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Whole-brain functional connectivity (FC) measured with functional MRI (fMRI)

evolves over time in meaningful ways at temporal scales going from years (e.g.,

development) to seconds [e.g., within-scan time-varying FC (tvFC)]. Yet, our

ability to explore tvFC is severely constrained by its large dimensionality (several

thousands). To overcome this difficulty, researchers often seek to generate

low dimensional representations (e.g., 2D and 3D scatter plots) hoping those

will retain important aspects of the data (e.g., relationships to behavior and

disease progression). Limited prior empirical work suggests that manifold learning

techniques (MLTs)—namely those seeking to infer a low dimensional non-linear

surface (i.e., the manifold) where most of the data lies—are good candidates

for accomplishing this task. Here we explore this possibility in detail. First, we

discuss why one should expect tvFC data to lie on a low dimensional manifold.

Second, we estimate what is the intrinsic dimension (ID; i.e., minimum number

of latent dimensions) of tvFC data manifolds. Third, we describe the inner

workings of three state-of-the-art MLTs: Laplacian Eigenmaps (LEs), T-distributed

Stochastic Neighbor Embedding (T-SNE), and Uniform Manifold Approximation

and Projection (UMAP). For each method, we empirically evaluate its ability to

generate neuro-biologically meaningful representations of tvFC data, as well as

their robustness against hyper-parameter selection. Our results show that tvFC

data has an ID that ranges between 4 and 26, and that ID varies significantly

between rest and task states. We also show how all three methods can effectively

capture subject identity and task being performed: UMAP and T-SNE can capture

these two levels of detail concurrently, but LE could only capture one at a time.

We observed substantial variability in embedding quality across MLTs, and within-

MLT as a function of hyper-parameter selection. To help alleviate this issue, we

provide heuristics that can inform future studies. Finally, we also demonstrate

the importance of feature normalization when combining data across subjects

and the role that temporal autocorrelation plays in the application of MLTs to

tvFC data. Overall, we conclude that while MLTs can be useful to generate

summary views of labeled tvFC data, their application to unlabeled data such as

resting-state remains challenging.
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Introduction

From a data-science perspective, a functional MRI (fMRI)
scan is a four-dimensional tensor T

[
x, y, z, t

]
with the first three

dimensions encoding position in space (x, y, z) and the fourth
dimension referring to time (t). Yet, for operational purposes, it
is often reasonable to merge the three spatial dimensions into one
and conceptualize this data as a matrix of space vs. time. With
current technology (e.g., voxel size ∼ 2 mm × 2 mm × 2 mm,
TR ∼ 1.5 s), a representative 10-min fMRI scan with full brain
coverage will generate a matrix with approximately 400 temporal
samples (number of acquisitions) in each of over 40,000 gray
matter (GM) locations (number of voxels). Before this data is ready
for interpretation, it must undergo several transformations that
address three key needs: (1) removal of signal variance unrelated to
neuronal activity; (2) spatial normalization into a common space to
enable comparisons across subjects and studies; and (3) generation
of intuitive visualizations for explorative or reporting purposes.
These three needs and how to address them will depend on the
nature of the study [e.g., bandpass filtering may be appropriate for
resting-state data and not task, the MNI152 template (Fonov et al.,
2009) will be a good common space to report adult data yet not for
a study conducted on a pediatric population]. This work focuses
on how to address the third need—the generation of interpretable
visualizations—particularly for studies that explore the temporal
dynamics of the human functional connectome.

Most human functional connectome studies use the concept
of a functional connectivity matrix (FC matrix) or its graph
equivalent. Two of the most common types of FC matrices in
the fMRI literature are: (1) static FC (sFC

[
i, j
]
) matrices designed

to capture average levels of inter-regional activity synchronization
across the duration of an entire scan, and (2) time-varying FC
(tvFC

[(
i, j
)
, t
]
) matrices meant to retain temporal information

about how connectivity strength fluctuates as scanning progresses
[see Mokhtari et al. (2018a,b) for alternative approaches]. These
two matrix types not only differ on their representational goal,
but also in their structure and dimensionality. In a sFC matrix,
rows (i) and columns (j) represent spatial locations [e.g., voxels
and regions of interest (ROIs)], and the value of a given cell (i,
j) is a measure of similarity (e.g., Pearson’s correlation, partial
correlation, and mutual information) between the complete time
series recorded at these two locations. When FC is expressed in
terms of Pearson’s correlation (the most common approach in the
fMRI literature), sFC matrices are symmetric with a unit diagonal.
Moreover, they can be transformed from their original 2D form
(N × N; N = number of spatial locations) into a 1D vector of
dimensionality Eq. 1 with Ncons being the number of unique pair-
wise connections.

Ncons = N · (N − 1)/2 (1)

Conversely, a tvFC matrix is a much larger data structure where
rows (i,j) represent connections between regions i and j, and
columns (t) represent time (Figure 1A). The size of a tvFC matrix
is Ncons × Nwins; and it is determined as follows. The number of
rows (Ncons) is given by the pairs of spatial locations contributing
to the matrix (Eq. 1). The number of columns (Nwins) is a function
of the duration of the scan (Nacq = number of temporal samples
or acquisitions) and the mechanism used to construct the matrix,

which in fMRI, is often some form of sliding window technique that
proceeds as follows. First, a temporal window of duration shorter
than the scan is chosen (e.g., Wduration = 20 samples << Nacq).
Second, a sFC matrix is computed using only the data within that
temporal window. The resulting sFC matrix is then transformed
into its 1D vector representation, which becomes the first column
of the tvFC matrix. Next, the temporal window slides forward a
given amount determined by the windowing step (e.g., Wstep = 3
samples), a new sFC matrix is computed for the new window,
transformed into its 1D form, and inserted as the second column
of the tvFC matrix. This process is repeated until a full window can
no longer be fit to the data. This results in Nwins columns, with Nwins
given by:

Nwins = floor
([

Nacqs −
(
Wduration −Wstep

)]
/Wstep

)
. (2)

For those interested in a more mathematically oriented description
of these two key data structures (sFC and tvFC) for FC analyses (see
Supplementary Note 1).

