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Trigeminal neuralgia (TN) is a severe and disabling facial pain condition and is

characterized by intermittent, severe, electric shock-like pain in one (or more)

trigeminal subdivisions. This pain can be triggered by an innocuous stimulus or

can be spontaneous. Presently available therapies for TN include both surgical

and pharmacological management; however, the lack of a known etiology for TN

contributes to the unpredictable response to treatment and the variability in long-

term clinical outcomes. Given this, a range of peripheral and central mechanisms

underlying TN pain remain to be understood. We acquired functional magnetic

resonance imaging (fMRI) data from TN patients who (1) rested comfortably

in the scanner during a resting state session and (2) rated their pain levels in

real time using a calibrated tracking ball-controlled scale in a pain tracking

session. Following data acquisition, the data was analyzed using the conventional

correlation analysis and two artificial intelligence (AI)-inspired deep learning

methods: convolutional neural network (CNN) and graph convolutional neural

network (GCNN). Each of the three methods yielded a set of brain regions

related to the generation and perception of pain in TN. There were 6 regions

that were identified by all three methods, including the superior temporal cortex,

the insula, the fusiform, the precentral gyrus, the superior frontal gyrus, and the

supramarginal gyrus. Additionally, 17 regions, including dorsal anterior cingulate

cortex (dACC) and the thalamus, were identified by at least two of the three

methods. Collectively, these 23 regions are taken to represent signature centers

of TN pain and provide target areas for future studies seeking to understand the

central mechanisms of TN.
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1. Introduction

The 3rd edition of the International Classification of
Headache Disorders (ICHD-3) classifies trigeminal neuralgia
(TN) into idiopathic, classical, or secondary trigeminal neuralgia
diagnoses (Arnold, 2018). Idiopathic TN, by definition, has
no known etiology, while classical TN is a diagnosis given
when there is verification (e.g., visualization during surgery
and/or via neuroimaging) of blood vessel contact against the
root of the trigeminal nerve on the ipsilateral side of the
pain complaint. Secondary TN is caused by an identifiable
pathological condition, including multiple sclerosis or tumor
impingement on the trigeminal root trunk, most commonly
at the cerebellopontine angle. For classical and idiopathic TN,
recent diagnostic subdivisions also include either (1) a purely
paroxysmal quality or (2) having intermittent paroxysmal bouts
with a more continuous background of burning and/or aching
pain (Arnold, 2018; Bendtsen et al., 2020). After diagnosis, first
line treatments of TN involve anti-convulsant medications such as
carbamazepine and oxcarbazepine, which often have intolerable
side effects and become progressively less effective with time
(Prasad and Galetta, 2009). Following failure of medication trials,
patients usually escalate treatment to invasive surgical procedures.
The most common surgical procedure is called microvascular
decompression (MVD), which involves moving an impinging
blood vessel (e.g., superior cerebellar artery) off the trigeminal
nerve and placing a Teflon pad to maintain this neurovascular
separation. While surgical procedures provide lasting relief for
some patients, for others, the relief can be short-lived, and pain
returns after a few months to a few years. According to available
data, approximately 4% of patients per year experience recurrence
of TN pain after MVD (Cheng et al., 2019), and over a period
of 10–20 years, the recurrence rate may exceed 10% (Barker
et al., 1996). Moreover, while classical TN is proposed to have a
neurovascular insult as the etiology, many cases of TN do not show
this impingement; conversely, many patients have impingement,
but no pain. The lack of an etiology and the unpredictable
response to treatment suggest that our understanding of TN
remains inadequate and a range of peripheral and especially central
mechanisms underlying TN pain remain to be better understood
(Gambeta et al., 2020).

Abbreviations: AI, artificial intelligence; ALFF, amplitude of low-frequency
fluctuation; ASA, American Society of Anesthesiologists; ASD, autism
spectrum disorder; AUC, area under the curve; BDI-2, beck depression
inventory-II; BOLD, blood-oxygen-level-dependent; CBP, chronic back
pain; CNN, convolutional neural networks; dACC, dorsal anterior cingulate
cortex; DNN, deep neural network; EPI, echo-planar imaging; FC, functional
connectivity; FDR, false discovery rate; fMRI, functional magnetic resonance
imaging; FOV, field of view; FPRF, Facial Pain Research Foundation; GCNN,
graph convolutional neural network; GIN, graph isomorphism network;
GLM, general linear model; HC, healthy control; HRF, hemodynamic
response function; IBS, irritable bowel syndrome; ICHD-3, the 3rd
edition of the International Classification of Headache Disorders; IHS,
International Headache Society; IRB, Institutional Review Board; LGI, local
gyrification index; LR, logistic regression; MCC, midcingulate cortex; MVD,
microvascular decompression; OHSU, Oregon Health Science University;
PASS, pain anxiety screening scale; PCC, posterior cingulate cortex; PCS,
pain catastrophizing scale; ReHo, regional homogeneity; ROC, receiver
operating characteristics; ROI, region of interest; rs-fMRI, resting-state fMRI;
SD, standard deviation; SGD, stochastic gradient descent; SPM, statistical

Functional magnetic resonance imaging (fMRI) remains
the main neuroimaging technique for investigating the central
mechanisms of pain. In particular, resting-state fMRI (rs-fMRI),
which measures blood-oxygen-level-dependent (BOLD) signals
while the patient is not engaged in any systematic thought or
activity, has been applied extensively in TN (Dou et al., 2016;
Yuan et al., 2018). Yuan et al. (2018) found that, compared to age-
and sex-matched healthy control subjects, TN patients exhibited
significantly increased regional homogeneity (ReHo) and signal
amplitude in several brain regions, including the posterior lobe of
the cerebellum, anterior cingulate cortex, middle temporal gyrus,
temporal lobe, putamen, occipital lobe, limbic lobe, precuneus,
and the medial and superior frontal gyrus, and decreased ReHo
in insula. They suggested that these abnormal activities played a
role in the development and maintenance of chronic TN pain.
Wang et al. (2015) found increased ReHo in the inferior temporal
gyrus, thalamus, inferior parietal lobule, precentral and postcentral
gyri and decreased ReHo in the amygdala, parahippocampal,
and cerebellum in TN patients. Yan et al. (2019) detected that
TN patients had decreased ReHo in the left middle temporal
gyrus, superior parietal lobule, and precentral gyrus and increased
ReHo in the thalamus in the resting state studies. Moving
beyond regional analysis, at the network level, Zhu et al. (2020)
applied functional connectivity (FC) methods to show that TN
patients exhibited significantly higher degree centrality values in
the right lingual gyrus, right postcentral gyrus, left paracentral
lobule, and bilateral inferior cerebellum. They proposed that
these changes reflect the adaptation of the cerebral cortex to
frequent pain attacks over a long period of time. In addition
to resting-state fMRI, Moisset et al. (2011) evoked pain in TN
patients with stimulation of the cutaneous trigger zone and found
increased activity in postcentral and precentral cortex, contralateral
supplementary motor area, thalamus, anterior and posterior
insula, prefrontal cortex, putamen, ipsilateral midcingulate cortex,
hippocampus/parahippocampal area and cerebellum. Table 1
summarizes these neuroimaging studies, highlighting the brain
regions identified as having abnormal neural activities in TN
subjects. Note that, with the exception of the cerebellum, there is a
relative lack of consistency for identified brain structures across the
studies, suggesting additional studies are needed for understanding
and identifying brain structures that are functionally important in
the generation and maintenance of TN pain.

