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Introduction: Processing speed is defined as the ability to quickly process

information, which is generally considered as one of the affected cognitive

functions of multiple sclerosis and schizophrenia. Paper–pencil type tests are

traditionally used in the assessment of processing speed. However, these tests

generally need to be conducted under the guidance of clinicians in a specific

environment, which limits their application in cognitive assessment or training

in daily life. Therefore, this paper proposed an intelligent evaluation method of

processing speed to assist clinicians in diagnosis.

Methods: We created an immersive virtual street embedded with Stroop task (VR-

Street). The behavior and performance information was obtained by performing

the dual-task of street-crossing and Stroop, and a 50-participant dataset

was established with the label of standard scale. Utilizing Pearson correlation

coefficient to find the relationship between the dual-task features and the

cognitive test results, and an intelligent evaluation model was developed using

machine learning.

Results: Statistical analysis showed that all Stroop task features were correlated

with cognitive test results, and some behavior features also showed correlation.

The estimated results showed that the proposed method can estimate the

processing speed score with an adequate accuracy (mean absolute error of 0.800,

relative accuracy of 0.916 and correlation coefficient of 0.804). The combination

of Stroop features and behavior features showed better performance than single

task features.

Discussion: The results of this work indicates that the dual-task design in this

study better mobilizes participants’ attention and cognitive resources, and more

fully reflects participants’ cognitive processing speed. The proposed method

provides a new opportunity for accurate quantitative evaluation of cognitive

function through virtual reality.

KEYWORDS

cognitive processing speed, evaluation, virtual reality, dual-task, behavior data, machine
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1. Introduction

Processing speed is a indicator of brain efficiency, which
represents how fast an individual can perform various cognitive
operations, and is closely related to the ability to perform higher-
order cognitive tasks (Lichtenberger and Kaufman, 2012; Ojeda
et al., 2012). Processing speed is now one of the key diagnostic
items in the new diagnostic framework defined in the Diagnosis
and Statistical Manual 5th edition (DSM-5) (Boland, and Robert,
2015). The reduction of processing speed is generally considered
as one of the important signs of mild cognitive impairment (MCI),
multiple sclerosis (MS) and schizophrenia (Ferreira, 2010; Knowles
et al., 2010; Kern et al., 2011; Lahera et al., 2017; Lu et al., 2017).

Stroop test are often used to assess selective attention and
processing speed (Stroop et al., 1935). The classic Stroop test
has three different tasks: (a) color naming: name the color of
ink patches, (b) word reading: read words that are the names of
colors, (c) color-word interference: name the color ink in which
incongruent color words are printed. When the meaning of a
word is different from the color of the ink, personal attention will
be distracted and decisions will be interfered, resulting in more
time to react. This is the Stroop effect, performance on this task
is a measure of cognitive inhibition or selective attention. Both
the color naming and word reading performance are considered
measures of processing speed (Jensen, 1965; Lezak et al., 2004).
Some studies have shown that patients with impaired processing
speed perform significantly worse in Stroop tasks (Macniven et al.,
2008; Bodling et al., 2009; Denney and Lynch, 2009; Sisco et al.,
2016). The traditional Stroop test is paper-pencil type. However,
due to less interference and one-to-one guidance of professionals,
typical test environments inevitably reduce the similarity with daily
environmental needs, reduce the ecological effectiveness, and limit
the application of this test in cognitive assessment and training in
real life (Chaytor and Schmitter-Edgecombe, 2003).

The development of virtual reality (VR) provides a new method
for cognitive assessment; it can build a realistic virtual environment
(VE), simulate real life activities, and provide users with immersive
experience (Rus-Calafell et al., 2018). Due to the advantages of VR
in replicating daily life, the cognitive assessment method of VR
is more ecologically effective than the paper-pencil test (Lalonde
et al., 2013). At present, a large number of studies have applied VR
to the evaluation and rehabilitation of diseases (Han et al., 2012;
Shin et al., 2015), VR has gradually broken through the laboratory
into clinical practice. A lot of research has verified the effectiveness
of transferring Stroop testing to VR environment (Parsons et al.,
2011, 2013; Lalonde et al., 2013; Parsons and Barnett, 2018), and
reveal that VR can provide an ecological perspective for the actual
cognitive function in daily life, and can be seen as a supplement to
the traditional assessment test of complex cognitive ability.

With the rapid growth of artificial intelligence technology, an
increasing amount of research has applied machine learning to
the diagnosis of cognitive diseases (Bratic et al., 2018; Salmanpour
et al., 2019; Carvalho et al., 2020). Disease assessment is a complex
process, and data sources are diverse, such as medical imaging,
psychological testing, etc. Machine learning has the ability to extract
useful information from complex and large data sets and integrate
multimodal data, which helps to develop more objective and
accurate disease diagnosis models. Until recently, some researches

have tried to combine VR with machine learning (Alcañiz Raya
et al., 2020; Yeh et al., 2020; Tsai et al., 2021). Users’ activities in VE
can provide researchers not only task performance data, but also
behavioral data, which can be used as digital biomarkers to assess
cognitive decline and, to some extent, reflect user behavior in the
real world (Mandryk and Birk, 2019). The combination of machine
learning and virtual reality may bring new and promising methods
for the evaluation of nervous system diseases.

