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Introduction: The volume conduction e�ect and high dimensional characteristics

triggered by the excessive number of channels of EEG cap-acquired signals in BCI

systems can increase the di�culty of classifying EEG signals and the lead time of

signal acquisition. We aim to combine transfer learning to decode EEG signals

in the few-channel case, improve the classification performance of the motor

imagery BCI system across subject cases, reduce the cost of signal acquisition

performed by the BCI system, and improve the usefulness of the system.

Methods: Dataset2a from BCI CompetitionIV(2008) was used as Dataset1, and

our team’s self-collected dataset was used as Dataset2. Dataset1 acquired EEG

signals from 9 subjects using a 22-channel device with a sampling frequency of

250 Hz. Dataset2 acquired EEG signals from 10 healthy subjects (8 males and 2

females; age distribution between 21-30 years old; mean age 25 years old) using

an 8-channel system with a sampling frequency of 1000 Hz. We introduced EA in

the data preprocessing process to reduce the signal di�erences between subjects

and proposed VFB-RCSP in combination with RCSP and FBCSP to optimize the

e�ect of feature extraction.

Results: Experiments were conducted on Dataset1 with EEG data containing only

8 channels and achieved an accuracy of 78.01 and a kappa coe�cient of 0.54. The

accuracy exceeded most of the other methods proposed in recent years, even

though the number of channels used was significantly reduced. On Dataset 2,

an accuracy of 59.77 and a Kappa coe�cient of 0.34 were achieved, which is a

significant improvement compared to other poorly improved classical protocols.

Discussion: Our work e�ectively improves the classification of few-channel EEG

data. It overcomes the dependence of existing algorithms on the number of

channels, the number of samples, and the frequency band, which is significant

for reducing the complexity of BCI models and improving the user-friendliness of

BCI systems.
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1. Introduction

Brain-computer interface (BCI) technology provides a way

of communication that is not dependent on peripheral nerves

and muscles (Wolpaw et al., 2000). A comprehensive BCI system

involves preprocessing, feature extraction, signal classification, and

control. It is a technique that directly translates neurological

activity into external output (Ramadan and Vasilakos, 2017). The

most commonly employed electroencephalogram (EEG) signals are

event-related P300 signals (Allison et al., 2020), steady-state visual

evoked potentials (Liavas et al., 1998), and motor imagery (MI)

signals (Pfurtscheller et al., 1997). The most significant advantage

of motor imagery is that its control signal is derived from the

brain’s intention to act and therefore does not require external

stimulation (Abdulkader et al., 2015). This type of BCI is often

used for motion control of external devices and is one of the

most popular BCI control systems today. However, the signal-

to-noise ratio of motor imagery spontaneous EEG signals is low,

and there are significant individual differences in characteristics

between subjects. Traditional machine learning algorithms usually

need to be calibrated for new subjects to overcome individual

differences between subjects (Böttger et al., 2002; Saha et al., 2017),

a process that reduces the effectiveness of BCI systems. To address

this drawback, researchers have found that using transfer learning

algorithms to reduce calibration for new users, devices, and tasks

is effective.

In recent years, transfer learning used data or information

from the source domain to help the target domain learn by

using the source domain (existing subjects) data to calibrate

the target domain (new subjects) data (Pan and Yang, 2009).

Eventually, the target domain can be judged with few or no samples

with annotations, which can solve the problem of mismatch

between the base distribution of training data and test data under

certain conditions.

Zhang et al. (2021) proposed an adaptive cross-subject transfer

learning algorithm based on deep convolutional neural networks to

classify new subject data with 84.19% accuracy and high algorithm

complexity by analyzing and model training on 62-channel data.

Cho et al. (2015) achieved transfer learning of the same subject

across experiments by combining Common Spatial Pattern (CSP)

and its improved algorithm with Fisher Linear discriminant

analysis (LDA). The highest transfer learning result of 79.5% was

achieved using 64-channel data. A team fromHuazhong University

of Science and Technology (He and Wu, 2019) proposed a data

alignment preprocessing algorithm EA (Euclidean Alignment,

EA) based on Euclidean distance, and the study of two sets of

competition data showed that the classification accuracy of most

traditional machine learning algorithms was significantly improved

after data alignment preprocessing. The two sets of data were 59-

and 22-channel, with slight differences in the results of the different

algorithms and a maximum accuracy of 79.79% (59-channel).

