HL compared to the LL condition
as follows: 2−3 Hz (MHL = 0.066, SDHL = 0.054, MLL = 0.041,
SDLL = 0.045, F(1,28) = 2.207, corrected p = 0.031), 4–5 Hz
[MHL = 0.051, SDHL = 0.458, MLL = 0.198, SDLL = 0.33,
F(1,28) = 3.846, corrected p < 0.001], 5–6 Hz [MHL = 0.042,
SDHL = 0.035, MLL = 0.018, SDLL = 0.037, F(1,28) = 2.478, corrected
p = 0.016], and 6–7 Hz [MHL = 0.038, SDHL = 0.029, MLL = 0.019,
SDLL = 0.035, F(1,28) = 2.232, corrected p = 0.029]. However,
some of the frequency bands did not show significant differences
between HL and LL conditions as follows: 1–2 Hz (MHL = 0.116,
SDHL = 0.069, MLL = 0.085, SDHL = 0.071, F(1,28) = 1.639,
corrected p = 0.106), 3–4 Hz [MHL = 0.031, SDHL = 0.048,
MLL = 0.039, SDLL = 0.043, F(1,28) = −0.694, corrected p = 0.490],
alpha (MHL = 0.035, SDHL = 0.022, MLL = 0.024, SDLL = 0.020,
F(1,28) = 2.011, corrected p = 0.052), low-beta (MHL = 0.017,
SDHL = 0.019, MLL = 0.020, SDLL = 0.021, F(1,28) = −0.539,
corrected p = 0.592), and high-beta (MHL = 0.019, SDHL = 0.013,
MLL = 0.012, SDLL = 0.013, F(1,28) = 1.946, corrected p = 0.056).

In the VR condition, in ISC of 1–2 Hz (MHL = 0.169,
SDHL = 0.097, MLL = 0.129, SDLL = 0.060, F(1,28) = 2.264,
corrected p = 0.027) and low-beta (MHL = = 0.019, SDHL = 0.017,
MLL = 0.009, SDLL = 0.016, F(1,28) = 2.261, corrected p = 0.027)
there is a significant difference between HL and LL conditions.
However, the other frequency bands did not show any significant
difference between H and LL conditions as follows: 2–3 Hz
[MHL = 0.169, SDHL = 0.097, MLL = 0.129, SDLL = 0.060, F
(1,28) = −1.111, corrected p = 0.271], 3–4 Hz [MHL = 0.089,
SDHL = 0.036, MLL = 0.085, SDLL = 0.050, F (1,28) = 0.444, corrected

p = 0.658], 4–5 Hz [MHL = 0.052, SDHL = 0.045, MLL = 0.058,
SDLL = 0.041, F (1,28) = −0.538, corrected p = 0.592], 5–6 Hz
[MHL = 0.041, SDHL = 0.037, MLL = 0.050, SDLL = 0.034, F
(1,28) = −0.993, corrected p = 0.324], 6–7 Hz [MHL = 0.032,
SDHL = 0.028, MLL = 0.038, SDLL = 0.029, F (1,28) = −0.889,
corrected p = 0.377], alpha [MHL = 0.153, SDHL = 0.026,
MLL = 0.100, SDLL = 0.022, F (1,28) = 0.723, corrected p = 0.472],
and high-beta [MHL = 0.015, SDHL = 0.014, MLL = 0.009,
SDLL = 0.013, F (1,28) = 1.955, corrected p = 0.055].

3.5. Viewing order modulates
self-reported engagement but not
inter-subject correlation

To evaluate whether viewing order affects engagement scores
and ISC, we implemented the abovementioned statistical procedure
with narrativity level and viewing order as independent variables.
We first report the resulting engagement scores and ISC scores.

Regarding engagement scores, the average and standard
deviation for the first viewing group were as follows: MHL was
57.71 (SDHL = 2.10), and MLL was 45.42 (SDLL = 2.65). For the
second viewing group, these figures were as follows: MHL was 52.90
(SDHL = 2.57), and MLL was 43.36 (SDLL = 2.56; see Figure 6A).
Results of this statistical analysis revealed a significant main effect
of viewing order. Further post hoc analysis indicated that this main
effect was driven by the HL category, for which videos viewed first
received significantly higher engagement scores than those viewed
second [F(1,28) = 12.784, p = 0.001]. However, in the LL condition,
there was no significant difference between the first and second
viewing groups [F(1,28) = 1.686, p = 0.205]. Moreover, there was a
main effect of narrativity level: of videos in the first viewing group,
HL videos received significantly higher engagement scores than LL
videos [F(1,28) = 23.047, p < 0.001]; this was also the case for videos
in the second viewing group [F(1,28) = 13.391, p = 0.001].