This research developed VR-Street by building an immersive
virtual street scene, and embedded Stroop tasks in it as a distraction
task for street-crossing. When subjects participate in tasks in
VR, we collected their behavior and task performance data, and
analyzed them through machine learning to estimate processing
speed scores. Herein, we describe (1) the design of immersive
virtual environment and dual-task experiment of virtual reality
street; (2) data collection and analysis methods; (3) the evaluation
model based on machine learning and the experiment results.
Finally, we discussed the future direction of improvement.

2. Related work

The advantage of VR is that it can make participants feel
"present" and provide individuals with stimulation close to the
reproduction of daily life. Street-crossing is a common daily
activity. Safe crossing requires individuals to estimate vehicle arrival
time in advance and to avoid vehicles while walking. Previous
studies have shown that visual acuity, attention, and processing
speed are important factors in predicting collisions in simulated
street-crossing tasks (Dommes et al., 2013; Dommès et al., 2015).
The application of VR provides a safe simulation environment
for street-crossing. Some studies conducted individual behavior
or cognitive rehabilitation research by simulating street-crossing
in VR. Weiss et al. (2003) first proposed a virtual street to
improve the effectiveness of cognitive intervention for patients with
unilateral visual space neglect. Navarro et al. (2013) compared the
performance of the healthy control group and stroke participants in
the virtual street, and verified the availability of the virtual street in
the field of cognitive rehabilitation. Wagner et al. (2019) analyzed
the difficult factors that may affect cognitive rehabilitation training
in virtual street, such as relevant lanes, traffic speed and gap size
between vehicles. Another advantage of VR is that it is convenient
to record the behavior data of participants. Stratton et al. (2017)
conducted a clinical trial on 26 patients with multiple sclerosis and
19 healthy participants using a simulated street-crossing task. They
collected behavioral variables such as waiting time, time of crossing
the street, and times of turning heads. They found that compared
with the control group, multiple sclerosis patients spent more time
crossing the street and were closer to oncoming vehicles, which
proved that it was feasible to distinguish multiple sclerosis patients
using street crossing behavioral data.

In addition, the use of VR as a supplementary assessment
tool can overcome concerns about the predictive value of pen-
paper tests in daily life. Distraction and interference in daily life
are lacking in the paper-pencil cognitive testing environment. VR
has the ability to provide interference factors in typical living
environment under controllable conditions. A lot of research
has embedded Stroop test into virtual reality scenes, including
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classroom scenes, apartment scenes and driving scenes (Parsons
et al., 2011, 2013; Lalonde et al., 2013; Parsons and Barnett, 2018).
Parsons et al. (2011) reported that VR Stroop task was more
sensitive to attention and inhibition than traditional tests. Dual-
task is a way to assess cognitive ability in situations of distraction
and interference. The dual-task experimental paradigm requires
simultaneous attention and cognition, which are particularly
important in daily activities that require simultaneous coordination
of two or more tasks (Baddeley et al., 1997; Proctor and Read,
2009). According to the central capacity sharing model, when
performing dual-tasks, the two tasks must share limited attention
and processing capacity, resulting in a decline in performance.
Neider et al. (2011) and Banducci et al. (2016) simulated the dual-
task of using mobile phones when crossing the street in a virtual
environment, proving that the distraction of dual-task will reduce
the success rate of crossing and lead to longer preparation time.
Chang et al. (2020) created a Stroop task embedded virtual reality
driving system, requiring participants to complete the Stroop task
while driving on the simulator to study the application of head
mounted displays/flat screen displays in assessing and enhancing
cognitive processing ability, and proved that the system is suitable
for cognitive assessment.

Quantitative cognitive assessment results can help patients
understand their cognitive status more specifically and conduct
self-monitoring. Many studies have proposed methods to calculate
cognitive assessment scores (Wild et al., 2008; Brouillette et al.,
2013; Moore et al., 2017; Oliveira et al., 2018). For example,
Chua et al. (2019) calculated the scores based on the participants’
performance in VR tasks, and conducted statistical analysis with
the scores of traditional cognitive screening tools to evaluate the
effectiveness. In recent years, machine learning technology has been
gradually applied to the research of cognitive assessment. Unlike
classified tasks, researchers use patients’ activity data, such as task
performance data or behavior data, to train machine learning
models, and map the results to specific scale scores. Dawadi
et al. (2016) proposed a method for predicting residents’ clinical
cognitive scores using activity behavior. Using a smart home to
collect residents’ daily activity performance data, extracted relevant
statistical features, and utilized machine learning to predict clinical
scores. The predicted results obtained a statistically significant
correlation (r = 0.72) with the clinical score. Jung et al. (2019)
proposed a series of serious mobile games to assess cognitive
function. The game-specific performance data of 12 stroke patients
were collected and used to train the supervised machine learning
model to estimate the MMSE scores. The result showed that they
can estimate the MMSE scores with a normalized root mean square
error of 5.75%. However, this approach is still rare in research
related to virtual reality.

