AUTHOR=Zhou Yuzhao , Zhao Yixuan , Xiang Zirui , Yan Zhixin , Shu Lin , Xu Xiangmin , Zhang Lulu , Tian Xiang TITLE=A dual-task-embedded virtual reality system for intelligent quantitative assessment of cognitive processing speed JOURNAL=Frontiers in Human Neuroscience VOLUME=17 YEAR=2023 URL=https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2023.1158650 DOI=10.3389/fnhum.2023.1158650 ISSN=1662-5161 ABSTRACT=Introduction

Processing speed is defined as the ability to quickly process information, which is generally considered as one of the affected cognitive functions of multiple sclerosis and schizophrenia. Paper–pencil type tests are traditionally used in the assessment of processing speed. However, these tests generally need to be conducted under the guidance of clinicians in a specific environment, which limits their application in cognitive assessment or training in daily life. Therefore, this paper proposed an intelligent evaluation method of processing speed to assist clinicians in diagnosis.

Methods

We created an immersive virtual street embedded with Stroop task (VR-Street). The behavior and performance information was obtained by performing the dual-task of street-crossing and Stroop, and a 50-participant dataset was established with the label of standard scale. Utilizing Pearson correlation coefficient to find the relationship between the dual-task features and the cognitive test results, and an intelligent evaluation model was developed using machine learning.

Results

Statistical analysis showed that all Stroop task features were correlated with cognitive test results, and some behavior features also showed correlation. The estimated results showed that the proposed method can estimate the processing speed score with an adequate accuracy (mean absolute error of 0.800, relative accuracy of 0.916 and correlation coefficient of 0.804). The combination of Stroop features and behavior features showed better performance than single task features.

Discussion

The results of this work indicates that the dual-task design in this study better mobilizes participants’ attention and cognitive resources, and more fully reflects participants’ cognitive processing speed. The proposed method provides a new opportunity for accurate quantitative evaluation of cognitive function through virtual reality.