Figure 1A shows a tvFC matrix for a 25-min-long fMRI
scan (Nacqs = 1,017, TR = 1.5 s) acquired continuously as a
subject performed and transitioned between four different tasks
[i.e., rest, working memory (WM), arithmetic calculations, and
visual attention (VA) (Gonzalez-Castillo et al., 2015)]. Each task
was performed continuously for two separate 3 min periods. The
tvFC matrix was generated using a brain parcellation with 157
ROIs and a sliding window approach (Wduration = 30 samples,
Wstep = 1 sample). As such, the dimensions of the tvFC matrix
are 12,246 connections × 988 temporal windows. Figure 1A shows
the matrix at scale (each datapoint represented by a square) so
we can appreciate the disproportionate ratio between number of
connections (y-axis) and number of temporal samples (x-axis).
Figure 1B shows the same matrix as Figure 1A, but this time the
temporal axis has been stretched so that we can better observe the
temporal evolution of FC. In this view of the data, connections
are sorted according to average strength across time. The colored
segments on top of the matrix indicate the task being performed at
a given window [gray, rest; blue, WM; yellow, VA; green, arithmetic
(Math)]. Colors are only shown for task-homogenous windows,
meaning those that span scan periods when the subject was always
performing the same task (i.e., no transitions or two different tasks).
Transition windows, namely those that include more than one task
and/or instruction periods, are marked as empty spaces between
the colored boxes. Figures 1C, D show the same tvFC matrix as
Figure 1A, but with connections sorted by temporal volatility (i.e.,
coefficient of variation) and hemispheric membership, respectively.
In all instances, irrespective of sorting, it is quite difficult to directly
infer from these matrices basic characteristics of how FC varies over
time and/or relates to behavior. This is in large part due to the high
dimensionality of the data.

When an initial exploration of high dimensional data is needed,
it is common practice to generate a low dimensional representation
(e.g., two or three dimensions) that can be easily visualized
yet preserves important information about the structure of the
data (e.g., groups of similar samples and presence of outliers)
in the original space. Figure 1E shows one such representation
of our tvFC matrix generated using a manifold learning method
called Laplacian Eigenmaps (LEs; Belkin and Niyogi, 2003). In

Frontiers in Human Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1134012
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1134012 July 6, 2023 Time: 15:0 # 3

Gonzalez-Castillo et al. 10.3389/fnhum.2023.1134012

FIGURE 1

(A) Time-varying FC matrix at scale to illustrate the disproportionate larger dimensionality of the connectivity axis (y-axis) relative to the time axis
(x-axis). (B) Same tvFC matrix as in panel (A) but no longer at scale. The x-axis has now been stretched to better observe how connectivity evolves
over time. Connections are sorted in terms of their average strength. Task-homogenous windows are clearly marked above the tvFC matrix with
color-coded rectangles. (C) Same tvFC matrix with connections sorted in terms of their volatility (as indexes by the coefficient of variance). (D) Same
tvFC matrix with connections sorted according to hemispheric membership. Intra-hemispheric connections appear at the top of the matrix and
inter-hemispheric at the bottom. Laplacian Eigenmap (correlation distance, k = 90) for the tvFC matrix in panels (A–D) with no color annotation (E),
annotated by time (F), and annotated by task (G). (H) Laplacian Eigenmap for the tvFC matrix in panels (A–D) using correlation distance and k = 20.
(I) Euclidean distance of each point in the embedding from the origin. Dashed lines indicate automatically detected peaks in the distance trace.
Shaded regions around those locations indicate the temporal segments (30 windows) used to compute the FC matrices represented below. (J) FC
matrices associated with each scan interval indicated in panel (I). (K) Same information as in panel (J) but shown over a brain surface. Only
connections with | r| > 0.4 are shown in these brain maps.

this representation, each column from the tvFC matrix becomes
a point in 3D space. In other words, each point represents the
brain FC during a portion of the scan (in this case a 30 samples
window). Points that are closer in this lower dimensional space
are supposed to correspond to whole brain FC patterns that are
similar. A first look at Figure 1E reveals that there are four different
recurrent FC configurations (corners marked with red arrows). If
we annotate points with colors that represent time (Figure 1F),
we can also learn that each of those configurations were visited
twice, once during the first half of the scan (blue tones) and a
second time during the second half (red tones). Similarly, if we
compute the Euclidean distance of each point in the embedding
to the origin, we can easily observe the temporal profile of the
experiment with eight distinct blocks (Figure 1I). One could then
use this information to temporally fragment scans into segments
of interest and explore the whole brain FC patterns associated with
each of them (Figures 1J, K). Similar approaches that rely on tvFC
embeddings as an initial step toward making biological inferences
about how FC self-organizes during rest (Saggar et al., 2018)
or relates to covert cognitive processes (Gonzalez-Castillo et al.,
2019) have been previously reported and we refer readers to these
works for additional details on how dimensionality reduction can
inform subsequent analyses aimed at making biological inferences
regarding the dynamics of FC.

Finally, if we annotate the points with information about the
task being performed at each window, we can clearly observe that
the four corners correspond to FC patterns associated with each
of the tasks—with temporally separated occurrences of the task
appearing close to each other—and that transitional windows tend
to form trajectories going between two corners corresponding to
the tasks at both ends of each transitional period.