Although VR-Street has been applied in the above research,
there are still some deficiencies. First of all, most studies
investigated the application of a single virtual street-crossing task
in cognitive assessment. However, in real life, people often need
to face multiple cognitive tasks at the same time. For healthy
participants, a single street-crossing task may not fully stimulate
their cognitive ability. It is necessary to design a dual-task that
combines different cognitive tasks to evaluate the processing
speed of participants more comprehensively. Secondly, most
studies focus on the classification of cognitive impairment, while
quantitative assessment methods based on continuous scores are

rarely considered. Although some studies have proposed different
calculation methods for cognitive assessment scores, these methods
are only for the software in the report, and cannot convert
the specific score into the score of the clinical assessment tool,
which results in the limitation of clinical application. Additionally,
the number of data features used for analysis is small, and
behavioral data such as trajectory or velocity are not considered,
and the performance of multiple tasks is not considered. Regression
methods are mainly based on statistical methods. Advanced
computing methods, such as machine learning, are not applied
to high-dimensional data processing. In order to solve the above
problems, this research proposes a new VR-Street, which is
deployed using a head-mounted display (HMD) to provide an
immersive experience. The system includes a dual-task consisting
of a street-crossing task and a Stroop task, in which the Stroop
task is presented in a mixed form of audio and video. In the VR
scene, the performance data of two tasks were measured at the same
time, including the reaction time, accuracy rate in the Stroop task,
and the behavior data such as the trajectory and the number of
head turns in the street-crossing task. A total of 68 features were
measured. Finally, an intelligent evaluation model was constructed
using machine learning.

3. Materials and methods

3.1. Framework

Virtual scene was developed by the game engine Unity3D,
mainly including a two-lane street and its surrounding
environment. Dual-task was applied to VR scenes, including
street-crossing task and Stroop task. Integrating the Stroop
test into the VR street-crossing task may better approximate
the complexity of real-life situations. When crossing the street,
participants need to deal with the interference of Stroop test.
This increases the difficulty of the task and requires participants
to complete the task as soon as possible while maintaining their
concentration. Participants wore a HMD to complete the whole
task in the VE and conducted human-computer interactions
through the VR controller. The system was divided into three
dual-tasks, including Dual-Task I, Dual-Task II and Dual-Task
III. Each dual-task was composed of street-crossing task and
congruent or incongruent Stroop task. Dual-task performance
was recorded in real time, including the behavior of street-
crossing and Stroop task performance. Sixty-eight dimensional
features were extracted for training a regression model to estimate
standard neuropsychological test scores. Figure 1 describes the
architecture of this research, including the experimental software
and hardware configuration, the composition of virtual reality
system, experimental process, data collection content and the
process of training evaluation model.

3.2. Equipment

Virtual reality devices included HTC VIVE Pro HMD, emitters,
and VIVE Controllers. VIVE controllers were used to interact with
virtual scenes. Experiment was monitored by experimenters using
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FIGURE 1

System framework.

desktop computers (Intel i7 processors, 8 GB of memory, NVIDIA
GeForce GTX 1070 graphics cards). Computers and virtual reality
devices were connected via data lines.

3.3. System design

We built a street VE in Unity using the Suburb Neighborhood
House Pack resource package. Figure 2A shows the screen capture
of the virtual environment. It is a two lane highway with vehicles
in two directions. In the VE, the number of lanes and the speed
of vehicles are the main factors affecting the difficulty of crossing
the road (Wagner et al., 2019). According to the common speed
in the community, the speed of the vehicle is set to 30 km/h. To
control the difficulty of crossing the street, we specifically design
the vehicle gap so that 50% of the vehicle gap can allow participants
to cross safely. The zebra crossing is set in the middle of the street,
and participants need to cross the street on the zebra crossing.
An arrow on the other side of the street indicates the participant’s
destination. The total width of the lane is set to 6 m, extending 0.5 m
on both sides of the lane to identify the safe distance between the
participant’s starting point and end point and the lane. Figure 2B
shows the schematic structure of the virtual street. The participant’s
walking and stopping are controlled by the VR controller. The

walking speed is fixed at 1.5 m/s, which is the normal human
walking speed. During the experiment, the participant always
performs the task from the first person perspective. The design
overview is shown in Figure 2C.

The Stroop task was embedded into the virtual environment.
Traditional Stroop test includes three sub-tests, color-naming,
word-reading and color-word interference. Each sub-test
involves different cognitive control processes. To make a more
comprehensive assessment of the participants’ cognitive control
and processing speed, all the sub-tests were integrated into the VR
scene. In this paper, Stroop task was transformed into matching
task using visual and auditory stimuli, in which visual stimuli were
colored blocks or Chinese characters in the screen, and auditory
stimuli were color pronunciation in headphones. It has been
proved that this method is as effective as the traditional Stroop
(Parsons and Barnett, 2019). The specific settings of the three tasks
are as follows:

• Color-matching task: Small blocks of different colors would
appear in the middle of the HMD screen, and the
pronunciation of the colored blocks would be output in
the headset. The participants needed to judge whether the
pronunciation matched the color of the block within the
specified time (Figure 3A).
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FIGURE 2

Virtual scene overview. (A) Three examples of virtual environment. Left: VE of Dual-Task I with a color-matching task. Middle: VE of Dual-Task II with
a word-matching task. Right: VE of Dual-Task III with an interference-matching task. (B) Schematic structure of the street scene. is the zebra
crossing; is the start point; is the destination for crossing the street; indicates the width of the street; shows the area where participants are allowed
to move. The red arrow in the figure is the orientation of the x-axis, while the blue arrow is the orientation of the y-axis. (C) System design.

FIGURE 3

Stroop task settings. (A) Color-matching task settings. (B) Word-matching task settings. (C) Interference-matching task settings.