An author in this team proposed a complex transfer learning

framework that applies transfer learning in all three aspects of

signal preprocessing, feature extraction, and classification, and the

analysis of two sets of BCI competition data (59- and 22-channel,

respectively) verified that the classification results of this complex

framework are higher than those of traditional machine learning.

The results of the alignment algorithm with EA data are more

significant than transfer learning results without this preprocessing

algorithm (Wu et al., 2020a). Jayaram et al. (2016) proposed a

Multi-task Transfer Learning (MTL) framework for extracting

features shared across experiments and subjects, using Band Power

(BP) of 128-channel signals as feature input, with an average

classification accuracy of around 76%.

Most of the existing transfer learning algorithms are based on

competition data and use data with a large number of channels for

analysis (Wu et al., 2020b). Future smart wearable devices based

on motor imagery BCI will focus more on portability. Therefore,

improving the performance of BCI systems with fewer channels

is one of the future research directions to reduce the experimental

preparation time and promote the portability of BCIs. In this study,

we further investigate reducing calibration and improving the user-

friendliness of BCI based on the previous application of CSP to

few-channel motor imagery BCI (Dai et al., 2020), and propose

an improved algorithm based on transfer learning, VFBRCSP,

combining FBCSP and RCSP, and introducing EA processing. We

compare the VFBRCSP on the BCI Competition IV Dataset 2a with

other new methods proposed in recent years. The results show that

with only 8-channel EEG signals, themethod proposed in this study

still outperforms GRU-RNN (Luo et al., 2018), IST-TSVM (Xu

et al., 2019), CA+PSR+CSP (Dong et al., 2020), CSP-WPD+LOG

(Zhang et al., 2020), and METL (Cai et al., 2022), achieving a

classification accuracy second only to MTFL (Wang et al., 2020).

The number of the data’s channels used in these BCI systems is

22, which is much more than that of the data we used. From the

perspective of reducing the BCI model’s complexity and the BCI

system’s practicality, the method proposed in this study is more

advantageous. It effectively improves the classification accuracy in

the case of few-channel data, which provides a theoretical and

algorithmic basis for further exploring the possibility of commercial

implementation of a few-channel motor imagery BCI system.

The structure of this document is as follows: The second

section details the experimental dataset used in this study, as well

as the data preprocessing procedures, data alignment methods,

channel selection scheme, feature extraction methods, and feature

classification techniques. In Section 3, the experimental results are

given. Section 4 further discusses and analyzes the experimental

results. Section 5 presents the conclusions.

2. Materials and methods

2.1. Data description

The two EEG datasets used in this study are listed below.

2.1.1. Dataset 1
Dataset 2a of BCI CompetitionIV(2008) (Tangermann et al.,

2012). The dataset was collected from the EEG signal of nine

subjects. All 9 subjects were trained before data collection. Each

subject’s data were recorded with 22 channels and a sampling

frequency of 250 Hz. A total of 288 experiments (containing four

categories: right and left hand, foot, and tongue) were performed

for each subject. We conducted 144 experiments using the left-

hand (Type 1) and right-hand (Type 2) motor imagery data.
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FIGURE 1

The experimental protocol for the acquisition of Dataset 1.

FIGURE 2

Lead channel distribution and experimental paradigm of Dataset 1: (A) Lead distribution; (B) O	ine experiments; (C) Online experiments.

At the beginning of the experiment, a fixed cross-shaped cursor

appeared on the screen with a cue tone, and 2 s later, a pointing

arrow appeared on the screen and continued to be displayed for

1.25 s. Subjects performed the corresponding motor imagery task

according to the arrow cue, and the motor imagery time was 6 s. At

the end of the imagery, subjects rested for around 1.5 s. The specific

experimental paradigm is shown in Figure 1. In this study, eight of

the 22 channels available for the data in Dataset 1, FC3, FCz, FC4,

C3, Cz, C4, CP3, and CP4 (channel distribution locations are shown

in Figure 2A), were selected for comparative analysis. Details of the

dataset are given in the literature (Tangermann et al., 2012).

2.1.2. Dataset 2
Ten healthy volunteers provided lab-collected data (8 male

subjects and 2 female subjects, right-handed, with an age

distribution between 21 and 30 years, mean age 25 years). The

EEG signal was acquired by wet electrode method, and the

acquisition device was NeuSen W wireless digital EEG acquisition

system produced by Neuracle Technology (Changzhou) Co., Ltd.

with 8 electrode channels (FC3, FCz, FC4, C3, Cz, C4, CP3,

and CP4), with CPz as the reference electrode and AFz as the

ground electrode, and the sampling frequency was 1,000 Hz,

the channel distribution of the acquisition system is shown in

Figure 2A. For each subject, the experiment involved two sections,

offline and online, with offline training data including no feedback

and online training data containing feedback. Figure 2B shows

the offline experiment paradigm. Figure 2C shows the online

experiment paradigm.