Regarding ISC, the average and standard deviation for videos in
the first viewing group were as follows: MHL = 0.040 (SDHL = 0.025),
and MLL was 0.035 (SDLL = 0.027). For the second viewing group,
these figures were as follows: MHL was 0.043 (SDHL = 0.027),
and MLL was 0.035 (SDLL = 0.023; see Figure 6B). Results
of this statistical analysis showed no significant main effect of
viewing order. Further post hoc analysis showed that the HL video
ads received higher ISC scores than LL video ads upon second
viewing [F(1,28) = 4.411, p = 0.045], but not upon first viewing
[F(1,28) = 1.144, p = 0.294].

3.6. ISC based on a model trained only by
HL data (ISC-HL)

We calculated ISC-HL to test if it was possible to determine
whether a single subject was watching an HL video ad or an LL
video ad based on their neural activity. Figures 7A, B display the
calculated ISC-HL in both VR and PC conditions. As expected,
the neural responses of 23 (76.6%) participants were much more
similar to those of the HL group (had higher ISC-HL) when
they attended to HL videos than when they attended to LL
videos in the PC condition (Figure 7A). In the VR condition, the
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FIGURE 7

(A,B) Results for calculated ISC-HL for each participant in the PC and VR conditions. Lines and markers of each color show the ISC-HL of one
participant in the HL and LL conditions. (A) This shows that 76.6% of participants had higher ISC-HL when they attended to HL video ads than when
they attended to LL video ads. This shows that most of the participants who were exposed to HL video ads showed higher similarity to the trained
model (which is derived from data of HL condition) than those who are exposed to LL video ads. (B) This relates to the same evaluation as panel (A),
but in the VR condition, where 50% of participants had higher ISC-HL. (C,D) Area under the curve (AUC) of classification performance for predicting
exposure to HL and LL video ads in PC and VR conditions, respectively. The black lines show the average over randomized AUCs. (C) Shows that the
AUC of classification based on participants’ neural activity in the PC condition is higher than chance level, while panel (D) shows that the AUC of
classification based on participants’ neural activity in VR condition is below chance level.

neural responses of 15 (50%) participants showed higher ISC-HL
while attending to HL videos than while attending to LL videos
(Figure 7B). Given ISC-HL as the predictor of narrativity level,
the classifier shows above-chance performance in the PC condition
but not in the VR condition (Figures 7C, D). In the PC condition,
the actual AUC was 0.637, while the chance-level AUC was 0.548
(p < 0.001). In the VR condition, the actual AUC was 0.507, while
the chance-level AUC was 0.543 (p = 0.245).

4. Discussion

In this study, we tested whether different levels of narrativity
(HL vs. LL) lead to differences in information processing reliability
(represented by ISC), specifically while watching video ads.
Furthermore, we evaluated whether different levels of narrativity
cause differences in self-reported engagement ratings. To this
aim, we presented HL and LL video ads to 32 participants while
collecting their EEG signals. In addition, for each video ad,
participants self-reported their levels of attention and immersion,
which we considered two core factors of engagement. We calculated
the ISC of each participant by calculating the similarity of their
correlated components to those of the participant pool. One
advantage of ISC analysis is that it does not require stimulus
repetition; this is advantageous because such repetition causes
decreased attention and engagement (Dmochowski et al., 2012; Ki
et al., 2016). As expected, our results showed that both calculated
ISC and engagement scores of HL video ads were significantly
higher than those for LL video ads, suggesting that narrativity

level modulates ISC and engagement. However, the modulation of
ISC was not correlated with the degree of engagement with the
narrative.