• Word-matching task: Chinese characters printed in white ink
would appear in the middle of the HMD screen, and the
pronunciation of the color of Chinese characters would be
output in the headset. Participants needed to judge whether
the pronunciation matched the color represented by Chinese
characters within the specified time (Figure 3B).
• Interference-matching task: Chinese characters printed in

color ink would appear in the middle of the HMD screen,
and the pronunciation of the color of the Chinese characters
would be output in the headset. Participants needed to judge
whether the pronunciation matched the color of Chinese
characters within the specified time (Figure 3C).

There were 72 stimuli in the color-matching task, word-
matching task and interference-matching task, the presentation
time of each visual stimulus was 2 seconds. Participants were
required to complete their judgment within 2 seconds, and the

next stimulus was updated if the judgment was still not completed
at the end of the allotted time. The total time for each task was
144 s. When the judgment was correct, the headset would output
a positive prompt tone, while when the judgment was wrong or
the judgment was not completed after timeout, it would be a
negative prompt tone.

3.4. Task settings

The system was divided into three dual-tasks: Dual-Task I,
participants were required to complete both street-crossing task
and color-matching task; Dual-Task II, participants were required
to complete both street-crossing task and word-matching task; and
Dual-Task III, participants were required to complete both street-
crossing task and interference-matching task. The three dual-tasks
were executed in turn, and the time of each dual-task was 144s. The
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FIGURE 4

The experimental diagram of the participants and the operation method of the handle.

crossing task required the participants to walk from the starting
point through the zebra crossing to the position indicated by the
arrow. In the process of crossing the street, the participants needed
to turn left and right frequently, pay attention to the driving
conditions of vehicles on the street, and choose an appropriate
time to cross the street safely. While avoiding the vehicle, the
participants also needed to judge the consistency of visual and
auditory stimuli in the Stroop task. A safe crossing is when there
are more than 1.5 s between leaving the respective roadway and
the arrival of the car at this point (Simpson et al., 2003). Whether
it was safe crossing or unsafe crossing, the participants would
receive corresponding text prompts, and then the avatar would
return to the starting point and perform the street crossing task
again until the end of each task. We did not limit the time it
took for participants to cross the street at a time, but in each
dual-task, participants were asked to cross the street as much as
they could safely. The total duration of the procedure was around
10∼15 min.

A diagram of the participants and the operation method of
the VR controller is shown in Figure 4. The participant’s walking
and stopping were controlled by the VR controller. When the
trigger on the handle was pressed, the participant’s virtual avatar
moves forward, and when the trigger was released, the avatar stops
moving. The avatar walks at a fixed speed of 1.5 m/s in the virtual
scene, and the direction is controlled by the HMD, consistent with
the direction of the participant’s head. When participants roamed
on the virtual street, the visually stimulating content appeared in
the center of their field of vision and did not disappear when they
turned their heads. The size of Chinese characters and blocks was
carefully designed; neither blocked the participants’ field of vision
nor was it too small to see clearly. When the participants judged that
the visual stimuli matched the auditory stimuli, they were required
to touch the left side of the pad of the handle. In case of mismatch,
they touched the right side of the pad of the handle. Visual stimuli
and auditory stimuli appeared synchronously.

4. Data collection

4.1. Neuropsychological test

Basic Cognitive Capacity Test is a test for people aged
10-90 (Acta Psychologica Sinica, 2001). In this study, we

used its second edition. It can evaluate cognitive abilities
in five categories: processing speed, working memory,
visuospatial ability, episodic memory and speech ability,
with a score range of 0-19. This cognitive test has good
reliability, validity and internal consistency and has been
verified to accurately evaluate the cognitive ability of different
populations.

4.2. Subject

The experiment procedures were approved by Guangzhou First
People’s Hospital (202002030262). We recruited 50 healthy subjects
(M = 23.12, SD = 1.67) aged 20-28 years from college students in
Guangzhou to participate in the experiment, including 32 males
and 18 females. Their average length of education is 14 years.
All subjects received a detailed description of the experiment and
signed informed consent before the experiment. The main graph in
Figure 5 shows the distribution of subject scores with age, and the
subgraph shows the distribution of subject scores.

4.3. Procedure

The experimental procedure is shown in Figure 1. The
experiment is mainly divided into two stages: practice and data
collection. At the beginning, the researchers introduced the VE, the
experimental content, the experimental process and the operation
method of the equipment to the participants. Then was the
practice stage, the researchers helped the participants wear the
head mounted display and enter the practice task to make the
participants fully familiar with the whole process and human-
computer interaction methods. First, the participants had 2 min
to walk freely in the virtual scene to become familiar with the
scene. Then, the participants were asked to practice Dual-Task
I, Dual-Task II and Dual-Task III. The number of stimuli for
each dual-task during the practice phase was set to 30. The
practice stage was followed by a 2-min rest period, the researchers
played a black background picture in the HMD, during which the
participants needed to relax and remain calm. Next, participants
were asked to complete the data collection stage experiment,
including Dual-Task I, Dual-Task II and Dual-Task III, and
the number of stimuli per dual-task was 72. The Stroop task
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FIGURE 5

Distribution of basic cognitive capacity test scores on the y-axis
with respect to age on the x-axis. The horizontal line represents the
mean score, and the vertical line represents the mean age. The
subgraph on the right shows the distribution of subjects in different
fractional segments.

performance data and behavior data were recorded during the
experiment. On average, the whole procedure took approximately
30 min.