2.2. Proposed method

Figure 3 shows the flow chart of the overall processing of the

proposed method, which mainly consists of preprocessing, data

alignment, channel selection, feature extraction, and classification.

Each part will be discussed in detail in the following sections.
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FIGURE 3

The processing flow of the proposed method.

2.2.1. Data preprocessing
2.2.1.1. Band-pass filtering

The ERS/ERD phenomenon that occurs during motor imagery

causes power variations in specific frequency bands of the EEG

signal, which usually occur in the two frequency bands of mu (8–12

Hz) and beta (18–25 Hz) rhythms (Lazarou et al., 2018). Therefore,

in the proposed work, a 6th-order Butterworth filter is used to

band-pass the EEG signal from 8 to 30 Hz to filter out extraneous

components of the EEG signal.

2.2.1.2. Extraction of single time data

This experiment’s signal was retrieved 0.5 s after the subject

accepted the experimental hint. Each motor imagery experiment

began at 0 s. Hence Dataset 1 was cropped for 0.5–3.5 s and Dataset

2 for 0.5–4 s.

2.2.1.3. Data alignment

The Euclidean-space Alignment (EA) proposed by He et al.

was used for data alignment of the dataset. This algorithm directly

aligns the original data of EEG samples from different subjects

while maintaining the original data structure of the EEG samples

(He and Wu, 2019), thus improving the similarity of EEG signal

distribution across subjects.

2.2.2. Channel selection
We manually selected the channel locations according to the

prior knowledge of the brain-computer interface domain. Dataset

1 was acquired from a 64-channel system expanded by 10-20

international standard channel systems. The data acquired by the

eight channels shown in Figure 2A were selected based on the a

priori knowledge of physiology in the field of motor imagery and

previous studies of our team (Jian et al., 2017a,b), and Dataset 2 was

acquired directly using the same eight channels for data acquisition.

2.2.3. EEG signal band segmentation
Considering the differences in the optimal frequency bands of

different subjects (Chen et al., 2015), in order to utilize the effective

frequency bands as much as possible, this study first designed a

band-splitting scheme with fixed sub-band bandwidth: Constant

Filter Bank (CFB). This scheme divides the EEG signal into 10

subbands in the range of 8–30 Hz for filtering, and the bandwidth

of each sub-band is 4 Hz, and the adjacent subbands overlap by 2

Hz, as shown in Figure 4B. This scheme is abbreviated as CFB in the

later paper, and the feature extractionmethod using this scheme for

band segmentation is abbreviated as CFB-RCSP. Based on CFB, we

try to vary the sub-band bandwidth and further propose a Variable

Filter Bank (VFB) as the final band segmentation scheme: the first

sub-band starting at 8 Hz, and then each sub-band starting at 2 Hz,

and the bandwidths of each sub-band are 5, 6, 7, 8, 9, 8, 7, 6, 5, and

4 Hz (first from narrow to wide, and then The bandwidth of each

sub-band is 5, 6, 7, 8, 9, 8, 7, 6, 5, and 4 Hz (first from narrow to

wide and then from wide to narrow), as shown in Figure 4A.

2.2.4. Optimal subband selection
After the frequency domain filtering of the EEG signals

using the band splitting scheme proposed in Section 2.2.3, these

EEG signals are split into several sub-band signals with different

bandwidths. The sub-band features are extracted from these sub-

band signals by space domain filtering, and the space domain

filtered features have optimal space domain information, but there

is redundancy in the frequency domain, so the Fisher score method

combined with grid search is introduced for optimal frequency

band selection (Nie et al., 2008). The basic idea of optimal

frequency band selection is:

Suppose the eigenvector of each sub-band signal xi is (x, l) ∈

(Rd × L), where Rd is the feature space, L represents the feature

class label, and there are k categorical features (k ∈ {1,−1} in

this study, representing the left and right hands respectively), the

intra-class scatter matrix SW and inter-class scatter matrix SB of the

eigenvector are:

SB =

k
∑

i=1

ni(mi −m)(mi −m)T (1)

SW =

k
∑

i=1

ni
∑

j=1

(xij −mi)(xij −mi)
T (2)
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FIGURE 4

Frequency band selection scheme: (A) VFB and (B) CFB.