Previous studies have evaluated the relationship between
narrative engagement—or its core component, attention—and ISC.
Cohen et al. (2017) measured self-reported engagement scores and
ISC while participants were exposed to naturalistic videos. They
found that more engaging videos were processed uniformly in
participants’ brains, leading to higher ISC. Consistent with their
results, Poulsen et al. (2017) reported that a lack of engagement
manifests an unreliable neural response (meaning lower ISC),
and they introduced EEG-ISC as a marker of engagement. Song
et al. (2021a) investigated whether engagement ratings modulate
ISC by evaluating the relationship between continuous self-
reported engagement ratings and ISC using continuous naturalistic
stimuli. They reported higher ISC during highly narrative engaging
moments and concluded that ISC reflects engagement levels.
In line with it, Schmälzle and Grall (2020) demonstrated that
dynamic ISC aligns with reported levels of suspense (i.e., a proxy
for engagement levels) of a narrative, and Grady et al. (2022)
showed that ISC is higher during intrinsic engaging moments of a
narrative. In another study, Dmochowski et al. (2012) used short
video clips to evaluate attention and emotion using ISC. They
found a close correspondence between expected engagement and
neural correlation, suggesting that extracting maximally correlated
components (ISC) reflects cortical processing of attention or
emotion. Finally, Ki et al. (2016) investigated whether attentional
states modulate ISC for audio and audiovisual narratives, and
they concluded that higher attention leads to higher neural
reliability across subjects. Inspired by previous studies (Busselle
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and Bilandzic, 2009; Dmochowski et al., 2012; Lim et al., 2019), we
measured narrative engagement by averaging two of its important
components, attention and immersion.

Our results indicated that, using ISC (in the PC condition),
we were able to significantly discriminate levels of narrativity: the
ISC levels of HL video ads were significantly higher than those
of LL video ads (Figure 3A). Consistent with our narrativity level
discrimination, self-reported engagement ratings were significantly
higher for HL video ads than for LL ones (Figure 4C). In addition,
in the PC condition, the ISC-HL was able to predict the narrativity
level based on neural responses (measured via EEG) to the stimuli.
This means that the model used significantly predicted whether the
participants were attending to HL or LL narrativity. The level of
significance was not as strong as the previously reported accuracy
for predicting attentional states (Ki et al., 2016); however, this could
be due to explicit differences between experimental conditions
(participants were made to count backward during the task to
diminish their attentional state). This finding is the first step toward
predicting exposure to different levels of narrativity based solely on
the ISC of neural activity evoked by stimuli, which leads to a better
comprehension of the brain mechanism that processes narrativity
levels. Further studies with different designs should be conducted
with a more specific focus on predicting narrativity level.

In contrast with other studies, we did not find a relationship
between engagement levels and ISC, as the correlation analysis
suggested. A plausible explanation for this finding is the type
of stimulus employed. Several studies compared ISC scores of
interrupted, scrambled, or reversed narratives with those of non-
modified narratives. Dmochowski et al. (2012) reported higher
ISC for non-scrambled narratives than for disrupted or scrambled
narratives. Ki et al. (2016), Poulsen et al. (2017), and Grall
et al. (2021) found higher ISC scores for a cohesive narrative
than for a meaningless, scrambled or reversed narrative. These
findings demonstrate that meaningless narratives are linked to
lower ISC scores. Song et al. (2021b) used scrambled video clips
to identify the moments in which narrative comprehension occurs,
and they reported that story comprehension occurs when events
are causally related to each other. Moreover, they showed that, in
such moments, the underlying brain states were mostly correlated
across subjects. The stimuli manipulations applied by previous
studies (e.g., scrambling the narrative or presenting narratives that
lacked causality) created greater differences between experimental
conditions than those in our study. While we shared with these
studies their interest in the subjects’ engagement and other factors
related to the reception of the narrative, we were also interested
in investigating the possibility of classifying and discriminating
structural characteristics of narrative artifacts. Therefore, we
defined the narrativity levels (HL and LL) based on narrative
structural elements and properties such as the presence of defined
characters in an identifiable context, clear causal links between
events, and closure resulting from the intertwining of these events.
Our conceptualization of narrativity levels was inspired by Ryan
(2007).

From this perspective, our results align with those of previous
studies, indicating that information processing is highly consistent
across subjects when participants are exposed to HL narrativity. In
other words, the fact that the ISC of HL video ads is significantly
higher than that of LL video ads in the PC condition (Figure 3A)
is a promising indication that EEG-ISC could potentially be used