To achieve the meaningful representations presented
in Figures 1E–G, one ought to make several analytical
decisions beyond those related to fMRI data preprocessing
and brain parcellation selection. These include the selection of a
dimensionality reduction method, a dissimilarity function and a set
of additional method-specific hyper-parameters (e.g., number of
neighbors, perplexity, learning rate, etc.). In the same way to how
using the wrong bandpass filter while pre-processing resting-state
data can eliminate all neuronally relevant information, choosing
incorrect hyper-parameters for LE can produce less meaningful low
dimensional representations of tvFC matrices. Figure 1H shows
one such instance, where using an excessively small neighborhood
(Knn) resulted on a 3D scatter that only captures temporal
autocorrelation (e.g., temporally successive windows appear next
to each other in a “spaghetti-like” structure) and misses the other
important data characteristics discussed in the previous paragraph
(e.g., the repetitive task structure of the experimental paradigm).
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In this manuscript we will explore the usability of three
prominent manifold learning methods—namely LE, T-distributed
Stochastic Neighbor Embedding (T-SNE; van der Maaten
and Hinton, 2008), and Uniform Manifold Approximation
and Projection (UMAP; McInnes et al., 2018)—to generate
low-dimensional representations of tvFC matrices that retain
neurobiological and behavioral information. These three methods
were selected because of their success across scientific disciplines,
including many biomedical applications (Zeisel et al., 2018;
Diaz-Papkovich et al., 2019; Kollmorgen et al., 2020). First, in
section “Theory,” we will introduce the manifold hypothesis and
the concept of intrinsic dimension (ID) of a dataset. We will also
provide a programmatic level description (as opposed to purely
mathematical) of each of these methods. Next, we will evaluate
each method’s ability to generate meaningful low dimensional
representations of tvFC matrices using a clustering framework and
a predictive framework for both individual scans and the complete
dataset. Readers interested solely on the empirical evaluation of
the methods are invited to skip the section “Theory” and proceed
directly to the section “Materials and methods,” “Results,” and
“Discussion.” The section “Theory” is intended to provide a
detailed introductory background to manifold learning and the
methods under scrutiny here to members of the neuroimaging
research community, without assuming a machine learning
background.

Our results demonstrate the tvFC data reside in low
dimensional manifolds that can be effectively estimated by the
three methods under evaluation, yet also highlight the importance
of correctly choosing key hyper-parameters as well as that of
considering the effects of temporal autocorrelation when designing
experiments and interpreting the final embeddings. In this regard,
we provide a set of heuristics that can guide their application
in future studies. In parallel, we also demonstrate the value of
ID for deciding how many dimensions ought to be explored or
included in additional analytical steps (e.g., spatial transformations
and classification), and demonstrate its value as an index of how
tvFC complexity varies between resting and task states.

Theory

Manifold hypothesis

The manifold hypothesis sustains that many high dimensional
datasets that occur in the real world (e.g., real images, speech, etc.)
lie along or near a low-dimensional manifold (e.g., the equivalent
of a curve or surface beyond three dimensions) embedded in
the original high dimensional space (often referred to as the
ambient space). This is because the generative process for real
world data usually has a limited number of degrees of freedom
constrained by laws (e.g., physical, biological, linguistic, etc.)
specific to the process. For example, images of human faces lie
along a low dimensional manifold within the higher dimensional
ambient pixel space because most human faces have a quite regular
structure (one nose between two eyes sitting above a mouth, etc.)
and symmetry. This makes the space of pixel combinations that
lead to images of human faces a very limited space compared
to that of all possible pixel combinations. Similarly, speech lies

in a low dimensional manifold within the higher dimensional
ambient space of sound pressure timeseries because speech sounds
are restricted both by the physical laws that limit the type of
sounds the human vocal tract can generate and by the phonetic
principles of a given language. Now, does an equivalent argument
apply to the generation of tvFC data? In other words, is there
evidence to presume that tvFC data lies along or near a low
dimensional manifold embedded within the high dimensional
ambient space of all possible pair-wise FC configurations? The
answer is yes. Given our current understanding of the functional
connectome and the laws governing fMRI signals it is reasonable
to assume that the manifold hypothesis applies to fMRI-based
tvFC data.

First, the topological structure of the human functional
connectome is not random but falls within a small subset of possible
topological configurations known as small-world networks, which
are characterized by high clustering and short path lengths
(Sporns and Honey, 2006). This type of network structure allows
the co-existence of functionally segregated modules (e.g., visual
cortex and auditory cortex) yet also provide efficient ways for
their integration when needed. Second, FC is constrained by
anatomical connectivity (Goñi et al., 2014); which is also highly
organized and far from random. Third, when the brain engages in
different cognitive functions, FC changes accordingly (Gonzalez-
Castillo and Bandettini, 2018); yet those changes are limited
(Cole et al., 2014; Krienen et al., 2014), and global properties
of the functional connectome, such as its small-worldness, are
preserved as the brain transitions between task and rest states
(Bassett et al., 2006). Forth, tvFC matrices have structure in both
the connectivity and time dimensions. On the connectivity axis,
pair-wise connections tend to organize into networks (i.e., sets
of regions with higher connectivity among themselves than to
the rest of the brain) that are reproducible across scans and
across participants. On the temporal axis, connectivity time-
series show temporal autocorrelation due to the sluggishness of
the hemodynamic response and the use of overlapping sliding
windows. Fifth, previous attempts at applying manifold learning
to tvFC data have proven successful at generating meaningful
low dimensional representations that capture differences in FC
across mental states (Bahrami et al., 2019; Gonzalez-Castillo
et al., 2019; Gao et al., 2021), sleep stages (Rué-Queralt et al.,
2021), and populations (Bahrami et al., 2019; Miller et al.,
2022). The same is true for static FC data (Casanova et al.,
2021).