In Equations (1), (2), ni denotes the sample size of the i-th

class of features, mi represents the average vector of the i-th class

of feature vectors, andm is the average vector of all eigenvectors.

According to the classification criteria, the Fisher score for each

sub-band can be defined as:

fs =
Tr(SB)

Tr(SW)
(3)

The fs of each sub-band can be calculated by Equation (3), but

considering that the band power of the EEG signal decreases when

its frequency increases, the squared weighted value ξ of fs is used as

the optimal sub-band selection criterion in combination with the

grid search. The expression of ξ is given by:

ξn = w(n)(f ns )
2, n ∈ [1,N] (4)

In Equation (4), f ns is the Fisher score of the n-th sub-band.w(n)

is the weight value, which can be calculated by Equation (5):

w(n) = n−a + b (5)

For each sub-band n, the weight value w(n) is transformed

with parameters a and b, and ξn varies with w(n). The

corresponding sub-band is the optimal sub-band when the value

of ξn is maximum.

2.2.5. Regularized common spatial pattern
The traditional CSP algorithm finds a set of spatial filters to

maximize the variance of one class while minimizing the variance

of another class, thus obtaining a feature vector with a high degree

of discrimination.

In the case of the dichotomous EEG imagery task, suppose

the target subject has N samples {Xn
t }

N
n=1. For the category k ∈

{−1, 1}, the CSP tries to find the spatial filter matrix Wk ∈ R
c×f

maximizing the variance ratio between the two categories, where c

is the number of channels of the EEG signal and f is the number of

spatial filters:

Wk = argmax
Tr(WT C̄k

tW)

Tr(WT C̄−k
t W)

(6)

In Equation (6), C̄−k
t ∈ R

c×c is the average spatial covariance

matrix of the EEG signals in the target subjects with category K.

In order to reduce the differences in the distribution of features

between subjects, RCSP helps train the feature values with the help

of partial source domain subject data based on the CSP method.

With (7), RCSP can obtain the regularized mean covariance matrix

of the EEG signal:

Ĉk(β , γ ) = (1− γ )Ĉk(β)+
γ

c
(Ĉk(β))I (7)

In Equation (7), β and γ are two regularization parameters

located in the interval [0, 1]. β is used to reduce the variance of the

sample covariance matrix estimates, and γ is used to control the

degree of contraction of the unit matrix. I ∈ Rc×c is a unit matrix,

and Ĉk(β) can be derived from Equation (8).

Ĉk(β) =
βNlC̄

k
t + (1− β)NsC̄

k
s

βNl + (1− β)Ns
(8)

In Equation (8), C̄k
s ∈ Rc×c is the mean spatial covariance

matrix of the EEG samples originating from the subjects. The RCSP

method is obtained by replacing C̄k
t with Ĉk(β , γ ) in Equation (6).

To conduct RCSP in ourMI-BCI system, we treat the labels and

divide the dataset, the detailed description is as follows:

1. Label Definition:

• Dataset 1 (BCI Competition IV dataset 2a): The left and

right handMI data in the training session of each subject in

Dataset 1 were used. The left hand MI data is defined as the

first category, and the right hand MI data is defined as the

second category;
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• Dataset 2 (self-collected dataset): All data obtained in

offline and online experiments are used, and the left and

right hands are also used as labels (first and second).

2. Dataset Division:

• Dataset 1 and Dataset 2: To conduct RCSP, based on the

8-lead EEG signal, one subject was selected as the target

subject (test set) in turn by using the one-left method,

and the data of the other subjects were merged into the

source subjects (training set). RCSP is a feature extraction

algorithm of EEG signals based on Riemannian space.

In order to reduce the difference of feature distribution

between different subjects, RCSP, based on the CSP

method, extracts feature values with the help of source

domain subject data. It extracts the best feature dimensions

from the source domain dataset during the modeling

process, and uses these feature dimensions to represent the

target subject data: First, it calculates the eigenvectors of the

subjects in the source domain through different subspace

methods. Then, the matching ratio between the eigenvector

of subjects in the target domain and the eigenvector of

subjects in the source domain is calculated by the original

EEG signal and the EEG signal obtained from the subspace

mapping. Finally, it calculates the weight of each feature

dimension according to the matching ratio, so as to extract

representative features from the target subject data.