Chronic pain can cause changes in many structures in the brain
(Rodriguez-Raecke et al., 2013). While the neural activity in a brain
area may appear to be altered in rs-fMRI studies, it may not imply
that the area is directly involved in pain generation or perception.
Additionally, stimulus-evoked pain may differ fundamentally from
spontaneous or continuous pain experienced by the patient with
TN (Wan et al., 2018). A neuroimaging technique that directly
addresses the neural substrate of the naturally occurring pain is
percept-related fMRI (Apkarian et al., 2001). In this technique the
patients indicate their moment-to-moment pain levels while their
brain activities are being recorded (Wilcox et al., 2015). Correlating
brain activity and pain level fluctuations one obtains information
on brain structures that directly underlie pain generation and

parametric mapping; SVM, support vector machine; TE, time of echo; TN,
trigeminal neuralgia; TR, repetition time; VAS, visual analog scale.
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perception. Kwan et al. (2005) applied this percept-related fMRI
technology to patients with irritable bowel syndrome (IBS) and
revealed abnormal urge- and pain-related forebrain activity during
rectal distension. Baliki et al. (2006) applied the method to patients
with chronic back pain (CBP) and found that the insular region
was active when pain level increases. This knowledge is not only
important for understanding the neural mechanisms of the specific
pain condition it also has the potential to provide biomarkers
for evaluating disease progression and treatment effectiveness. To
date, however, no studies have applied the percept-related fMRI
approach to investigate TN pain.

Although the correlation analysis adopted in previous percept-
related fMRI studies of pain is intuitive and easy to apply
(Apkarian et al., 2001), it has limitations, including (1) it can
only detect linear relationships and (2) brain activations are
often reported without applying multiple comparison corrections,
raising robustness concerns. The emergence of AI-inspired deep
learning methods such as convolution neural networks (CNN) and
graph convolution neural networks (GCNN) offers an avenue to
overcome these limitations. These deep learning methods differ
from traditional machine learning techniques such as support
vector machine (SVM) and logistic regression (LR) in that the
hidden layers in these models are capable of encoding and utilizing
more complex features of the data to provide more accurate
predictions of experimental conditions and a deeper understanding
of the data (Van Der Miesen et al., 2019). Santana et al. (2019)

applied CNNs to resting-state fMRI data to distinguish chronic
pain patients from pain-free controls and demonstrated that CNNs
could achieve higher classification accuracy compared to other
machine learning models. Li et al. (2019) applied GCNN to task-
fMRI to patients suffering from Autism Spectrum Disorder (ASD)
and discovered regions and networks in the brain that can serve
as biomarkers to distinguish patents from controls. It is expected
that by combing AI-inspired methods with the more conventional
correlation analysis and by requiring additionally that the results be
consistent across methods one will have enhanced ability to obtain
new and robust insights into the neural basis of TN pain.

We recorded fMRI data while TN patients (1) rated their
spontaneous pain levels in the pain tracking session (percept-
related fMRI) and (2) rested in the resting state session (resting-
state fMRI). The data were first analyzed using the conventional
correlation method and then subjected to the analysis by CNN and
GCNN. A number of validation analyses were also carried out. The
goal was to identify a set of brain regions, called signature centers,
that are robustly activated during TN pain.

2. Materials and methods

The study was approved by the WCG Institutional Review
Board (IRB). Patients were recruited through the clinical care
population within the University of Florida Health System and

TABLE 1 Regions showing abnormal activities in TN per published literature.

Brain areas Yuan et al. (2018) Wang et al.
(2015)

Zhu et al. (2020) Yan et al. (2019) Moisset et al.
(2011)

Cerebellum X X X X

Cingulate cortex X X

Putamen X X

Middle temporal gyrus X X

Precuneus X

Medial frontal gyrus X

Superior frontal gyrus X

Thalamus X X X

Parietal lobule X X

Postcentral gyrus X X X

Amygdala X

Parahippocampal X X

Inferior temporal gyrus X X

Lingual gyrus X

Paracentral lobule X

Fusiform gyrus

Middle occipital gyrus

Precentral gyrus X X

Secondary somatosensory cortex X

Supplementary motor area X

Superior temporal gyrus X

Insula X
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from referrals provided by the Facial Pain Research Foundation
(FPRF). Screening was done either in person or via a phone
call. Eligible subjects were consented and completed a study
packet that included a Health History Questionnaire, Oregon
Health Science University (OHSU) Trigeminal Neuralgia –
Diagnostic Questionnaire, Beck Depression Inventory-II (BDI-2),
Pain Anxiety Screening Scale (PASS), and Pain Catastrophizing
Scale (PCS). The study coordinator read a prepared standard
script explaining the study procedures. A focused medical history,
a trigeminal cranial nerve exam, and a physical exam was
completed by a trained clinical fellow and the PI (JN). Vital
signs (blood pressure, temperature, and pulse) were also recorded
prior to scanning.

2.1. Pain ratings

Subjects indicated on a 100mm visual analog scale (VAS)
anchored on the left with “no pain sensation” and on the right with
“most intense pain sensation imaginable” their daily experienced
pain (past month). This rating is henceforth referred to as “usual
pain”. Subjects also used the VAS to rate their “current pain” just
prior to entering the MRI scanner. During the scanning procedure,
subjects completed continuous pain tracking (see Experimental
Paradigm below, Figure 1B) in the pain tracking session where they
could visualize a computer screen in the scanner via mirrors and
rate their pain levels in real time using a tracking ball. Besides being
used in neuroimaging analysis, these pain ratings were also applied
to compare different subgroups of patients (e.g., male vs female),
using t-test.

2.2. Participants

2.2.1. Inclusion criteria
• Male and female subjects.
• Age 18–75 years old. This represents the age range

of many chronic pain patients, including patients with
TN.
• American Society of Anesthesiologists (ASA) status 1, 2, or 3,

deemed in good general health.
• Only subjects with reported average usual pain of

moderate to severe (VAS of 30–100 mm) at the time of
screening were included.
• Subjects were diagnosed with trigeminal neuralgia, per

the International Headache Society (IHS) Disorders criteria
(Arnold, 2018), as having:

A. Recurrent paroxysms of unilateral facial pain in
the distribution(s) of one or more divisions of the
trigeminal nerve, with no radiation beyond, and fulfilling
criteria B and C.