Methods aimed at finding non-linear surfaces or manifolds
are commonly referred to as manifold learning methods. It is
important to note that the word “learning” does not denote the
need for labels or that these methods should be regarded as
“supervised.” The use of the word “learning” here is aimed at
signaling that the goal of these manifold learning methods—and
others not discussed here—is to discover (i.e., learn) an intrinsic
low-dimensional non-linear structure—namely the manifold—
where the data lies. It is through that process that manifold learning
methods accomplish the goal of reducing the dimensionality of
data and are able to map the data from the high dimensional
input space (the ambient space) to a lower dimensional space (that
of the embedding) in a way that preserves important geometric
relationships between datapoints.
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Intrinsic dimension

One important property of data is their ID (Campadelli et al.,
2015), namely the minimum number of variables (i.e., dimensions)
required to describe the manifold where the data lie with little loss
of information. Given the above-mentioned constrains that apply
to the generative process of tvFC data, it is reasonable to expect that
the ID of tvFC data will be significantly smaller than that of the
original ambient space, yet it may still be a number well above three.
Because ID informs us about the minimum number of variables
needed to faithfully represent the data, having an estimate of what
is the ID of tvFC data is key. For example, if the ID is greater than
three, one should not restrict visual exploration of low dimensional
representations of tvFC data to the first three dimensions and
should also explore dimensions above those. Similarly, if manifold
estimation is used to compress the data or extract features for a
subsequent classification step, knowing the ID can help us decide
how many dimensions (i.e., features) to keep. Finally, ID of a dataset
can also be thought of as a measure of the complexity of the data
(Ansuini et al., 2019). In the context of tvFC data, such a metric
might have clinical and behavioral relevance.

Intrinsic dimension estimation is currently an intense area
of research (Facco et al., 2017; Albergante et al., 2019), with ID
estimation methods in continuous evolution to address open issues
such as computational complexity, under-sampled distributions,
and dealing with datasets that reside in multiple manifolds [see
Campadelli et al. (2015) for an in-depth review of these issues].
Because no consensus exists on how to optimally select an ID
estimator, here we will compare estimates from three state-of-
the-art methods, namely local PCA (lPCA; Fan et al., 2010),
two nearest neighbors (twoNN; Facco et al., 2017), and Fisher
separability (FisherS; Albergante et al., 2019). These three ID
estimators were selected because of their complementary nature
on how they estimate ID, robustness against data redundancy and
overall performance (Bac et al., 2021). In all instances, we will
report both global and local ID (IDlocal) estimates. The global ID
(IDglobal) is a single ID estimate per dataset generated using all data
samples. It works under the assumption that the whole dataset has
the same ID (see Supplementary Figure 1C for a counter example).
Conversely, IDlocal estimates are computed on a sample-by-sample
basis using small vicinities of size determined by the number of
neighbors (knn). In that way, IDlocal estimates can help identify
regions with different IDs; yet its accuracy is more dependent on
noise levels and the relative size of the data curvature with respect
to knn. See Supplementary Note 2 for additional details on the
relationship between IDglobal and IDlocal, and about how knn can
affect IDlocal estimation.

Laplacian Eigenmaps

The first method that we evaluate is the LE algorithm originally
described by Belkin and Niyogi (2003) and publicly available as part
of the scikit-learn library (Pedregosa et al., 2011). In contrast to
linear dimensionality reduction methods (e.g., PCA) that seek to
preserve the global structure of the data, LE attempts to preserve its
local structure. Importantly, this bias toward preservation of local

over global structure facilitates the discovery of natural clusters in
the data.

The LE algorithm starts by constructing an undirected graph
(G) from the data (Figure 2D). In G, each node represents a sample
(i.e., a column of the tvFC matrix; Figure 2A), and edges are drawn
only between nodes associated with samples that are “close” in
original space. The construction of G proceeds in two steps. First,
a dissimilarity matrix (DS) is computed (Figure 2B). For this, one
must choose a distance function (d). Common choices include the
Euclidean, Correlation, and Cosine distances (see Supplementary
Note 3 for additional details about these distance metrics). Next,
this DS matrix is transformed into an affinity matrix (W) using the
N-nearest neighbors algorithm (Figure 2C). In W, the entry for i and
j (Wij) is equal to 1 (signaling the presence of an edge) if and only if
node i is among the Knn nearest neighbors of node j (i→ j) or j is
among the Knn nearest neighbors of node i (j→ i). Otherwise Wij
equals zero. An affinity matrix constructed this way is equivalent
to an undirected, unweighted graph (Figure 2D). According to
Belkin and Niyogi (2003), it is also possible to work with a weighted
version of the graph, for example:

Wij =


1 if i→ j and j→ i

0.5 if i→ j or j→ i
0 otherwise

(3)

This alternative version is the one used in the implementation of
the scikit-learn library used in this work.