2.2.6. MTL classification
The proposal of MTL classification algorithm is derived from

the idea of transfer learning. Since the EEG signal is not static, in the

strictest sense, each experiment can be condsidered as a slightly new

task relative to each other, whichmeans that either the classification

task of EEG data from different subjects or the classification task

of EEG signals from the same subjects under different conditions

(distinguishing between left and right hand) can be considered as

separate tasks. In the experiments, the raw data are classified by

the MTL classification algorithm proposed by Jayaram et al. (2016)

after the data preprocessing process described in Section 2.2.1 and

the band segmentation and feature extraction. The MTL algorithm

takes one subject’s data as the target domain and the other subjects’

data as the source domain in turn during each experiment. The

classification performance on the target domain is optimized by

training in the source domain, hence the BCI system proposed in

this study can be regarded as cross-subject. MTL algorithm allows

our BCI system to use the information from all tasks to improve the

cclassificationmodel for each task and obtain a shared structure as a

priori information, which will ensure that the solutions of all tasks

are sufficiently close to each other in a certain space. Finally, we

get the optimal classification model relative to the whole dataset for

classification. The actual optimization problem can be defined as

Jayaram et al. (2016):

min LP(W,µ,6;D, λ) =

min
1

λ

∑

s

∥

∥Fsws − ys
∥

∥

2
+

∑

s

�(ws;µ,6)
(9)

In Equation (9), W = [w1,w2, . . . ,ws]
T denotes the feature

weight parameter matrix, µ denotes the mean vector of subject

features, 6 denotes the feature covariance matrix of subjects,

D = {Ds}
S
s=1 denotes the total of all subject data, s is the subject

number, λ denotes the standard deviation of model noise, Fs is the

feature matrix of subject s, ws is the linear classifier weight, Fsws

denotes the predicted label, and ys is the actual label. �(·) denotes

the penalty term used to reduce the complexity of the model, which

is calculated as:

�(ws;µ,6) =

1

2
[(ws − µ)T6−1(ws − µ)+

1

2
log det(6)]

(10)

Equation (10) controls the difference in the average vector of

features µ for each subject. The feature weight parameter ws is

iterated as shown in Equation (11).

ws = (
1

λ
6FTs Fs + I)−1(

1

λ
6FTs ys + µ) (11)

where I is the unit matrix and ws is jointly determined by the

eigenmean vectorµ, the eigencovariance matrix6 and the product

of subject eigenmatrices FTs Fs.

3. Results

3.1. Evaluation of feature extraction
method optimization

The scheme in which the band energy of the EEG signal is

directly extracted as features is marked as BP; the schemes in

which band-pass filtering is first applied to the EEG signal and

then the RCSP, FBCSP, CFB-RCSP, and VFB-RCSP are used for

feature extraction are denoted as RCSP, FBCSP, CFB-RCSP, and

VFB-RCSP, respectively.

When comparing the performance of each scheme, the

classification accuracy served as the primary evaluative metric.

In addition, we used the Kappa coefficient (Cohen, 1960, 1968)

as another evaluation index to prevent the unbalanced sample

condition caused by the limited sample size from affecting the

experimental results.

The values presented in Table 1 are the classification accuracies

and Kappa coefficients obtained for the different schemes on

the data of all subjects in Dataset 1, where the values of Kappa

coefficients are shown in parentheses, and the optimal classification

accuracies are bolded in the table. According to the data presented

in Table 1, VFB-RCSP achieved the highest average classification

accuracy and kappa coefficient among the various schemes involved

in the comparison, and the highest classification accuracy and

optimal kappa coefficient were achieved on the data of more than

half of the subjects.

Table 2 shows the classification accuracy of the data of all

subjects in Dataset 2 under different schemes. Among the various

classification methods, the highest average classification accuracy

and Kappa coefficient were obtained for the proposed method

in this chapter. The highest classification accuracy and Kappa
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TABLE 1 Classification accuracy of the proposed method and other new methods on Dataset 1.