5. Data analysis

5.1. Feature extraction

We introduced a series of features extracted from participants’
Stroop task performance and behavior performance in the virtual
reality task state and established a supervised machine learning
model based on these data.

For Stroop task performance, the correct number of answers
(CNST) and response time (RTST) were recorded.

For the behavior data, first, the number of safe crossings (NSC),
number of unsafe crossings (NUC) and number of attempts (NA)
were measured, where NA was the sum of NUC and NSC. Then, we
recorded some time indicators, including time spent crossing the
street (TSC) and time to collision (TTC). TSC represents the total
time taken by the participants to cross the street, starting from when
the virtual avatar stood at the starting point until he reached the
destination marked by the arrow. Additionally, the maximum and
minimum values of TSC in each dual-task were considered. TTC
was the safe time interval for crossing the street. When the virtual
avatar passed through point A on the road, the recording time was
T1. When the vehicle reached point A after the avatar passed, the
recording time was T2, and TTC was defined as:

TTC = T2 − T1 (1)

Meanwhile, we measured the trajectory and velocity of participants
while crossing the street in the virtual environment. The trajectory
was the sample values of a sequence of coordinates of the
participant’s path, which was defined as

(
xi, yi

)
, i = 1, 2 · · ·N,

the representation of x-axis and y-axis in VE is shown in Figure 2.
To measure the ability of participants to maintain direction when
crossing the street, the standard deviation (SDX) and entropy

(ETPX) of the trajectory in the x-axis direction were extracted.
SDX was the standard deviation of the trajectory and was used to
measure the dispersion degree of the participant’s x-axis trajectory.
SDX was computed by equation (2). ETPX was the entropy of the
trajectory in the x-axis direction, which was defined by Equation
(3),

SDX =

√√√√ 1
N − 1

N∑
i=1

(xi − x̄)2 (2)

ETPX = −
N∑

i=1

P(xi) log2(P(xi)) (3)

Velocity was recorded in the x and y directions, and the mean
velocity (MV) and standard deviation of velocity (SDV) were
extracted. MV and SDV were computed by Equations (4) and (5),
respectively;

MV =
1
N

N∑
i=1

vi (4)

SDV =

√√√√ 1
N − 1

N∑
i=1

(vi −MV)2 (5)

smoother movements incur a lower SDV (Kotsavasiloglou et al.,
2017). Furthermore, the number of head turns (HT) and the
F-norm of the attention matrix (FN) before crossing the street were
measured by the Euler angle of HMD. The attention matrix was
recorded once in each frame, and its size was 180 × 360. FN was
used to measure the degree of distraction of participants’ attention,
and it was computed as:

FN =

√√√√ 180∑
i=1

360∑
j=1

∣∣aij
∣∣2 (6)

where aij was the element in the attention matrix, and a larger FN
represented more distracted attention. HT refers to the number
of head turns before crossing the street. The rotation angle of the
participant’s head was defined as θ, which was the included angle
between the participant’s orientation and the negative direction of
the y-axis. When the head of the participant rotated more than 30◦

to either side (θ < 30◦), it was recorded as a head rotation.
A total of 68 dimensional features were extracted. For each

type of feature, its values in three dual-tasks were counted, and the
average of the three values was counted as the overall performance
of the participants. A detailed description of all feature sets is
shown in Table 1. To select a specific feature subset highly related
to the processing speed level, the RFE algorithm (Guyon et al.,
2002) was applied to feature selection. The RFE algorithm starts
from all features and assigns a weight to each feature, and the
feature with the minimum weight is excluded from the feature set.
This loop recurses until the number of remaining features reaches
the required number of features. Finally, the top 10 features were
selected as the optimal feature subset.

5.2. Statistical analysis

The statistical analysis method used the Pearson correlation
coefficient to find the relationship between the dual-task features
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TABLE 1 Definition and description of features.

Feature category Name Description

Stroop performance CNST Correct number of answers

RTST Response time

Behavior data NUC Number of unsafe crossings

NSC Number of safe crossing

NA Number of attempts to cross the
street

TSC Time spent crossing the street

TSC_MAX Maximum time spent crossing the
street

TSC_MIN Minimum time spent crossing the
street

TTC Time to collision

SDX Standard deviation of the
trajectory in x-axis

ETPX Entropy of the trajectory in x-axis

MVX,Y Average velocity in x-axis and
y-axis

SDVX,Y Standard deviation of velocity in
x-axis and y-axis

FN F-norm of attention matrix

HT Head turns

and the cognitive test results to initially explore the validity of the
extracted features. A p-value less than 0.05 was determined to be a
statistically significant difference.

5.3. Machine learning model

The LASSO, SVR and XGBoost (eXtreme Gradient Boosting)
algorithms were used to establish regression models to estimate
the cognitive processing speed scores. These three regression
models come from different learner categories. Lasso regression
(Tibshirani, 2011) is a linear regression model that uses L1
regularization to limit feature weights. Support vector regression
(SVR) (Vapnik, 1998) is a regression method based on support
vector machine (SVM). XGBoost (Chen and Guestrin, 2016) is
an integrated machine learning algorithm based on decision tree.
Comparing the results of different models in the study can evaluate
the performance of the model more comprehensively, and finally
select the best model to achieve the best prediction effect.