Once the graph is built, the next step is to obtain the Laplacian
matrix (L)1 of the graph, which is defined as

L = D−W. (4)

In Eq. 4, W is the affinity matrix (Eq. 3), and D is a matrix that holds
information about the degree (i.e., number of connections) of each
node on the diagonal and zeros elsewhere. The last step of the LE
algorithm is to extract eigenvalues (λ0 ≤ λ1 ≤ ... ≤ λk−1) and
eigenvectors (f0, ..., fk−1) by solving

Lf = λDf . (5)

Once those are available, the embedding of a given sample x in a
lower dimensional space with m� k dimensions is given by:

x =
{

x0, ..., xk−1
}
→ xembedded =

{
f1 (x) , ..., fm (x)

}
(6)

The first eigenvector f0 is ignored because its associated eigenvalue
λ0 is always zero. For those interested in a step-by-step
mathematical justification of why the spectral decomposition
of L renders a representation of the data that preserves local
information, read Section 3 of the original work by Belkin and
Niyogi (2003). Intuitively, the Laplacian matrix is a linear operator
that holds information about all between-sample relationships
in the manifold and the eigenvectors obtained via its spectral
decomposition provide a set of orthonormal bases.

In summary, the LE algorithm requires, at a minimum, the
selection of a distance function (d), and a neighborhood size (knn).
These two hyper-parameters (marked in red in Figure 2) determine

1 Some implementations of the LE algorithm, like the one in skicit-learn,
work with the normalized version of the Laplacian matrix.

Frontiers in Human Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1134012
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-17-1134012 July 6, 2023 Time: 15:0 # 6

Gonzalez-Castillo et al. 10.3389/fnhum.2023.1134012

FIGURE 2

The Laplacian Eigenmap algorithm. (A) Representative tvFC matrix for a multi-task run from Gonzalez-Castillo et al. (2015), which consists of a scan
acquired continuously as participants engage and transition between four different mental tasks (2-back, math, visual attention (VA), and rest).
Additional details in the Dataset portion of the section “Materials and methods.” Columns indicate windows and rows indicate connections.
(B) Dissimilarity matrix for the tvFC matrix in panel (A) computed using the Euclidean distance function. (C) Affinity matrix computed for panel (B)
using Knn = 90 neighbors. Black cells indicate 1 (i.e., an edge exists) and white indicate zero (no edge). (D) Graph visualization of the affinity matrix in
panel (C). In the top graph all nodes are colored in white to highlight that the LE algorithm used no information about the tasks at any moment. The
bottom graph is the same as the one above, but now nodes are colored by task to make apparent how the graph captures the structure of the data
(e.g., clusters together windows that correspond to the same experimental task). (E) Final embedding for m = 3. This embedding faithfully presents
the task structure of the data. (F) Final embedding for m = 2. In this case, the windows for rest and memory overlap. Red arrows and text indicate
decision points in the algorithm. Step-by-step code describing the LE algorithm and used to create the different panels of this figure can be found in
the code repository that accompanies this publication (Notebook N03_Figure02_Theory_LE.ipynb).

the construction of G because they mathematically specify what it
means for two tvFC patterns to be similar (or graph nodes to be
connected). Because the LE algorithm does not look back at the
input data once G is constructed, and all algorithmic steps past the
construction of G are fixed, appropriately selecting d and knn is key
for the generation of biologically meaningful embeddings of tvFC
data. Finally, as with any dimensionality reduction technique, one
must also select how many dimensions to explore (m; Figures 2E,
F), but in the case of LE such decision does not affect the inner
workings of the algorithm.

T-distributed Stochastic Neighbor
Embedding (T-SNE)

The second technique evaluated here is T-SNE (van der
Maaten and Hinton, 2008), which is a commonly used method
for visualizing high dimensional biomedical data in two or three
dimensions. Like LE, T-SNE’s goal is to generate representations
that give priority to the preservation of local structure. These two
methods are also similar in that their initial step requires the
selection of a distance function used to construct a DS (Figure 3B)

that will subsequently be transformed into an affinity matrix (P;
Figure 3C). Yet, T-SNE uses a very different approach to go from
DS to P. Instead of relying on the N-nearest neighbor algorithm, T-
SNE models pair-wise similarities in terms of probability densities.
Namely, the affinity between two points xi and xj in original space
is given by the following conditional Gaussian distribution:

pj|i =
e−d(xi,xj)

2
/2σ2

i∑
k 6= i e−d(xi,xk)

2/2σ2
i

(7)

As such, T-SNE conceptually defines the affinity between xi and
xj as the likelihood that xi would pick xj as its neighbor, with the
definition of neighborhood given by a Gaussian kernel of width (σ2

i )
centered at xi. The width of the kernel (σ2

i ) is sample-dependent to
accommodate datasets with varying densities (see Supplementary
Figure 2 for an example) and ensure all neighborhoods are
equivalent in terms of how many samples they encompass. In fact,
T-SNE users do not set σ2

i directly but select neighborhood size
via the perplexity (PP) parameter, which can be thought of as an
equivalent to knn in the LE algorithm. See Supplementary Note 4
for more details on how perplexity relates to neighborhood size.

Because conditional probabilities are not symmetric, entries
in the affinity matrix P are defined as follows in terms of the
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FIGURE 3

The T-SNE algorithm. (A) Representative tvFC matrix for a multi-task run (same as in Figure 2). Columns indicate windows and rows indicate
connections. (B) Dissimilarity matrix for the tvFC matrix in panel (A) computed using the Euclidean distance function. (C) Affinity matrix generated
using Eqs 3, 4 and a perplexity value of 100. (D) Random lower-dimensional representation of the data. Each dot represents one column of the data
in panel (A). (E) Dissimilarity matrix for the data in panel (D) computed using the Euclidean distance function. (F) Affinity matrix for the data in panel
(D) computed using a T-distribution function as in Eq. 5. (G) Evolution of the cost function with the number of gradient descent iterations. In this
execution, the early exaggeration factor was set to 4 for the initial 100 iterations [as originally described by van der Maaten and Hinton (2008)].
A dashed vertical line marks the iteration when the early exaggeration factor was removed (early exaggeration phase highlighted in light blue). Below
the cost function evolution curve, we show embeddings and affinity matrices for a set of representative iterations. Iterations corresponding to the
early exaggeration periods are shown on the left, while iterations for the post early exaggeration period are shown on the right. In the embeddings,
points are colored according to the task being performed on each window. Windows that contain more than one task are marked in pink with the
label “XXXX.” Step-by-step code describing a basic implementation of the T-SNE algorithm and used to create the different panels of this figure can
be found in the code repository that accompanies this publication (Notebook N04_Figure03_Theory_TSNE.ipynb).