Subject BP RCSP FBCSP CFB-RCSP VFB-RCSP

1 80.56 (0.54) 82.86 (0.58) 70.83 (0.40) 86.81 (0.65) 86.11 (0.63)

2 52.43 (0.23) 59.64 (0.29) 76.39 (0.48) 64.58 (0.34) 70.83 (0.41)

3 67.01 (0.36) 93.57 (0.80) 78.47 (0.51) 94.44 (0.82) 94.44 (0.83)

4 67.01 (0.37) 76.07 (0.47) 71.53 (0.41) 74.31 (0.45) 73.61 (0.44)

5 55.56 (0.26) 56.79 (0.27) 60.42 (0.30) 59.72 (0.29) 61.11 (0.30)

6 63.89 (0.33) 68.93 (0.38) 72.22 (0.42) 75.69 (0.47) 70.83 (0.41)

7 64.58(0.34) 65.36 (0.35) 66.67 (0.36) 64.58 (0.34) 63.89 (0.33)

8 74.65 (0.45) 87.86 (0.67) 73.96 (0.44) 92.36 (0.77) 93.06 (0.79)

9 71.88 (0.42) 83.21 (0.58) 72.92 (0.43) 86.81 (0.65) 88.19 (0.69)

Mean 66.40 (0.37) 74.92 (0.49) 71.49 (0.42) 77.70 (0.53) 78.01 (0.54)

The value of the highest classification accuracy obtained by various methods on the data of each patient is displayed in bold.

TABLE 2 Classification accuracy of the proposed method and other new methods on Dataset 2.

Subject BP RCSP FBCSP CFB-RCSP VFB-RCSP

1 55.59 (0.29) 55.57 (0.29) 56.08 (0.30) 62.83 (0.37) 60.86 (0.35)

2 55.26 (0.29) 54.14 (0.28) 56.76 (0.31) 57.24 (0.31) 61.84 (0.36)

3 55.92 (0.30) 53.97 (0.28) 55.41 (0.29) 60.86 (0.35) 60.53 (0.34)

4 54.93 (0.29) 54.9 (0.29) 54.73 (0.29) 55.92 (0.30) 56.58 (0.31)

5 57.23 (0.31) 54.39 (0.28) 55.41 (0.30) 57.89 (0.32) 57.24 (0.31)

6 57.56 (0.32) 55.41 (0.30) 56.76 (0.31) 57.24 (0.31) 62.5 (0.36)

7 63.48 (0.37) 53.55 (0.28) 59.46 (0.33) 62.5 (0.36) 59.21 (0.33)

8 55.59 (0.30) 55.15 (0.29) 58.11 (0.32) 61.84 (0.36) 57.89 (0.32)

9 55.26 (0.30) 55.41 (0.30) 57.43 (0.31) 59.87 (0.34) 59.21 (0.31)

10 56.57 (0.30) 55.57 (0.30) 56.08 (0.30) 59.21 (0.33) 61.84 (0.33)

Mean 56.74 (0.31) 54.81 (0.29) 56.623 (0.30) 59.54 (0.33) 59.77 (0.34)

The value of the highest classification accuracy obtained by various methods on the data of each patient is displayed in bold.

coefficient were obtained for most of the subjects. The highest

classification accuracy is bolded in the table.

Figure 5 visualizes the two datasets’ average classification

accuracy and standard deviation under different methods. In

Dataset 1, the average classification accuracy and standard

deviation for each method are:BP(66.40 ± 8.81),RCSP(74.92 ±

12.93), FBCSP(71.49 ± 5.33),CFB − RCSP(77.70 ± 12.96),VFB −

RCSP(78.01 ± 12.61). The average classification accuracy

and standard deviation of each method in Dataset 2

are:BP(56.73 ± 2.52),RCSP(54.81 ± 0.74), FBCSP(56.62 ±

1.42),CFB − RCSP(59.54 ± 2.43), andVFB − RCSP(59.77 ± 2.06).

The VFB − RCSP proposed in this study achieves the best results

in both datasets with respect to other pre-improvement schemes.

The statistical results of the one-way repeated measures

ANOVA on the classification results of the two datasets with

the “feature extraction metho” as a factor showed that the main

effect of the “feature extraction method” was significant in both

Dataset 1 [F(3,51) = 44.64, p < 0.0001] and Dataset 2 [F(1,106) =

11.53, p=0.6832, F(5,40) = 15.17, p < 0.0001]. Table 3 shows the

comparison of CFB-RCSP and VFB-RCSP with the other three

methods under the two datasets, where the results with significant

differences are bolded in the table. The results of Tukey’s post

hoc test showed that in Dataset 1, the classification accuracy of

CFB-RCSP and VFB-RCSP is significantly higher than that of BP.

In Dataset 2, the classification accuracy of both CFB-RCSP and

VFB-RCSP methods was significantly higher than that of the other

three methods.

The combined classification and statistical test results reveal

that the suggested method outperforms the other unimproved

methods on both datasets. VFB-RCSP performs slightly better than

CFB-RCSP with a fixed bandwidth at subband segmentation in

both datasets, but the difference is not statistically significant.