Firstly, the Stroop task performance and behavior data were
taken as the input of the model, and the performance of
the estimated processing speed score of the regression model
was analyzed. Secondly, the performance of different types of
features in estimating cognitive scores was analyzed. Finally,
we compared the results of using each dual-task separately.
The optimal value of the regular term coefficient alpha of
LASSO and parameter C of SVR were selected through cross
validation within the training set. The regression performance
of each model was calculated using LOSO-CV. That is, a
total of 50 iterations of cross validation were performed, in
which the data obtained from 49 participants were used to

train an estimation model and the data belonging to the left-
out participant were used to evaluate the trained model. The
average value of 50 iteration results was used to evaluate the
performance of the model.

The evaluation indices of model performance were mean
absolute error (MAE), relative accuracy (ACC) and correlation
coefficient (CC). The calculation formula of MAE is as follows:

MAE =
1
n

n∑
i=1

∣∣̂yi − yi
∣∣ (7)

where n is the number of participants, y is the true value and ŷ is
the predicted value. The smaller the value of MAE, the better the
prediction performance of the model.

ACC reflects the relative error between the true value and the
predicted value, with a range of 0-1. The closer it is to 1, the better
the performance of the model. The formula is as follows:

ACC = 1−
1
n

n∑
i=0

∣∣(yi − ŷi)
∣∣

yi
(8)

CC reflects the linear relationship between the true value and the
predicted value, which ranges from 0 to 1. The formula is as follows:

CC =
cov(y, ŷ)

σyσŷ
(9)

where σy and σŷ represent the standard deviation of y and ŷ, and
cov(y, ŷ) represents the covariance of y and ŷ. The greater the CC,
the greater the correlation between the predicted value and the true
value, and the better the prediction performance of the model.

6. Results

6.1. Statistical analysis

To understand the behavior and cognitive performance in dual-
tasks, various Stroop task performance features and behavioral
features were extracted. Pearson’s correlation coefficient was used
to find the relation between features and cognitive test results,
as shown in Table 2. It is revealed that there were 28 features
that had a certain degree of correlation with the target variables
(|r| > 0.3, p < 0.05). Among them, all Stroop tasks showed a
significant correlation, indicating that VR Stroop in dual-tasks was
effective for evaluating processing speed. In the task of street-
crossing, NSC in Dual-Task I and Dual-Task II showed strong
correlation with the cognitive test results, while HT, TSC and
TSC_MIN showed medium correlation. The results indicated that
these features may provide some useful information in the further
evaluation.

6.2. Regression model on cognitive
processing speed

The estimation performance of three different machine
learning regression models (LASSO, SVR, and XGBoost) was
compared. Figure 6 shows the scatter plot and Bland–Altman plot
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TABLE 2 Correlation analysis of features and cognitive test results.

Feature Correlation p-value

RTST in Dual-Task I −0.774 **

RTST in Dual-Task II −0.705 **

RTST in Dual-Task III −0.728 **

Average RTST in three dual-tasks −0.777 **

CNST in Dual-Task I 0.709 **

CNST in Dual-Task II 0.669 **

CNST in Dual-Task III 0.683 **

Average CNST in three dual-tasks 0.718 **

NSC in Dual-Task I 0.524 **

NSC in Dual-Task II 0.528 **

NSC in Dual-Task III 0.343 *

Average NSC in three dual-tasks 0.573 **

NUC in Dual-Task I −0.337 *

NUC in Dual-Task II −0.102 0.481

NUC in Dual-Task III −0.019 0.896

Average NUC in three dual-tasks −0.215 0.135

NA in Dual-Task I 0.165 0.254

NA in Dual-Task II 0.387 **

NA in Dual-Task III 0.287 *

Average NA in three dual-tasks 0.315 *

TTC in Dual-Task I 0.102 0.483

TTC in Dual-Task II −0.039 0.788

TTC in Dual-Task III −0.019 0.898

Average TTC in three dual-tasks 0.040 0.784

TSC in Dual-Task I −0.317 *

TSC in Dual-Task II −0.355 *

TSC in Dual-Task III 0.009 0.954

Average TSC in three dual-tasks −0.310 *

TSC_MAX in Dual-Task I −0.190 0.187

TSC_MAX in Dual-Task II −0.240 0.093

TSC_MAX in Dual-Task III −0.025 0.863

Average TSC_MAX in three
dual-tasks

−0.271 0.057

TSC_MIN in Dual-Task I −0.365 **

TSC_MIN in Dual-Task II −0.365 **

TSC_MIN in Dual-Task III 0.063 0.663

Average TSC_MIN in three
dual-tasks

−0.022 0.881

HT in Dual-Task I 0.341 *

HT in Dual-Task II 0.455 **

HT in Dual-Task III 0.458 **

Average HT in three dual-tasks 0.438 **

FN in Dual-Task I −0.067 0.644

FN in Dual-Task II −0.248 0.083

FN in Dual-Task III −0.198 0.168

(Continued)

TABLE 2 (Continued)