B. Pain has all of the following characteristics:
1. lasting from a fraction of a second to two minutes
2. severe intensity
3. electric shock-like, shooting, stabbing or sharp in quality

C. Precipitated by innocuous stimuli within the affected
trigeminal distribution.

D. Not better accounted for by another ICHD-3 diagnosis.

• Subjects included having symptoms as purely paroxysmal
pain or having intermittent paroxysmal bouts with a more
continuous background of burning and/or aching pain.

Note that during the screening process, individuals reported
being diagnosed with TN by their physician would have this
diagnosis verified by the study staff. Additionally, subjects
completed the OHSU TN – Diagnostic Questionnaire as additional
verification of TN diagnosis.

2.2.2. Exclusion criteria
• Patients diagnosed with trigeminal neuralgia attributed to

space-occupying lesion (ICHD-3 code: 13.1.1.2.2) or other
cause (e.g., multiple sclerosis, ICHD-3 code: 13.1.1.2.3),
painful trigeminal neuropathy (ICHD-3 code: 13.1.2),
trigeminal post-herpetic neuralgia (ICHD-3 code: 13.1.2.2),
trigeminal neuropathic pain (ICHD-3 code: 13.1.2.4),
and idiopathic painful trigeminal neuropathy (ICHD-3
code: 13.1.2.5).
• ASA status 4–5 and Emergency operation.
• Presence of chronic disease (e.g., cardiovascular disease,

liver disease, kidney disease, diabetes, etc.), other than
trigeminal neuralgia.
• Pregnant females.
• No exclusions were made based on race, gender, or religion.

In total, 55 patients gave written informed consent and
participated in the study (69% female, mean age ± standard
deviation (SD) = 53.9 ± 14.9). Sixteen patients were rejected
due to a combination of the following reasons: (1) not meeting
diagnosis criteria (n = 1), (2) not completing the whole experiment
(n = 11), (3) technical difficulties during fMRI recording (n = 2),
and (4) excessive movements inside the scanner (n = 2). The
data from the remaining 39 patients were analyzed and reported
here. Of the 39 patients, diagnostic concordance between the PI
and the OHSU Trigeminal Diagnostic Questionnaire was 38/39
(97.5%). For the 1/39 patient, the OSHU TN diagnosis was nervus
intermedius neuralgia, which is characterized by an intermittent
stabbing deep pain in the ear with associated tinnitus. However,
during the examination, it was determined that this one subject
met the inclusion criteria for idiopathic TN, having intermittent
paroxysmal bouts with a more continuous background of burning
and/or aching pain. The vital signs taken just prior to scanning
were within normal limits for all subjects (data not shown)
and no adverse reactions or events were reported during any
of the procedures.

The clinical and neuropsychological data were analyzed to
compare subgroups of patients (e.g., male vs female) using t-test.

2.3. Experimental paradigm

Subjects underwent functional, structural, and diffusion
magnetic resonance imaging. As shown in Figure 1A, there are
two types of functional scans: resting state (resting-state fMRI) and
pain tracking (precept-related fMRI). During the resting state scan
(7 min), the patients were instructed to fixate on the cross at the
center of the monitor screen, stay still, and not think any systematic
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FIGURE 1

Study design. (A) The experiment was divided into four sessions: resting-state (functional), pain tracking (functional), T1 imaging (structural), and
diffusion MRI (structural). (B) Sample time course of spontaneous ratings of pain from a representative patient.

thought. During the pain tracking scan (10–20 min), fMRI data
were acquired while the patients rated their momentary pain levels
using a tracking ball. The tracking ball controlled the movement of
a cursor along a straight line with 0 and 100 indicated at the two
ends of the line on the monitor. An example of a pain tracking time
course from one patient is shown in Figure 1B.

For the first 10 subjects, the pain tracking session was divided
into two parts. For the first 10 min the subjects tracked their pain
level fluctuations as described above. The second 10 min was a
motion tracking session in which a marker moved on the monitor
between 0 and 100 according to the subject-indicated pain level
fluctuations from the previous 10 min of pain tracking. The subject
was asked to move the tracking ball to track the movement of
the marker. We had to discontinue the motion tracking session
after the first 10 subjects because it was becoming apparent that
10 min of actual pain tracking scanning was not enough to produce
sufficient data for the intended analyses. For the remaining patients
the pain tracking session lasted the entire 20 min. It is worth noting
that increasing the length of the overall experiment was not an
option because of the burden it would place on the patient.

2.4. Data acquisition and preprocessing

Functional MRI images were collected on a 3T Philips Achieva
scanner (Philips Medical Systems, the Netherlands) equipped with
a 32-channel head coil. The echo-planar imaging (EPI) sequence
parameters were as follows: repetition time (TR), 1.98 s; echo time
(TE), 30 ms; flip angle, 80; field of view (FOV), 224 mm; slice
number, 36; voxel size, 3.5 mm × 3.5 mm × 3.5 mm; matrix size,
64 × 64. In addition to the functional scans, a high-resolution
anatomical T1-weighted MRI image was also acquired for each
subject using the following parameters: FOV, 240 mm × 240 mm;
TR, 8.0566 ms; TE, 3.686 ms; resolution, 1 mm × 1 mm; flip
angle, 80◦.

Statistical parametric mapping (SPM) was used to preprocess
the functional MRI data (Friston, 2003). The preprocessing steps
include slice timing correction, realignment, co-register, spatial

normalization, and spatial smoothing. Data segments with large
head movements were removed from five subjects. For the fMRI
data that were subjected to further analysis, six head motion
variables (translations: x, y, z and three rotations: pitch, yaw, and
roll) were regressed out, and a bandpass filter [0.01, 0.1 Hz] was
applied to reduce low-frequency and high-frequency noise.

2.5. Correlation analysis

The correlation analysis has been applied in prior percept-
related fMRI studies of chronic pain. In this analysis, the time
course of pain ratings (see, for example, Figure 1B) was first
convolved with the hemodynamic response function (HRF), and
then correlated with the BOLD time course from every voxel in
the brain (Davis and Moayedi, 2013). We note that this analysis
is similar to the general linear model (GLM) analysis of fMRI
data. In a typical GLM analysis, the experimental design matrix
contains the onset times of various events in the experiment.
Convolving the design matrix with the HRF function we generate
the predicted BOLD response which is then compared to the
actual BOLD data through a correlation analysis carried out in
the framework of general linear model (Friston et al., 2006; Baliki
et al., 2009; Poldrack et al., 2011). For the percept-related fMRI
analysis, we convolved the pain rating function, which is akin
to the design matrix, with the HRF function and compared the
predicted pain-related BOLD responses with the actual BOLD data
using correlation. For each subject, the correlation values were
Fisher-transformed to achieve approximate normal distribution
and subjected to the population level analysis. A statistical
threshold was set at P < 0.05 uncorrected. To reduce the influence
of possible spurious correlations, only voxels that are part of
clusters of at least 10 voxels meeting this statistical threshold were
considered in the brain map. Both positively correlated voxels
and negatively correlated voxels were considered. Regions showing
strong correlations were considered as potential signature centers
of TN pain. The pipeline of the correlation analysis is illustrated in
Figure 2.
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FIGURE 2

Pipeline for correlation analysis. BOLD signal from each voxel was correlated with the hemodynamic response function (HRF)-convolved pain rating
time course to generate a correlation map for each subject. A group level analysis was then performed to generate the population level correlation
map.