to explore levels of narrativity (and correlative engagement) in
different kinds of media artifacts. However, unlike previous studies
using stimuli that were “either-or” regarding narrativity possession,
our ISC was not mediated by engagement levels. This finding
suggests that ISC can represent or capture other cognitive processes
beyond engagement. The evaluation of the activity of the first two
components separately (Figure 3B) provides some insights in this
regard. For the first component, activity was distributed throughout
the anterior and posterior regions, while in the second component,
activity was concentrated in the posterior region. Overall, the
second component drove the narrativity level modulation in
response to the HL narrative video ads. While previous studies
relating ISC to engagement found more widespread ISC (e.g.,
Dmochowski et al., 2012, 2014; Cohen et al., 2017; Song et al.,
2021a), strong posterior ISC was linked to shared psychological
perspective (Lahnakoski et al., 2014) and shared understanding
of narrative (Nguyen et al., 2019). Lahnakoski et al. (2014) asked
participants to take one perspective or another to interpret the
events of a movie. When participants watched the movie and
adopted the same perspective, posterior ISC was stronger than
when they adopted different perspectives. The authors posited that
ISC represented a shared understanding of the environment. This
was supported by the study by Nguyen et al. (2019), which showed
that participants with similar recalls of a narrative had stronger
ISC in the posterior medial cortex and angular gyrus compared to
those with dissimilar recalls. In our case, high levels of narrativity
better immersed participants in the story world compared to low
levels. This might have eased participants to take the perspective
of the character(s) in HL videos. In addition, videos with low
narrativity levels might not have been so successful in leading to
similar perspective taking and shared understanding because the
story was more fragmented than in HL video ads. Because ISC
appears to be related to both engagement and shared understanding
or perspective-taking, our findings suggest that ISC seems to be
more sensitive to the latter than to the former (see Dini et al.,
2022c). However, further investigation is necessary to elucidate why
narrativity level did not appear to affect ISC in the same way in the
VR condition. Chang et al. (2015) reported that ISC might change
due to fatigue effects for participants in an fMRI scanner. Thus,
one possible explanation for the non-significant effect of narrativity
level on ISC in the VR condition is fatigue. Wearing the VR headset
and the EEG cap for almost 25 min might have caused fatigue
and discomfort (e.g., related to posture, weight, or itching), and
such an effect might have masked the effects of narrativity level
on ISC. Another plausible explanation is also related to the VR
feature. As VR is an increasingly popular immersive technology,
participants’ expectations about the VR modality may have affected
their level of attention. Participants may have been disappointed to
find a 2D stimulus that perhaps failed to meet their expectations
and therefore diminished their active attention.

In the narratology field, there is a substantial, ongoing debate
about whether narrative should be considered an either-or property
or a scalar property (i.e., a matter of more or less) (Ryan,
2007; Abbott, 2008). Therefore, in the last two decades, some
narratologists have introduced the notion that different artifacts
may have different levels of narrativity (Ryan, 2007; Oatley, 2011).
It is widely accepted that, even though events in a story do not
have to be chronologically ordered, the sequence of the events
must nonetheless follow a narrative logic if closure is to be

Frontiers in Human Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1160981
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1160981 May 3, 2023 Time: 15:23 # 13

Dini et al. 10.3389/fnhum.2023.1160981

achieved (this is something that is commonly encapsulated in
the distinction between “story” and “discourse”). Therefore, a
“scrambled” narrative ceases to be a narrative; instead, it is a series
of unrelated events, lacking an internal temporal logic. If there is no
discernable, recoverable chronological order of connected events,
the sequence could hardly be considered a narrative. Although
the previous studies presented in our literature review provided
the methodological bases for our study, they were not centered
on narrative qualities. In our study, we focus on investigating the
plausibility of testing a particular expressive artifact for levels of
narrativity. Therefore, our stimuli presented two different degrees
of narrativity (LL and HL). We showed that small differences in
narrativity levels (i.e., between HL and LL) have effects on ISC
and engagement similar to the effects of more evident differences
between such levels (e.g., scrambled vs. non-scrambled). However,
the underlying reason for differences in ISC between narratives
with some degree of narrativity level did not reflect differences
in perceived engagement; rather, it seemed related to perspective
taking and shared understanding. These findings are a step toward
narrative comprehension, especially when considering narrative as
a scalar property (Bruni et al., 2021).

Previous studies have reported that ISC values are sensitive
to the frequency information of the input signal (Lankinen et al.,
2014; Thiede et al., 2020), meaning that ISC values are higher in
lower frequency bands and vice versa. In this study, we used a
wide EEG band (1–40 Hz) for the analysis, and the results revealed
lower ISC values compared to other studies (e.g., Ki et al., 2016).
Therefore, we evaluated whether the ISC values change according
to different frequency bands: 1–2 Hz, 2–3 Hz, 3–4 Hz, 4–5 Hz, 5–
6 Hz, 6–7 Hz, alpha (8–12 Hz), low-beta (13–20 Hz), and high-beta
(21–40 Hz). In line with previous studies (Lankinen et al., 2014),
our results showed higher ISC values in lower frequency bands
and lower ISC values in higher frequency bands (Figure 5). The
possible explanation for this could be that in high frequencies, even
small timing variations can substantially decrease the correlation
across signals, leading to a decrease in ISC values. In addition, it
is also possible that these differences derive from phase variations
in higher frequencies across subjects. Although this study does not
aim to elaborate on the effect of narrativity levels on ISC of different
frequency bands, our results point to an interesting finding. Aligned
with the results obtained from the wide-band analysis, we found
that the ISC of HL is significantly higher than LL in different
frequency bins. Even though some frequency bins did not show
this effect, in most of them there is a tendency of higher ISC for
the HL than the LL condition. In summary, the analysis of ISC for
different frequency bins supported the findings of the wide-band
ISC in terms of the effect of narrativity on shared neural responses
across participants.