Feature Correlation p-value

Average FN in three dual-tasks −0.208 0.148

SDX in Dual-Task I 0.159 0.269

SDX in Dual-Task II 0.091 0.529

SDX in Dual-Task III 0.122 0.398

Average SDX in three dual-tasks 0.131 0.364

ETPX in Dual-Task I 0.155 0.282

ETPX in Dual-Task II −0.145 0.314

ETPX in Dual-Task III −0.163 0.257

Average ETPX in three dual-tasks −0.072 0.622

MVX in Dual-Task I 0.174 0.227

MVX in Dual-Task II 0.264 0.064

MVX in Dual-Task III 0.251 0.079

Average MVX in three dual-tasks 0.247 0.083

MVY in Dual-Task I 0.321 *

MVY in Dual-Task II 0.461 **

MVY in Dual-Task III 0.314 *

Average MVY in three dual-tasks 0.402 **

SDVX in Dual-Task I 0.114 0.431

SDVX in Dual-Task II 0.165 0.252

SDVX in Dual-Task III 0.025 0.866

Average SDVX in three dual-tasks 0.112 0.438

SDVY in Dual-Task I 0.036 0.804

SDVY in Dual-Task II 0.085 0.557

SDVY in Dual-Task III −0.044 0.763

Average SDVY in three dual-tasks 0.026 0.856

*p 0.05; **p 0.01.

between the estimated scores and true scores. LASSO regression
obtained the best results (MAE = 0.800, ACC = 0.916, CC = 0.804).
In the Bland – Altman diagram, all prediction points of LASSO
and SVR fell within the 95% confidence interval, indicating that
the difference between the prediction results and the actual results
was small, and there was no significant systematic deviation. The
preliminary prediction results were relatively reliable. However,
owing to the small sample size, it was still necessary to expand
the sample size for further evaluation in the future. The presented
results demonstrated that the participants’ performance in VR-
Street could accurately estimate the score of the clinical scale.

In each iteration of LOSO-CV, the RFE feature selection
algorithm was applied to select feature subsets containing 10
features in the training set, and a total of 50 feature subsets were
selected. All selected features were counted and sorted according
to the number of times they were selected. Table 3 lists the 10
features selected more than 25 times in the LASSO regressor. The
absolute value of correlation coefficient between most features in
the table and cognitive test results was greater than 0.3, including
RTST in Dual-Task I, TTC in Dual-Task II, TSC_ MIN in Dual-Task
III, HT in Dual-Task II, etc. Among the Stroop task performance
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TABLE 3 The 10 most important features for evaluating processing
speed.

Features Count (Prec.)

RTST in Dual-Task I 50 (100%)

TTC in Dual-Task II 50 (100%)

TSC_MIN in Dual-Task III 50 (100%)

HT in Dual-Task II 50 (100%)

NSC in Dual-Task II 49 (98%)

SDVX in Dual-Task III 49 (98%)

Average value of TSC_MIN in three dual-tasks 48 (96%)

CNST in Dual-Task III 46 (92%)

RTST in Dual-Task III 43 (86%)

Average value of SDX in three dual-tasks 40 (80%)

features, RTST in Dual-Task I and Dual-Task III and CNST in Dual-
Task III were selected. All other features are behavioral features.
These findings prove that the combined features of dual-tasks
have an important contribution to the prediction results, and it is
reasonable to use the feature subset to estimate the processing speed
score.

6.3. Regression model on different types
of features

To investigate the impact of different data on the evaluation,
models were established using Stroop task performance data,
behavior data and combined data, and the results were analyzed.
A feature selection algorithm was not applied to ensure fairer
comparison results between different feature subsets. Since LOSO-
CV was applied, we discussed the average MAE and ACC of all
individuals.

Figure 7 shows the performance (MAE and ACC) for different
combinations of the feature set. The three regressors showed
similar trends, and on average, the combined feature set of dual-
task achieved the best results. Through paired t-test analysis, it
was found that in the LASSO model, the estimated results of the
combined features were significantly better than the results of
the Stroop task performance (t-stats = −2.064, with p = 0.044)
and the results of the behavior data (t-stats = −3.031, with
p = 0.004). In addition, the results of combined features in SVR
were also significantly better than those of behavioral features (t-
stats = −4.462, with p = 4.742e-05). The accuracy achieved by the
combination of features indicated that dual-tasks can more fully
reflect the individual’s processing speed level.

6.4. Regression model on one of the
three dual-tasks

We trained a model separately for each dual-task and compare
the estimation results obtained by the three models. The aim was
to investigate whether the three tasks in the Stroop test have any
difference in the evaluation results in VR-Street. The MAE of the

results of each mode was calculated to measure the performance of
the regression models.

Comparisons of MAE are shown in Figure 8. The results
showed that there is no significant difference between the
prediction results of the three dual-tasks, and on average, the
combined model prediction results of multiple dual-tasks have
better prediction performance, but when LASSO or SVR models are
used, the prediction results of a single dual-task are also acceptable.