2.6. CNN analysis

Increasingly, artificial intelligence (AI)-inspired techniques
such as deep neural networks (DNNs) are being applied to analyze
fMRI data, providing insights not possible with other techniques
(Kalantar et al., 2021). We implemented a convolutional neural
network (CNN) model, which is a type of DNN, to predict pain
ratings from fMRI data. Given that CNNs are more adapted to
predict discrete labels rather than continuous values, we divided
continuous pain ratings into two categories: low pain (pain
ratings <= 15) and high pain (pain ratings > 15). Here the
threshold of 15 was chosen so that the number of data points in
the high and low pain categories were approximately equal across
the entire patient population. Numerically, low pain was given a
value of zero whereas high pain a value of one. The CNN, as
shown Figure 3A, consisted of ResNeXt101 with four cardinalized
res-blocks with 32 independent paths within each block (Hara
et al., 2018). Following Hara et al.’s study (Hara et al., 2018), the
convolutional filters were modified and made three-dimensional
so that they could be applied to the three-dimensional fMRI data
using Conv3d. BatchNorm3d and Avgpool3d were used for the
batch normalization and average pooling layer. We also modified
the final global average pooling layer to fit our input and used two
units in the final output layer to predict low pain and high pain.
The detailed structure of the proposed ResNeXt101 model is given
in Supplementary Table 5.

The 39 patients were divided into eight groups of four to five
patients each. Seven groups were chosen as the training dataset and
the remaining group was chosen as the testing dataset. This process
was repeated eight times (eight-fold cross validation). The reported
decoding accuracy and the receiver operating characteristic (ROC)
curve were the averages from the eight repetitions. For model

training, the weighted cross-entropy was used as the loss function
and the stochastic gradient descent (SGD) as the optimizer, with a
momentum of 0.9 and a weight decay of 5.0e-4. The initial learning
rate was set as 1.0e-3. The number of training epochs was 50 with
a batch size of two. All the hyperparameters for the proposed CNN
are given in Supplementary Table 6. We trained all the models on
a server containing 8 GeForce GTX 1080 Ti GPUs, and the training
time for one CNN is around 1.5 days.

For statistical analysis of the CNN decoding results, a t-test was
used to determine whether the average decoding accuracies were
significantly higher than chance level (50%), with above chance
level decoding signifying that the CNN model can predict pain
levels using patterns of brain activity. Additionally, as part of the
validation analysis, we investigated whether the average predicted
pain level by the CNN model over the pain tracking session was
consistent with the average of the reported pain level by the patient
over the pain tracking session, using correlation analysis. The
expectation was that these two averages should be correlated if the
CNN adequately modeled the relationship between brain activity
and reported pain level. Furthermore, also as part of the validation
analysis, we conducted a correlation analysis to determine the
relationship between the model-predicted pain during resting state
and that during pain tracking, with the hypothesis being that if the
model correctly captured the brain-behavior relationship, these two
predicted pain levels should be significantly correlated.

Once the CNN model was shown to have the ability to predict
pain ratings from fMRI data, we proceeded to identify the essential
brain regions that contribute to the prediction performance. The
occlusion method was used for this purpose. See Figure 3B. For
each region of interest (ROI) in the Lausanne atlas (Daducci et al.,
2012), the BOLD values in all of its voxels were replaced by zero and
fed into the CNN model, and the decoding accuracy was recorded.
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FIGURE 3

Pipeline for convolutional neural network (CNN) analysis. (A) CNN model was trained to predict pain rating fluctuations from fMRI data. (B) An
occlusion approach was carried out to evaluate the contribution of different brain regions to CNN model prediction performance. Acc, accuracy.

The amount of decoding accuracy decrease compared to the full
data decoding accuracy was taken as a measure of the importance
of the ROI in model prediction. The more the prediction accuracy
decreases from occluding a brain region, the more that brain region
contributes to the prediction performance, and the more weight
it gets in the resulting heatmap. The reported heatmaps were the
average from the eight models described earlier.

2.7. GCNN analysis

It is increasingly recognized that pain processing involves
multiple brain areas and their interactions and is a network
phenomenon (Garland, 2012). The correlation analysis and
the CNN analysis described above do not take into account
functional relationships between different brain regions during
pain processing. To address this problem, we implemented a
GCNN approach to predict pain ratings from fMRI data. The
GCNN, shown in Figure 4A, consisted of two Graph Isomorphism
Network (GIN) layers (Xu et al., 2018), and one fully connected
layer containing two output units for predicting low pain vs high
pain. The Lausanne atlas was used to divide the brain into 129
ROIs (Daducci et al., 2012). BOLD signals within each ROI were
averaged and ROI-to-ROI dynamic interactions were assessed by
cross-correlation in moving windows of 30 s in duration. After
the cross-correlation matrices were computed, a binarization was
carried out by applying a threshold, where the values greater than
the threshold were set to one and smaller than the threshold
were set to zero. The binarized connectivity matrix along with the
average BOLD signals from each ROI were taken as input features
for the GCNN to predict the pain ratings in the middle of the
same 30 s moving window. The patients were again divided into
eight groups of four-five each (same eight-fold validation as CNN).
We applied the weighted cross-entropy as our loss function and
SGD as our optimizer with a momentum of 0.9 and a weight
decay of 5.0e-4 during the model’s training phase. The initial
learning rate was set as 1.0e-3. The number of training epochs

was 50 with a batch size of one. The reported decoding accuracy
and the ROC curve were averages of the eight-fold results (see
above). All the hyperparameters for the proposed GCNN are given
in Supplementary Table 6. The training time for one GCNN is
around one day with the same 8 GeForce GTX 1080 Ti GPUs
described above. We performed the same statistical analyses of the
GCNN results as those conducted for the CNN analysis (see Section
“2.6 CNN analysis”).

Once the models were shown to have the ability to predict
pain ratings from fMRI data, we proceeded to apply the occlusion
method to identify essential network nodes through which the
functional interactions among different brain areas play an essential
role in pain prediction. See Figure 4B. Each ROI along with
the connections through the ROI were replaced by zero and
the prediction performance decline was calculated. The degree of
decline is taken to indicate the importance of the ROI in mediating
pain related network processing. A heatmap was derived based
on this principle.

3. Results

We recorded fMRI data while n = 39 TN patients (1) tracked
their pain level fluctuations in the pain tracking session and (2)
rested without thinking any systematic thought in the resting
state session. Both conventional correlation analysis and AI-
inspired analyses (CNN and GCNN) were applied to reveal the
signature centers in the brain underlying the generation and
perception of TN pain.