3.2. Evaluation of EEG motor imagery signal
classification performance

To more comprehensively evaluate the effectiveness of the

proposed method in this study, we compared the classification

accuracy of the proposed method VFB-RCSP with some methods

proposed in recent years on Dataset 1, and the results are shown
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FIGURE 5

Average classification accuracy and standard deviation of Dataset 2 under di�erent methods.

TABLE 3 One-way repeated measures ANOVA statistical test results, p < 0.05 means that the results are significant.

Dataset 1 Dataset 2

Algorithm BP RCSP FBCSP BP RCSP FBCSP

CFB-RCSP p = 0.0016 p= 0.8350 p= 0.1638 p = 0.0109 p < 0.0001 p = 0.0074

VFB-RCSP p = 0.0012 p= 0.7763 p= 0.1311 p = 0.0050 p < 0.0001 p = 0.0034

The value of the highest classification accuracy obtained by various methods on the data of each patient is displayed in bold.

TABLE 4 Classification accuracy of the proposed method and other new methods on Dataset 1.

Subjects GRU-RNN
(2018)

IST-TSVM
(2019)

CA+PSR+CSP
(2020)

MTFL
(2020)

CSP-WPD+LOG
(2020)

METL
(2022)

Ours

Lead channels 22 22 22 22 22 22 8

1 84.82 80.14 80.00 91.67 81.25 88.19 86.11

2 65.32 51.55 65.36 63.19 63.79 56.26 70.83

3 83.54 95.54 87.14 95.14 90.97 97.91 94.44

4 67.67 53.60 67.50 72.22 70.13 74.30 73.61

5 64.00 51.65 55.54 64.58 53.47 59.03 61.11

6 70.87 56.83 50.18 68.06 61.81 70.83 70.83

7 84.96 56.58 91.79 79.17 60.42 71.52 63.89

8 71.95 93.42 84.11 97.92 84.72 91.67 93.06

9 68.90 92.66 87.86 92.37 75.69 81.25 88.19

Mean± std 73.56± 4.38 70.22± 19.74 74.39± 15.18 80.48 ± 13.97 71.29±12.59 76.77± 14.25 78.01 ±

12.61

The value of the highest classification accuracy obtained by various methods on the data of each patient is displayed in bold.

in Table 4. However, compared to MTFL, the proposed VFB-RCSP

was performed on 8-channel data, and the number of channels used

decreased significantly compared to the 22 channels used in MTFL

while the classification accuracy was not reduced much.

4. Discussion

The results presented in Section 3 show the superiority of the

proposed scheme, a new method for classifying few-channel motor

imagery EEG signals that somewhat increase the classification

accuracy of the few-channel motor imagery BCI system.

In Section 1, we have introduced the problem of excessive

number of electrode leads in the acquisition system, which is an

urgent problem to be solved in recent years for the practicalization

of BCI systems. At the same time, the small number of samples

is a significant problem for motor imagery signal classification.

We combine transfer learning with data preprocessing and

feature extraction to optimize these two problems. In the data

preprocessing process, EA was introduced to reduce the signal
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TABLE 5 Optimal subband range of subjects in Dataset 1.

Subject Optimal subband range (Hz)