To test whether viewing order modulates engagement and
ISC, we separated the data into two groups—first and second
viewing—and conducted statistical analyses considering narrativity
level and viewing order to be independent variables. Dmochowski
et al. (2012) found that attentional engagement decreases when
participants watch a stimulus for the second time compared to
the first time. Moreover, they reported significantly lower ISC for
the second viewing. Ki et al. (2016) confirmed and extended their
results by declaring that neural responses become less reliable upon
second viewing of a stimulus, showing significantly lower ISC. In
an fMRI study, Song et al. (2021b) investigated the effect of viewing

order on neural activity, watching scrambled videos twice. Their
results replicated the findings of the aforementioned study and
other studies (Poulsen et al., 2017; Imhof et al., 2020) by showing
that neural states across participants were less synchronized when
watching the videos, including the scrambled videos, for the second
time. However, Chang et al. (2015) conducted a combined EEG-
magnetoencephalography (MEG) study and reported increased
ISC during the second viewing of the stimuli. They declared that
participants’ prediction of the story structure increased during the
second viewing, resulting in a more similar EEG-MEG activity
across participants, and that this contradiction with previous
studies might be due to the different time window selected
for ISC calculation. Our results showed that engagement level
dropped during the second viewing, supporting previous studies
(Dmochowski et al., 2012). For the HL videos ads, engagement
scores for the first viewing were significantly higher than those
for the second viewing, although this was not the case for the
LL ads (Figure 6A). The decrease in engagement scores for HL
ads but not LL ads might be due to differences intrinsic to the
classification of our stimuli. While videos in the HL category
included all or almost all narrativity elements (Ryan, 2007), those
in the LL category included only a few. Thus, we could say that the
HL video ads were more storytelling-based than the LL video ads.
Therefore, it could be that factors such as suspense, expectation,
and suspension of disbelief, which naturally occur when watching
stories, are attenuated when the story is viewed for the second
time, lowering engagement levels in the case of HL video ads.
These same factors are not present or are present to a lesser extent
when watching LL video ads, and therefore, engagement levels were
not harmed. However, there was no significant difference in ISC
between the first and second viewing in either HL or LL video ads,
suggesting that viewing order does not modulate ISC. Though the
current dataset cannot provide definite answers, these differences
in findings might be explained by our study design. First, our
participants were exposed to 12 short video ads, a greater number of
stimuli than previous studies employed when investigating viewing
order (Dmochowski et al., 2012; Chang et al., 2015; Ki et al., 2016;
Poulsen et al., 2017; Song et al., 2021b). Watching 12 videos in
sequence might have reduced participants’ memories of details of
the stories. Hence, when watching the videos for the second time
(although they were perceived as less engaging) there remained a
substantial amount of information to be processed, which could
have been reflected in the ISC of the second viewing. Another
possible factor that might have hindered participants’ short-term
memories of the videos and affected ISC levels is the time span and
the tasks performed between the two viewings. In our study, the
second exposure to the video ads was separated from the first by
about 20 min. During those 20 min, participants performed two
different tasks for a separate study. Therefore, the current dataset
was not able to capture the neural underpinnings of viewing order.
Considering the limitations of this study, future studies could be
conducted to capture this effect.

5. Conclusion

This study investigated whether high or low narrativity
levels in video advertisement would significantly affect
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self-reported engagement and shared neural responses across
individuals, measured through EEG-ISC, with the ads. The findings
demonstrated that a higher narrativity level led to an increase in
engagement with the ad and an increase in ISC of the posterior part
of the brain, also during a second viewing. Interestingly, the results
suggest that ISC may be more sensitive to shared perspective-
taking—which could also indicate a shared understanding of
the narrative—than engagement levels. Moreover, the findings
imply that narratives with higher narrativity levels evoke similar
interpretations in their audience compared to narratives with
lower narrativity levels. This study advances the elucidation
of the viewers’ way of processing and understanding a given
communication artifact as a function of the narrative qualities
expressed by the level of narrativity.
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