3.1. Correlation analysis

The data from the pain tracking session was analyzed here.
The BOLD time course from each voxel was correlated with the
HRF-convolved pain rating time course. A voxel was considered
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FIGURE 4

Pipeline for graph convolutional neural network (GCNN) analysis. (A) GCNN model was trained to predict pain rating fluctuations from fMRI data.
(B) An occlusion approach was carried out to evaluate the contribution of different brain regions and their associated functional connections to
GCNN model prediction performance. Acc, accuracy.

FIGURE 5

Correlation analysis. (A–C) Correlation between voxel-level fMRI time series and HRF convolved pain ratings. The HRF-convolved pain ratings had a
strong correlation (R = 0.55) with the BOLD signal from one voxel in the precentral gyrus (A), a low correlation (R = −0.03) with the BOLD signal
from a voxel located in the superior frontal gyrus (B), and a strong negative correlation (R = −0.61) with the BOLD signal from one voxel located in
the superior frontal gyrus (C). (D,E) Regions showing strong positive (D) and negative (E) correlation with pain ratings.
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TABLE 2 Regions showing positive BOLD-pain correlations.

Region Coordinates contrast Volume (voxel) Volume (mm3) Peak T score

Superior frontal 3 44 31 203 5,481 3.74

−27 −7 61 60 1,620 2.34

15 65 7 14 378 2.1

6 −4 49 110 2,970 2.08

Lateral orbitofrontal 30 20 −11 97 2,619 3.14

−33 20 −11 18 486 2.22

Precentral 54 14 25 40 1,080 2.76

−33 −25 49 28 756 2.41

Thalamus 12 −10 16 41 1,107 2.64

3 −16 −5 10 270 2.46

Rostral middle frontal −21 47 31 26 702 2.59

Frontal pole −6 62 −11 35 945 2.41

Lateral occipital −45 −76 −2 22 594 2.34

Superior temporal −48 −1 −5 17 459 2.3

Fusiform 27 −49 −20 13 351 2.16

Lingual 6 −58 4 17 459 2.01

TABLE 3 Regions showing negative BOLD-pain correlations.

Region Coordinates contrast Volume (voxel) Volume (mm3) Peak T score

Parahippocampal 21 −22 −26 255 6,885 3.9

Entorhinal −21 −16 −29 455 12,285 3.67

Bankssts 63 −31 7 69 1,863 3.35

−48 −49 1 135 3,645 2.65

Lateral occipital 42 −70 −5 531 14,337 3.32

Lateral orbitofrontal 15 23 −20 46 1,242 2.95

Supramarginal −39 −40 34 1,032 27,864 2.91

Insula −24 17 16 453 12,231 2.74

Superior frontal 21 14 58 31 837 2.52

Inferior temporal 48 −52 −26 53 1,431 2.4

−54 −16 −35 14 378 2.15

45 −52 −8 12 324 2.04

Middle temporal −63 −22 −2 15 405 2.18

Paracentral −12 −16 46 15 405 2.18

Precentral 12 −16 70 18 486 2.16

−9 −25 70 20 540 2.14

9 −37 70 12 324 2.02

Precuneus −12 −64 43 34 918 2.14

Pars opercularis 39 5 28 12 324 2.1

Rostral anterior cingulate −9 35 −2 14 378 2.04

potentially part of the neural substrate underlying TN pain if this
correlation is strong regardless of the sign of correlation. For the
subject in Figure 1B, the HRF-convolved pain rating time course
had a strong positive correlation with the BOLD signal from a
voxel located in the precentral gyrus (Figure 5A, R = 0.55), a
low correlation with the BOLD signal from a voxel located in

the superior frontal gyrus (Figure 5B, R = -0.03), and a strong
negative correlation with the BOLD signal from another voxel
located in the superior frontal gyrus (Figure 5C, R = -0.61).
Across all patients, using uncorrected P < 0.05 and a minimum
cluster size of 10 voxels as the criteria, a set of brain regions
showing both strong positive and negative correlations with pain
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FIGURE 6

CNN analysis. (A) Accuracy of CNN prediction of pain levels is significantly above chance level of 50%. (B) Model prediction accuracy with learning.
Prediction accuracy stabilized after 15 training epochs. (C) ROC curves where the AUC value for the low pain class was 0.70 while the AUC value for
the high pain class was 0.70. (D) Brain regions contributing to CNN prediction performance, which included dACC, superior frontal, superior
temporal, and lingual gyrus (**P < 2 × 10−3).

were identified (Figures 5D, E), including the precentral gyrus,
the lingual gyrus, the thalamus, the superior frontal cortex, and
the superior temporal cortex. See Tables 2, 3. Some regions may
have more than one cluster of correlated voxels. In addition, given
that the ROIs are relatively large, positive correlation clusters and
negative correlation clusters may appear in the same ROI (e.g.,
superior frontal cortex). Combining Tables 2, 3, there are 21
distinct ROIs that showed strong correlations with spontaneous
pain fluctuations.

3.2. Deep learning-based analysis with
CNNs

A CNN was trained and applied to fMRI data to predict pain
levels. The batch size was two and 50 training epochs were used
with early stopping (see Figure 3). Dividing the patients into eight
groups of 4 or 5 each and training the model on seven groups and
testing on the remaining group, the prediction accuracy averaged
across all eight folds was 73% (Figure 6A), which is significantly
higher than the chance level of 50% (P < 2× 10−3). The confusion
matrix was given in Table 4. During the training phase, we recorded
the value of the validation accuracy for each epoch, which, as shown
in Figure 6B, stabilized after 15 training epochs. According to the
ROC curve in Figure 6C, the area under the ROC curve [area
under the curve (AUC)] for the low pain class was 70%, and the
high pain class was 70%, demonstrating that the proposed CNN
decoding approach could distinguish low pain and high pain levels
via fMRI BOLD signals and detect more true positive and true
negative samples than false positive and false negative samples.

To identify the contribution of each brain region to the CNN
classification of pain levels, we performed a sensitivity analysis of
the trained CNN models by occluding the BOLD activities from
each brain region and examined the decoding accuracy change
without the contribution of the voxels in the region (Zeiler and
Fergus, 2014). A larger decrease in decoding accuracy is taken
to indicate that the brain region being occluded plays a more
important role in pain generation and perception. The important
brain regions thus identified, as shown in Figure 6D, included
lingual gyrus, superior frontal cortex, thalamus, and dorsal anterior
cingulate cortex (dACC). A list of CNN-identified brain regions
underlying TN pain is shown in Table 6.

3.3. Deep learning-based analysis with
GCNNs

A GCNN was trained to take BOLD signals as well as fMRI
FC patterns as input to predict pain levels. The batch size was one
and there were 50 training epochs with early stopping. Dividing the
patients into eight groups of 4 to 5 patients each, the prediction
accuracy averaged across all eight folds was 72% (Figure 7A), which

TABLE 4 CNN confusion matrix.