conditional probabilities defined in Eq. 7:

P
(
i, j
)
=

pi|j + pj|i

2
(8)

T-distributed Stochastic Neighbor Embedding proceeds next by
generating an initial set of random coordinates for all samples
in the lower m dimensional space (ϒinit ; Figure 3D). Once ϒinit
is available, a dissimilarity (Figure 3E) and an affinity matrix
(Q; Figure 3F) are also computed for this random initial low
dimensional representation of the data. To transform DS into Q,
T-SNE uses a T-Student distribution (Eq. 9) instead of a Gaussian
distribution. The reason for this is that T-Student distributions have
heavier tails than Gaussian distributions, which in the context of T-
SNE, translates into higher affinities for distant points. This gives
T-SNE the ability to place distant points further apart in the lower
dimensional representation and use more space to model the local
structure of the data.

qi,j =

(
1+ d

(
xi, xj

)2
)−1

∑
k
∑

k 6= l

(
1+ d (xk, xl)

2
)−1 (9)

The T-SNE steps presented so far constitute the setup phase of the
algorithm (Figures 3A–F). From this point onward (Figure 3G),
the T-SNE algorithm proceeds as an optimization problem where
the goal is to update ϒ (e.g., the locations of the points in lower
m dimensional space) in a way that makes P and Q most similar
(e.g., match pair-wise distances). T-SNE solves this optimization
problem using gradient descent to minimize the Kullback–Leibler
(KL) divergence between both affinity matrices (Eq. 10).

C = KL (P||Q) =
∑

i

∑
j

pijlog
pij

qij
(10)

Figure 3G shows how C evolves with the number of gradient
descent iterations. Below the C curve we show intermediate
low dimensional representations (ϒ) and affinity matrices (Q)
at representative iterations. In this execution of T-SNE, it takes
approximately 20–50 iterations for ϒ to present some meaningful
structure: rest windows (gray dots) being together on the top
left corner of the embedding and VA windows (yellow dots)
being on the bottom right corner. As the number of iterations
grows the profile becomes more distinct, and windows associated
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with the math (green) and WM tasks (blue) also start to
separate. Because T-SNE’s optimization problem is non-convex,
modifications to the basic gradient descent algorithm are needed
to increase the chances of obtaining meaningful low dimensional
representations. These include, among others, early compression
(i.e., the addition of an L2-penalty term to the cost function during
initial iterations), early exaggeration (i.e., a multiplicative term on P
during initial iterations), and an adaptative learning rate procedure.
For example, Figure 3G shows the effects of early exaggeration.
At iteration 100, when early exaggeration is removed, C sharply
decreases as P suddenly becomes much closer in value to Q.
As the optimization procedures continues beyond that point, we
can observe how the temporal autocorrelation inherent to tvFC
data dominates the structure of the embedding (e.g., continuous
spaghetti-like structure), yet windows corresponding to the two
different periods of each task still appear close to each other
showing the ability of the embedding to also preserve behaviorally
relevant information.

These optimization “tricks” result into additional hyper-
parameters that can affect the behavior of T-SNE, yet not all
of them are always accessible to the user. For example, in the
scikit-learn library (the one used in this work), one can set
the early exaggeration factor, but not the number of gradient
descent iterations to which it applies. Given optimization of
gradient descent is beyond the scope of this work, here we
focus our investigation only on the effects of distance metric (d),
perplexity (PP), and learning rate (α). Similarly, it is also worth
noting that the description of T-SNE provided in this section
corresponds roughly to that originally proposed by van der Maaten
and Hinton (2008). Since then, several modifications have been
proposed, such as the use of the Barnes–Hut approximation to
reduce computational complexity (Maaten, 2014), and the use
of PCA initialization to introduce information about the global
structure of the data during the initialization process (Kobak and
Berens, 2019). These two modifications are available in scikit-
learn and will be used as defaults in the analyses described
below.

In summary, although T-SNE and LE share the goal of
generating low dimensional representations that preserve local
structure and rely on topological representations (i.e., graphs) to
accomplish that goal, the two methods differ in important aspects.
First, the number of hyper-parameters is much higher for T-SNE
than LE. This is because the T-SNE algorithm contains a highly
parametrized optimization problem with options for the learning
rate, early exaggeration, early compression, Barnes-Hut radius,
and initialization method to use. Second, in LE the number of
desired dimensions (m) is used to select the number of eigenvectors
to explore, and as such, it does not affect the outcome of the
algorithm in any other way. That is not the case for T-SNE,
where m determines the dimensionality of ϒ at all iterations, and
therefore the space that the optimization problem can explore in
search of a solution. In other words, if one were to run LE for
m = 3 and later decide to only explore the first two dimensions,
that would be a valid approach as the first two dimensions of
the solution for m = 3 are equivalent to the two dimensions of
the solution for m = 2. The same is not true for T-SNE, which
would require separate executions for each scenario (m = 2 and
m = 3).