CFB VFB

A1 20–24 18–26

A2 18–22 18–26

A3 20–24 16–25

A4 20-24 18–26

A5 10–14 10–16

A6 20–24 18–26

A7 18–22 16–25

A8 18–22 18–26

A9 18–22 18–26

differences among subjects to achieve the desired effect of transfer

learning better. Meanwhile, the optimal subbands of each subject

group in Dataset 1 and Dataset 2 were filtered based on Fisher

score combined with grid search to evaluate the optimization of

band selection on the feature extraction process. The results are

shown in Tables 5, 6. Obviously, the optimal subbands are different

for different subjects, so band selection for each subject will help

improve the classification performance of the motor imagery BCI

system. According to Table 5, the optimal subbands of these trained

subjects in Dataset 1 were mostly located at 16–26 Hz, which

basically coincided with the beta rhythm (18–25 Hz). Table 6 shows

that the optimal frequency bands of the untrained subjects in

Dataset 2 are unevenly distributed between 8 and 26 Hz, which

further illustrates the importance of band selection despite the

discrepancy with the results in Dataset 1. Moreover, compared to

the fixed-bandwidth CFB-RCSP, the VFB-RCSP, which varies the

sub-band bandwidth within the optimal sub-band range, has a

better chance of obtaining the optimal sub-band range of different

subjects, as also shown in Section 3.1. Meanwhile, considering the

average classification accuracy achieved on Dataset 1 and Dataset

2 (78.01% in Dataset 1 and 59.77% in Dataset 2), we believe that

the distribution of EEG signals in the EEG cortex of subjects

without training may be more extensive, resulting in the poor

quality of EEG signals acquired by the 8-channel-based motor

imagery EEG signal acquisition system to meet the subsequent

classification requirements. Therefore, the following research will

focus on improving the feature extraction algorithm and enhancing

the BCI system’s classification performance for data from untrained

subjects in the case of fewer channels.

According to Table 3, the performance of CFB-RCSP and

VFB-RCSP proposed in this study on Dataset 1 is not significantly

improved compared with RCSP and FBCSP, but it is still

significantly improved compared with BP. In contrast, the CFB-,

VFB-RCSP proposed in this study has a significant improvement

compared with RCSP and FBCSP in Dataset 2. It is worth

mentioning that the subjects in Dataset 1 have been trained for

a period of time and have rich experience in BCI collection

experiments, while the information collected in Dataset 2 used

in this study comes from subjects without any training. The

experiment on Dataset 2 is more in line with the situation of

using BCI system in daily life. From the fact that the performance

TABLE 6 Optimal subband range of subjects in Dataset 2.

Subject Optimal subband range (Hz)

CFB VFB

S1 20–24 18–26

S2 8–12 8–13

S3 20–24 16–25

S4 18–22 10–16

S5 10–14 10–16

S6 20–24 18–26

S7 10–14 10–16

S8 18–22 18–26

S9 18–22 18–26

S10 10–14 10–15

of Dataset 2 is significantly better than that of algorithms such

as RCSP, FBCSP and BP, but the performance improvement of

Dataset 1 is insufficiently significant compared with algorithms

such as RCSP and FBCSP, it can be inferred that the improvement

made in this study reduces the requirements of BCI system for

users’ training time to a certain extent, and is more friendly to the

popularization and practicality of BCI system, which is beneficial

for BCI system to go out of the laboratory and into people’s

daily life.

In addition, the algorithm proposed in this paper improves

the classification performance of the motor imagery task with few

channels by filtering the optimal band information through filter

bank splitting subbands and generating a regularized covariance

matrix by introducing the source subject EEG signal. However, this

also causes an increase in the overall system completion time for

classification. In future work, there is a need for in-depth research

on how to improve computational efficiency while maintaining the

classification performance of this algorithm.

Finally, according to the results in Section 3.2, although the

VFB-RCSP scheme proposed in this paper does not achieve the

highest classification accuracy compared to a series of methods

proposed in recent years, considering that the experiments in this

study are based on 8-channel EEG signals, while all other methods

in Table 4 are based on 22-channel EEG signals. In other words,

the classification accuracy of this method can still compare with

and surpass the majority of these 22-channel EEG-based schemes

in Table 4 by achieving the second-highest classification accuracy

despite the significant reduction in the number of channels.

Therefore, the proposed method is more advantageous from the

perspective of reducing the BCI model’s complexity and the BCI

system’s practicality.

5. Conclusion

Existing algorithms depend on the number of channels,

samples, and frequency bands. In this paper, we apply transfer

learning to a BCI system for motor imagery signal classification,

propose an 8-channel scheme based on brain science, combine

optimal subbands and regularized filter bank co-space patterns to
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propose VFB-RCSP, and perform EA alignment on the data during

experiments. Our BCI system produced substantial results in

categorizing 8-channel motor imagery EEG signals and enhanced

classification performance over the original method and other

current algorithms. Our BCI system had an outstanding average

classification accuracy of 78.01% on the BCI competition IV

2a 8-channel EEG dataset. The highest average classification

accuracy of 59.77 was also achieved on Dataset 2, which was

acquired independently by our team. This result is a significant

improvement compared to various classical algorithms without

improvement, which validates the effective improvement of our

proposed improvement for the classification performance of the

few-channel motor imagery EEG signal system. We will continue

researching and optimizing the classification of few-channel

motor imaging signals. The feature extraction technique can be

modified to optimize the quality of the EEG signals recorded

by the 8-channel-based motor imagery EEG signal acquisition

system; computational efficiency can be improved while retaining

classification performance. Future study will also include the multi-

classification task of motor imagery EEG signals.
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