Predict labels

Low pain High pain

True labels Low pain 8,917 2,724

High pain 2,297 4,340
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FIGURE 7

GCNN analysis. (A) Accuracy of GCNN prediction of pain levels is significantly above chance level of 50%. (B) Model prediction accuracy with
learning. Prediction accuracy stabilized after 20 training epochs. (C) ROC curves where the AUC value for the low pain class was 0.54 while the AUC
value for the high pain class was 0.66. (D) Brain regions contributing to GCNN prediction performance included dACC, fusiform, superior temporal,
and precuneus (**P < 2 × 1−3).

is significantly higher than the chance level of 50% (P < 2× 10−3).
The confusion matrix of the proposed GCNN was given in Table 5.
During the training phase, we recorded the value of the validation
accuracy for each epoch, and as shown in Figure 7B, after 20
epochs, the validation accuracy stabilized. According to the ROC
curve in Figure 7C, the AUC for the low pain class was 54%,
and the high pain class was 66%, demonstrating that the GCNN
approach worked well to decode low and high pain from function
connection patterns.

We applied the same sensitivity analysis to the proposed GCNN
model by occluding the BOLD activities and associated connections
for each ROI. ROIs were ranked according to the prediction
accuracy decrease from occlusion. Top-ranked brain regions, as
shown in Figure 7D, included dACC, fusiform, and superior
temporal. A list of GCNN-identified brain regions underlying TN
pain brain is shown in Table 6.

3.4. Validation analyses

Both CNN and GCNN analyses are AI-inspired deep learning
methods. This study, to the best of our knowledge, is the
first applying these methods to neuroimaging data from TN
patients. We performed two additional analyses to further test
the validity of the two methods. First, it is reasonable to expect
that CNN- and GCNN-predicted pain levels during the pain

tracking session and the patient’s self-reported pain levels be
related. Assigning low pain the value of zero and high pain
the value of one, the pain ratings predicted by CNN and
GCNN based on fMRI averaged over the pain tracking session
were plotted against patients’ reported pain ratings average over
the pain tracking session in Figures 8A, C, respectively; a
significantly positive correlation was seen for both CNN and
GCNN (R = 0.62 and 0.60 with both P < 2 × 10−3), suggesting
that the CNN- and GCNN-predicted pain levels from fMRI
brain scans indeed reflected the level of pain experienced by the
patients. Second, as indicated in Methods, in our experimental
paradigm, pain tracking and resting state were recorded back-
to-back. It is reasonable to expect that the average pain levels
during the two sessions are correlated. If the model-predicted pain
levels indeed reflect the actual pain levels, a strong correlation
between model-predicted pain during resting state and that during
pain tracking should exist. This was found to be the case in
Figures 8B, D.

TABLE 5 GCNN confusion matrix.

Predict labels

Low pain High pain

True labels Low pain 9,793 1,512

High pain 3,422 2,959
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TABLE 6 Signature centers of TN pain identified by correlation and
AI-inspired analyses.

Correlation
analysis

CNN
analysis

GCNN
analysis

Superior frontal
√ √ √

Precentral
√ √ √

Superior temporal
√ √ √

Fusiform
√ √ √

Supramarginal
√ √ √

Insula
√ √ √

Lateral orbitofrontal
√ √

Thalamus
√ √

Rostral middle frontal
√ √

Lateral occipital
√ √

Lingual
√ √

Inferior temporal
√ √

Pars opercularis
√ √

Parahippocampal
√ √

Bankssts
√ √

Precuneus
√ √

Rostral anterior cingulate
√ √

Caudate
√ √

Hippocampus
√ √

Putamen
√ √

Inferior parietal
√ √

Dorsal ACC
√ √

Postcentral
√ √

3.5. Pain tracking vs. motion tracking

As described in Methods, for the first 10 patients, 10-min of
pain tracking was followed by 10 min of motion tracking. We
tested, on the data from these 10 patients, whether the fMRI
activities during pain tracking mainly reflected spontaneous pain
fluctuations rather than movement executions. The BOLD time
courses were extracted from each voxel in the pain tracking session
(0–10 min) and the motion tracking session (10–20 min). We used
the trained CNN models to compute the accuracy of pain rating
predictions for the two sessions. The prediction accuracy for the
pain tracking session was 68%, well above chance level of 50%
(P = 0.04), and that for the motion tracking session was 42%, which
is not different from chance (P = 0.33). This result was expected
because the “pain level” indicated by the patient during motion
tracking was not the actual pain level experienced by the patient
at the time of motion tracking but the cursor position on the
computer monitor.

3.6. Subgroup analysis

Besides the male and female subgroups, among the 39 TN
patients, there were 20 who had prior surgery for their conditions,

but the pain returned at the time of the experiment. The remaining
19 patients never had surgery. A question of interest is whether
these subgroups of patients have common neural substrate of pain
generation and perception.

To test whether the subgroups shared common neural substrate
of pain generation and perception, we trained the CNN and
GCNN models on one subgroup and evaluated the performance
of the model on the other subgroup. First, for models trained on
female patients and tested on male patients, the decoding accuracy
achieved by CNN and GCNN were 76.4 and 66.6% respectively,
both significantly above chance level of 50% (both P < 2 × 10−3).
We did not train models on male patients to test them on female
patients because the number of male patients is too small for model
training purposes (n = 14 for male patients compared to n = 25
for female patients). For models trained on non-surgery patients
and tested on surgery patients, the decoding accuracy for CNN and
GCNN were 55.7 and 53.3%, respectively, both significantly above
chance level of 50% (both P < 2 × 10−3), whereas for models
trained on surgery patients and tested on non-surgery patients, he
decoding accuracy achieved were 66 and 72% for CNN and GCNN
models respectively, also both significantly above chance level of
50% (both P < 2× 10−3). See Figure 9. These results demonstrated
that common neural substrate is shared among TN patients of
different subgroups.

The clinical and psychological characteristics of the non-
surgery vs. surgery and female vs. male subgroups were also
evaluated. There were no significant differences between the
surgery/non-surgery groups in age (P = 0.3848), disease duration
(P = 0.3593), current pain intensity (P = 0.1027), or usual pain
intensity (P = 0.9055) (Supplementary Figures 1, 2). When
evaluating the different psychological outcomes from the different
test inventories, there was a significant difference in the BDI-2
score, with surgical subjects having a significantly higher score
(mean ± SD: 15 ± 9 vs 9 ± 8, P = 0.0487). The other
psychological scores from the PCS (P = 0.5237), PASS (P = 0.3346)
(including subscales: fear (P = 0.8547), cognitive (P = 0.4162),
escape/avoidance (P = 0.4071), and physiological (P = 0.2511)
were not significantly different between the surgery and non-
surgery groups (Supplementary Tables 1, 2). When evaluating
sex differences for these same clinical and psychological outcome
measures, there was a significant sex difference in the age of the
subjects, with males (mean ± SD: 65 ± 10 y.o.) being significantly
older (P = 0.0025) than female subjects (mean ± SD: 53 ± 11).
There were no significant differences between female and male
subjects when comparing disease duration (P = 0.8997), current
pain intensity (P = 0.6229), and usual pain intensity (P = 0.0759)
distributions (Supplementary Figures 3, 4). The psychological
scores from the PCS (P = 0.5592), BDI-2 (P = 0.5171), and PASS
(P = 0.5777) (including subscales: fear (P = 0.7299), cognitive
(P = 0.9528), escape/avoidance (P = 0.5393), and physiological
(P = 0.0776) tests were also not significantly different between
female and male subjects (Supplementary Tables 3, 4).