Uniform Manifold Approximation and
Projection (UMAP)

The last method considered here is UMAP (McInnes et al.,
2018). UMAP is, as of this writing, the latest addition to the family
of dimensionality reduction techniques based on neighboring
graphs. Here we will describe UMAP only from a computational
perspective that allow us to gain an intuitive understanding of the
technique and its key hyperparameters. Yet, it is worth noting that
UMAP builds on strong mathematical foundations from the field of
topological data analysis (TDA; Carlsson, 2009), and that, it is those
foundations [as described in Section 2 of McInnes et al. (2018)],
that justify each procedural step of the UMAP algorithm. For those
interested in gaining a basic understanding of TDA we recommend
these two works: (Chazal and Michel, 2021) which is written for
data scientists as the target audience, and (Sizemore et al., 2019)
which is more specific to applications in neuroscience.

Uniform Manifold Approximation and Projection can be
described as having two phases: (1) the construction of an
undirected weighted graph for the data, and (2) the computation
of a low dimensional layout for the graph. Phase one proceeds as
follows. First, a DS (Figure 4B) is computed using the user-selected
distance function d. This DS matrix is then transformed into a
binary adjacency matrix (A; Figure 4C) using the k-nearest neighbor
algorithm and a user-selected number of neighbors (knn). This is
similar to the first steps in LE, except that here matrix A defines
a directed (as opposed to undirected in LE) unweighted graph
Ga = (V, E, wa) (Figure 4D) where V is a set of nodes/vertices
representing each data sample (i.e., a window of connectivity), E
is the set of edges signaling detected neighboring relationships, and
wa equals 1 for all edges in E. Third, UMAP computes an undirected
weighted graph Gb = (V, E, wb) (Figure 4F) with the same set of
nodes and edges of Ga, but with weights wb given by

wb

((
xi, xij

))
= exp

−max
(

0, d
(

xi, xij

)
− ρi

)
σi

 (11)

where xij refers to the j-th nearest neighbor of node xi with

j =
{

1..knn
}

, d
(

xi, xij

)
is their dissimilarity as provided by the

distance function d, and ρi and σi are node-specific normalization
factors given by Eqs 12, 13 below.

ρi = min
{

d
(
xi, xj

) ∣∣i ≤ j ≤ k , d
(
xi, xj

)
> 0

}
(12)

k∑
j = 1

exp

−max
(

0, d
(

xi, xij

)
− ρi

)
σi

 = log2
(
knn
)

(13)

By constructing Gb this way, UMAP ensures that in Gb all nodes
are connected to at least one other node with a weight of one, and
that the data is represented as if it were uniformly distributed on the
manifold in ambient space. Practically speaking, Eqs 11 through 13
transform original dissimilarities between neighboring nodes into
exponentially decaying curves in the range [0,1] (Figure 4E).

Finally, if we describe Gb in terms of an affinity matrix B

Bi,j =

{
wb
(
i, j
)

if
(
i, j
)
∈ E

0 otherwise
(14)
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FIGURE 4

(A) Input tvFC data (same as in Figure 2). (B) Dissimilarity matrix obtained using the Euclidean distance as a distance function. (C) Binary
non-symmetric affinity matrix for Knn = 90. (D) Graph equivalent of the affinity matrix in panel (C). (E) Effect of the distance normalization step on
the original dissimilarities between neighboring nodes. (F) Graph associated with the normalized affinity matrix. (G) Final undirected graph after
application of Eq. 15. This is the input to the optimization phase. (H) Representative embeddings at different epochs of the stochastic gradient
descent algorithm for an initial learning rate equal to 1. (I) Same as panel (H) but when the initial learning rate is set to 0.01. (J) Difference between
embeddings at consecutive epochs measured as the average Euclidean distance across all node locations for an initial learning rate of 1 (dark gray)
and 0.01 (light gray). Step-by-step code describing a basic implementation of the UMAP algorithm and used to create the different panels of this
figure can be found in the code repository that accompanies this publication (Notebook N05_Figure04_Thoery_UMAP.ipynb).

Then, we can generate a symmetrized version of matrix B, called C,
as follows:

C = B+ BT
− B ◦ BT (15)

This matrix C represents graph Gc = (V, E, wc) (Figure 4G),
which is the undirected weighted graph whose layout is optimized
during phase 2 of the UMAP algorithm as described next.

Once Gc is available, the second phase of the UMAP algorithm
is concerned with finding a set of positions for all nodes
({Yi}i = 1..N ) in Rm, with m being the desired number of user-
selected final dimensions. For this, UMAP uses a force-directed
graph-layout algorithm that positions nodes using a set of attractive
and repulsive forces proportional to the graph weights. An
equivalent way to think about this second phase of UMAP—that
renders a more direct comparison with T-SNE—is in terms of an
optimization problem attempting to minimize the edge-wise cross-
entropy (Eq. 16) between Gc and an equivalent weighted graph
H = (V, E, wh) with node layout given by {Yi}i = 1..N ∈ Rm. The
goal being to find a layout for H that makes H and Gc are as similar
as possible as dictated by the edge-wise cross-entropy function.

CrossEntropy (Gc, H) =
∑
∀(i,j)∈E

yi,j · log

(
wci,j

whi,j

)
(16)

+
(
1− wci,j

)
· log

(
1− wci,j

1− whi,j

)

If we compare T-SNE’s (Eq. 10) and UMAP’s (Eq. 16) optimization
cost functions, we can see that Eq. 10 is equivalent to the left
term of Eq. 16. This left term represents the set of attractive forces
along the edges that is responsible for positioning together similar
nodes in Rm. Conversely, the right term of Eq. 16 represents
a set of repulsive forces between nodes that are responsible for
enforcing gaps between dissimilar nodes. This additional term
helps UMAP preserve some of the global structure of the data while
still capturing local structure.