7. Discussion and conclusion

In this study, we introduced a method based on virtual reality
and machine learning to estimate cognitive processing speed scores.
To this end, we developed VR-Street, simulated the virtual street-
crossing task and embedded the Stroop test as a distraction task.
The VR-Street was applied to 50 healthy adult participants, from
which Stroop task performance and behavior performance were
collected. In order to estimate the cognitive processing speed score,
we developed a machine learning method, extracted 68 dimensional
features. Firstly, we used Pearson correlation to find the relation
between features and cognitive tests. All the Stroop task features
and some behavioral features had a certain degree of correlation
with cognitive test scores. Participants with better processing speed
showed more frequent head turns, however, in the separate street-
crossing task, the participants’ performance was opposite (Stratton
et al., 2017). This result may be due to the fact that in the dual-
task condition, people with poor cognitive processing speed have
more difficulty processing two tasks at once, so they may pay
more attention to their attentional resources. This will cause them
to reduce the frequency of head turns to conserve attentional
resources, thereby performing better in the Stroop task. Then, we
used LOSO-CV to verify the accuracy of the evaluation. The results
showed that our method can accurately estimate the processing
speed score of clinical validation (MAE = 0.800, ACC = 0.916,
CC = 0.804). Most previous studies only analyzed part of the
behavior data in VR-Street, such as the number of head turns and
the time spent crossing the street (Neider et al., 2011; Banducci
et al., 2016; Stratton et al., 2017). On this basis, this study added
the data features of trajectory and speed, and considered the
performance of distracted tasks. Through ranking the contribution
of feature subsets filtered by RFE feature selection algorithm,
it was found that the performance of Stroop tasks showed an
important contribution, especially the response time, which was
an important manifestation of processing speed (Lu et al., 2017).
The standard deviation of the trajectory and velocity on the
x-axis also has a high ranking, which indicates that the trajectory
and speed features in VR tasks may have potential in cognitive
evaluation (Tsai et al., 2021). Additionally, The three machine
learning models all showed a similar trend that the estimation result
of the combination of behavior performance and distraction task
performance was more accurate than that of single type of data.
And the results of LASSO model showed significant differences.
Due to the interaction between the street-crossing task and the
Stroop task, which increases the cognitive load of participants when
they complete the two tasks at the same time. Under high load
conditions, participants need to better manage processing speed
and attention, so as to effectively process information and make
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FIGURE 6

Fitting result and Bland–Altman plot of the three regression models. (A) LASSO, (B) SVR, (C) XGBoost.

decisions in a short time (Lavie, 2005). Therefore, the design of
dual-tasks in this study better mobilized participants’ attention and
cognitive resources, promoted their conversion and coordination
between different tasks, and thus more comprehensively reflected
participants’ cognitive processing speed. This provided a reference
for more future studies to apply multi task data to cognitive

assessment. Finally, the evaluation results of the three dual-
tasks were compared. The results showed that, on average, the
estimation results of the combination of dual-tasks were better
than their respective results. When LASSO or SVR model is
used, the estimation result of a single dual-task is acceptable.
Although the Stroop tasks in the three dual-tasks involved different
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FIGURE 7

Performance of regression models using different feature combinations. (A) Mean MAE and the standard error of the mean (SEM) in parentheses.
(B) Mean ACC and SEM in parentheses. ∗p 0.05. ∗∗p 0.01.

cognitive processes, there was no significant difference between
the prediction results, indicating that the three Stroop sub-tests
contributed similarly to the prediction of processing speed. A more
comprehensive assessment of an individual’s cognitive abilities can
be achieved through a combination of different dual-tasks. We will
further study the application of these three dual-tasks in VR-Street

in future work, and explore the feasibility of using a single dual-task
for evaluation.

VR-Street was a preliminary attempt. Compared with other
studies, we embedded Stroop test in VR-Street as a distraction task
and tried to establish a machine learning model for quantifying the
evaluation results. We imagined that users can use VR-Street for
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FIGURE 8

Performance of regression models using three dual-tasks separately. (A) Mean MAE and the standard error of the mean (SEM) in parentheses.
(B) Mean ACC and SEM in parentheses.

self-management, and quantitative cognitive scoring provides them
with the opportunity to self monitor the track of processing speed
level changes. The score can also be reported to the clinician, so as
to develop a more targeted care plan. When VR-Street is applied to
populations with different pathologies, the display size and volume
of the Stroop stimulus can be adjusted. Specifically, for patients
with visual-spatial impairments, environmental sounds such as the
engine noise of vehicles can be increased to aid their identification
of approaching vehicles. In general, our work has great application
potential; It can not only provide reference for the quantification
of behavior in virtual environment, but also provide reference and
help for the clinical application of cognitive function evaluation
methods based on virtual reality.

8. Limitations and future work

Specifically, our research has limitations and necessitates
further work in the future. First, the number of participants in this
experiment was limited, and they were healthy college students,
which may hinder the universality of its application to the general
population. Expanding the data set to deal with the diagnosis of
a wider age group and patients with cognitive impairment is one
of our future work. At the same time, machine learning models
with stronger generalization ability will be developed. When the
system is applied to individuals with different ages or pathological
conditions, the difficulty of the task can be adjusted by changing
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the total number of stimuli in the Stroop task, the display time
of Stroop stimuli, the distance between vehicles, and the speed of
vehicles to adapt to the user’s cognitive level. Machine learning
models with stronger generalization ability can ensure accurate
evaluation under different system settings. Second, as this is a
preliminary study, we use the operation of the handle to control
the movement of the avatar in the virtual scene, which may limit
the immersion of the system. In the future research, we plan to use
omnidirectional platform instead of handle to provide the means to
walk in the virtual scene, and further explore the evaluation method
of processing speed under cognitive-motor dual-task. Third, the
measurement of physiological data, such as EEG or eye movement
tracking, can be added to our work to explore the application of
physiological data in cognitive assessment in virtual environments.
Finally, the assessment of more cognitive functions should be
explored. Our work only focuses on cognitive processing speed
at present, which limits the wider screening of cognitive function.
Therefore, our future work will explore the feasibility of using VR-
Street to evaluate different cognitive functions, and apply it to the
study of cognitive decline associated with depression. We will also
further explore the application of this system in cognitive training.
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