3.7. Signature centers of TN pain

Three analyses were applied in this study to identify signature
centers of TN pain: correlation analysis, CNN analysis, and GCNN
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FIGURE 8

Additional CNN and GCNN analyses. (A) CNN predicted pain level vs. average pain ratings. (B) CNN predicted pain level from resting state data vs.
from pain tracking data. (C) GCNN predicted pain level vs. average pain ratings. (D) GCNN predicted pain level from resting state data vs. from pain
tracking data.

analysis. We listed the top 23 brain regions that appeared in at least
two of the analyses in Table 6. Six regions were identified by all
three methods, including superior temporal cortex, insula, fusiform
gyrus, precentral gyrus, superior frontal gyrus, and supramarginal
gyrus. The 17 remaining regions included dACC, thalamus, lateral
occipital gyrus, inferior temporal cortex, postcentral gyrus, lingual
gyrus, and inferior parietal gyrus. All these regions have been
implicated in chronic pain especially TN pain in past studies (see
section “4. Discussion”).

4. Discussion

In this study we sought to identify the neural substrate of TN
pain by recording and analyzing fMRI data from TN patients while
they rested or tracked their spontaneous fluctuations in pain levels.
By applying both conventional and AI-inspired approaches, we
obtained converging evidence implicating a common set of brain
regions, including the insula and the precentral gyrus, as playing
an important role in the generation and perception of TN pain.

Additional complementary insights into TN pain-related brain
regions are offered by each of the three approaches.

4.1. Signature pain centers identified by
three analyses

Table 6 shows that there are six brain regions that appeared
in all three analyses, including superior temporal cortex, insula,
fusiform gyrus, precentral gyrus, superior frontal gyrus, and
supramarginal gyrus. All these regions have been implicated in TN
pain in prior studies (Tsai et al., 2018). Yuan et al. (2018) and Xiang
et al. (2019) reported increased ReHo in the superior frontal gyrus
in TN patients compared to healthy controls; cortical thickness
was shown to decrease with increase in pain duration (Moon
et al., 2018). The superior temporal gyrus (STG), functionally
known for its role in memory and language processing (Burton,
2005), showed gray matter volume abnormalities in TN, and the
degree of grey matter volume alterations in the left STG may
reflect pain severity. The abnormal structural alterations in the
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FIGURE 9

Sub-group accuracies by CNN and GCNN. We trained CNN and GCNN models in different subgroups and tested the model performances in the
remaining subgroup. By dividing the patients by gender, we found that both CNN and GCNN trained using female patients could achieve
above-chance prediction accuracy on male patients. Dividing the patients into surgery/non-surgery subgroups, we found that CNN and GCNN
models trained on one subgroup achieved above-chance decoding accuracy when tested on the other subgroup. NS, Not significant;
**P < 2 × 10−3.

temporal lobe may be due to the generation and/or maintenance of
emotions and perception of pathological pain (Tang et al., 2020).
The important role of precentral and postcentral gyrus in pain
processing is well established. The primary motor cortex, located
in the precentral gyrus, may be involved in inhibiting motion so as
not to aggravate pain conditions (Apkarian et al., 2005), whereas
the postcentral gyrus, where the primary somatosensory cortex is
located, is the cortical gateway through which nociceptive input
is processed and transmitted to other brain structures (Peyron
et al., 1999; Bantick et al., 2002; Valet et al., 2004; Hu and Iannetti,
2019). In a resting-state fMRI study, Wang et al. (2015) found
that ReHo in the precentral gyrus and the postcentral gyrus is
positively correlated with patients’ daily experienced pain severity,
suggesting a link between local synchronization of intrinsic brain
activity and pain modulation. In addition, in a recent meta-analysis,
the somatosensory cortex is found to be structurally changed
in TN compared with healthy controls (Henssen et al., 2019).
The fusiform gyrus, a visual area known for its involvement in
face-related processing, is thought to be important in mediating
mental imagery processes related to pain perception (Diekhof
et al., 2011; Ter Minassian et al., 2013). In TN, the fusiform
is shown to have decreased gray matter volume compared to
controls (Parise et al., 2014; Li et al., 2017). In addition, the left
fusiform gyrus is found to be involved in pain anticipation and
perception, leading to a negative correlation with pain ratings
(Ter Minassian et al., 2013). The insular cortex has also been
implicated in mediating pain intensity as well as negative emotions
(Desouza et al., 2013). A recent MRI study found altered insular
morphology and FC and abnormal diffusion parameter in the
white matter adjacent to the insular cortex in TN (Wang et al.,
2018). Furthermore, significant local gyrification index (LGI)
reductions in the left insular cortex were found in patients with
TN compared with control groups (Wang et al., 2018). The authors
argued that pain perception results from nociceptive representation
being transformed into subjective magnitude assessment within

the insula (Baliki et al., 2009). Tian et al. (2016) found that TN
patients exhibited significantly increased long-range FC density in
the right supramarginal gyrus. As can be seen, these past studies
rely either on structural information or on resting state data.
The functional roles of these regions in TN pain generation and
perception remain to be better established. Our results, by utilizing
a functional paradigm in which TN patients tracked pain levels,
shed new light on this issue. In particular, we found that the
neural activities in these six regions not only closed tracked the
pain level fluctuations (correlation analysis and CNN analysis),
they also mediated network-level communications among different
brain regions (GCNN analysis) during TN pain.

4.2. Signature pain centers identified by
two of the three analyses

Among the common set of regions identified by both AI-
inspired deep learning analyses but not the correlation analysis,
dACC is known for its role in pain processing (Henssen et al.,
2019); it is consistently activated in human imaging studies of
pain. As a central hub in the pain matrix, the dACC is highly
connected to other brain areas involved in cognition, emotion,
and negative affect, all of which are associated with chronic pain
(Zeidan et al., 2011; Eisenberger, 2012; Roy et al., 2012). It has
been further suggested that the cingulate cortex is also important
for the transition from acute to chronic pain (Tsai et al., 2019).
Previous TN works, including the Yuan et al.’s (2018) resting-state
fMRI data and Moisset et al.’s (2011) task fMRI data, have found
abnormal activities in ACC. Structurally, Mo et al. (2021) found
that TN patients exhibited reductions in cortical indices in the
ACC, the midcingulate cortex (MCC), and the posterior cingulate
cortex (PCC) relative to healthy controls group, indicating that the
ACC may play a role in pain adaptation, habituation, distraction,
and the engagement of the endogenous pain control system (Qu
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et al., 2011). In addition to dACC, the thalamus, the postcentral, the
lingual, and the inferior temporal gyrus are found to be activated in
two of the three analyses. These regions have also been implicated in
previous research on TN pain. In particular, the previous research
has firmly established the importance of the thalamus in pain
processing; it receives nociceptive sensory information from the
periphery, integrates this information with arousal and attention,
and sends outputs to broad regions of the cerebral cortex for further
processing (Coghill et al., 1999; Peyron et al., 2000; Tracey and
Mantyh, 2007). In TN, the grey matter increases in the thalamus
for TN patients relative to controls, suggesting a link between
thalamic structural change and activity-dependent plasticity in S1
via thalamocortical projections (Woolf and Salter, 2000; Desouza
et al., 2013). In our data, whereas the GCNN analysis was not able
to show that the thalamus is an important region underlying TN
pain, the correlation and the CNN methods both found that the
thalamus is important for predicting the spontaneous fluctuations
of TN pain, consistent with the established role of the thalamus in
pain processing including TN pain (Gustin et al., 2011). Regarding
the inferior temporal gyrus, past work found that the gray matter
volume of the left inferior temporal gyrus was negatively correlated
with current pain intensity and disease duration in TN patients
(Parise et al., 2014; Wang et al., 2017a). Decreases in the amplitude
of low-frequency fluctuation (ALFF) in the right inferior temporal
region were found in TN patients (Wang et al., 2017b). Zhu
et al. (2020) also found that compared with the healthy control
(HC) group, patients with TN showed the degree centrality value
(calculated by counting the number of significant suprathreshold
correlations (the degree of the binarized adjacency matrix) for each
individual) changed in the right lingual gyrus, right postcentral
gyrus, left paracentral lobule, left inferior cerebellum, and right
inferior cerebellum.

To further contrast the conventional correlation analysis
against the AI-inspired methods, it is informative to combine
the regions identified by the two AI-inspired approaches and
compared them with the ones identified by the correlation method.
Although both types of methods have identified important pain-
related regions, such as the thalamus, the correlation method failed
to identify other significant pain-related regions, including the
caudate, dACC, and postcentral gyrus, all areas of the so-called
pain matrix; these regions were readily identified by the AI-inspired
approaches (Ab Aziz and Ahmad, 2006; Freund et al., 2009; Iannetti
and Mouraux, 2010; Lieberman and Eisenberger, 2015; Zhu et al.,
2020). The power of the AI-inspired approaches may derive from
their ability to model non-linear structures in the data. On the
other hand, the correlation approach has identified regions that do
not overlap with that identified by the AI-inspired approaches; e.g.,
the frontal pole. We thus suggest that integrating the conventional
and AI-inspired approaches is a fruitful direction going forward
for gaining comprehensive insights into the neural substrate of TN
pain generation and perception.

4.3. Clinical considerations

The clinical TN population that was recruited for this
study was consistent with the known disease demographics
and characteristics: female > male and age > 50 years old

(Jainkittivong et al., 2012). The majority of subjects (n = 16)
reported moderate to severe usual pain levels, seven of which
reported maximal VAS pain levels of 100 (Supplementary
Figure 2B). At the time of the scanning procedure, the current pain
intensity was distributed roughly equally across zero to maximum
pain range, indicating the spontaneous nature of this pain disorder.
There was a significant age difference between the males and
females; however, with the males being on average older; the
disease duration was similar between males and females. This likely
indicates that males were diagnosed later in life as compared to
females. The only psychological factor that was elevated was the
BDI-2 score for surgical subjects, as compared to non-surgical
subjects. While significant (P = 0.0487), the average male BDI-
2 score is considered within the “mild-to-moderate depression”
range (mean ± SD: 15 ± 9), while the female scores were within
the no or minimal depression range (mean ± SD: 9 ± 8). On
average, the PCS ratings for the subjects are within the mild range
(21–40), and the PASS scores were not significantly different when
comparing surgical status or sex differences. In the context of these
clinical findings, our results that both CNN and GCNN models
constructed based on patients from one subgroup (surgical vs. non-
surgical, male vs. female) can decode the patients from the other
subgroup can be seen as reflecting shared neural substrate rather
than driven by differences in clinical conditions.

4.4. Methodological considerations

The correlation analysis has been used in numerous pain
studies and remains the principal method of percept-related fMRI
for identifying the neural substrate of naturally occurring pain
(Apkarian et al., 2001). It is simple and intuitive (Desouza et al.,
2013). The weaknesses are that it only detects linear relationships,
and the statistical effects are not strong. In our data, if we
applied any kind of multiple comparison correction, we would
find no activations. Deep learning is an emerging area of machine
learning, and it is in the early stages of being applied to analyze
neuroimaging data. In this work, in addition to showing that CNN
and GCNN are able to predict pain fluctuations from fMRI data,
we did several additional analyses to validate the approach. First,
we showed that the predicted pain levels by CNN and GCNN
are correlated with the pain ratings indicated by the patients, as
would be expected. Second, the CNN and GCNN predicted pain
levels from the resting-state data and from pain tracking data are
highly correlated, again as would be expected, demonstrating that
the CNN and GCNN model predictions are robust. Combining
these AI-inspired methods with conventional method to seek
converging evidence may become a promising way in future studies
of pain neuroimaging.

4.5. Limitations

This study has a number of limitations. First, for the correlation
analysis, as mentioned above, if a whole-brain multiple comparison
approach such as false discovery rate (FDR) was applied, no
statistically significant regions will appear in the activation map,
despite having a reasonable sample size of n = 39. The situation
is similar in prior pain studies utilizing the percept-related
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fMRI analysis (Geha et al., 2007). Nevertheless, the thalamus,
an established region in pain processing including TN pain,
only appeared in the CNN and correlation analysis map (Lenz
et al., 2004; Danyluk et al., 2021) but not the GCNN map. This
demonstrates that, despite the statistical weakness associated with
the correlation analysis, it can still provide important information
which not all AI-inspired methods can provide. Second, because
of the need to increase the pain tracking session length without
increasing the overall scanning time, we were only able to record
motion tracking from the first 10 patients. Nevertheless, by
applying the AI-inspired models to the data from pain tracking and
from motion tracking in these 10 patients, we were able to establish
that the fMRI data recorded during pain tracking are mainly
driven by spontaneous pain fluctuations, not by the movement
associated with pain tracking. Third, when assigning discrete class
labels to the data, the threshold of 15 was chosen to achieve the
class balance between low and high pain. This high vs. low pain
level demarcation was a trade-off between clinical considerations
and technical requirements and is not a clinically applicable pain
level designation.

5. Conclusion

We applied advanced statistical methods to patterns of brain
activation related to the paroxysms of TN pain and generated a
set of "signature centers” of pain generation and perception within
the brain. Our approach, combining both conventional and AI-
inspired methods to yield converging findings, is highly novel
in the context of TN research, and our result provides a sorely
needed basis for understanding the central mechanisms of TN. We
hope that the insights revealed in this study can lead to a better
understanding of TN and curing of this devastating condition.
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