Figures 4H, I exemplify how UMAP phase 2 proceeds for two
different learning rates (a key hyper-parameter of the optimization
algorithm). These two panels in Figure 4 show embeddings at
representative epochs (e.g., 2, 5, 11, 100, 350, 499, and 500).
Additionally, Figure 4J shows the average Euclidean distance
between all nodes at two consecutive epochs. This allows us to
evaluate if optimization proceeds smoothly with small changes
in the embedding from one step to the next, or abruptly. An
abrupt optimization process is not desirable because, if so, a small
change in the number of epochs to run can lead to substantially
different results. Figure 4I shows how when the learning rate is set
to 0.01, optimization proceeds abruptly only at the initial stages
(Nepoch < 100) and then stabilizes. In this case a small change
in the maximum number of epochs to run will not affect the
results. Moreover, the embedding for Nepoch = 500 in Figure 4I has
correctly captured the structure of the data (i.e., the tasks). Next,
in Figure 4H we observe that the same is not true for a learning
rate of 1 (the default value in the umap-learn library). In this case,
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embeddings substantially change from one epoch to the next all the
way to Nepoch = 500. These results highlight the strong effects that
hyper-parameters associated with optimization phase of UMAP can
have when working with tvFC data.

In summary, although UMAP shares many conceptual and
practical aspects with LE and T-SNE, it differs in important ways
on the specifics of how a graph is generated from the data and
how this graph is translated into a low dimensional embedding.
Similarly to LE and T-SNE, UMAP requires careful selection of
distance metric (d), neighborhood size (knn) and the dimensionality
of the final space (m). In addition, like T-SNE, UMAP exposes
many additional parameters associated with its optimization phase.
Here we have only discussed the learning rate and maximum
number of epochs, but many other are available. For a complete list
please check the umap-learn documentation. For this work, unless
expressed otherwise, we will use default values for all other hyper-
parameters. Finally, there is one more hyper-parameter specific to
UMAP that we have not yet discussed called minimum distance
(min_dist). Its value determines the minimum separation between
closest samples in the embedding. In that way, min_dist controls
how tightly together similar samples appear in the embedding (see
Supplementary Note 5 for additional details).

Materials and methods

Dataset

This work is conducted using a multi-task dataset previously
described in detail in Gonzalez-Castillo et al. (2015, 2019). In
summary, it contains data from 22 subjects (13 females; age
27 ± 5) who gave informed consent in compliance with a protocol
approved by the Institutional Review Board of the National
Institute of Mental Health in Bethesda, MD, USA. The data from
two subjects were discarded from the analysis due to excessive
spatial distortions in the functional time series.

Subjects were scanned continuously for 25 min and 24 s
while performing four different tasks: rest with eyes open (REST),
simple mathematical computations (MATH), 2-back WM, and
VA/recognition. Each task occupied two separate 180-s blocks,
preceded by a 12 s instruction period. Task blocks were arranged so
that each task was always preceded and followed by a different task.
Additional details can be found on the Supplementary material
accompanying Gonzalez-Castillo et al. (2015).

Data acquisition

Imaging was performed on a Siemens 7 T MRI scanner
equipped with a 32-element receive coil (Nova Medical).
Functional runs were obtained using a gradient recalled, single shot,
echo planar imaging (gre-EPI) sequence: (TR = 1.5 s; TE = 25 ms;
FA = 50◦; 36 interleaved slices; slice thickness = 2 mm; in-
plane resolution = 2 × 2 mm; GRAPPA = 2). Each multi-task
scan consists of 1,017 volumes acquired continuously as subjects
engage and transition between the different tasks. In addition, high
resolution (1 mm3) T1-weighted magnetization-prepared rapid

gradient-echo and proton density sequences were acquired for
presentation and alignment purposes.

Data pre-processing

Data pre-processing was conducted with AFNI (Cox, 1996).
Preprocessing steps match those described in Gonzalez-Castillo
et al. (2015), and include: (i) despiking; (ii) physiological noise
correction (in all but four subjects, due to the insufficient quality
of physiological recordings for these subjects); (iii) slice time
correction; and (iv) head motion correction. In addition, mean,
slow signal trends modeled with Legendre polynomials up to
seventh order, signal from eroded local white matter, signal from
the lateral ventricles (cerebrospinal fluid), motion estimates, and
the first derivatives of motion were regressed out in a single
regression step to account for potential hardware instabilities and
remaining physiological noise (ANATICOR; Jo et al., 2010). Finally,
time series were converted to signal percent change, bandpass
filtered (0.03–0.18 Hz), and spatially smoothed (FWHM = 4 mm).
The cutoff frequency of the high pass filter was chosen to match the
inverse of window length (WL = 45 s); following recommendations
from Leonardi and Ville (2014).

In addition, spatial transformation matrices to go from EPI
native space to Montreal Neurological Institute (MNI) space
were computed for all subjects following procedures previously
described in Gonzalez-Castillo et al. (2013). These matrices were
then used to bring publicly available ROI definitions from MNI
space into each subject’s EPI native space.

Brain parcellation

We used 157 regions of interest from the publicly available
version of the 200 ROI version of the Craddock Atlas (Craddock
et al., 2012). The missing 43 ROIs were excluded because they did
not contain at least 10 voxels in all subjects’ imaging field of view.
Those were ROIs primarily located in cerebellar, inferior temporal,
and orbitofrontal regions.

Time-varying functional connectivity

First, for each scan we obtained representative timeseries for
all ROIs as the spatial average across all voxels part of the ROI
using AFNI program 3dNetCorr (Taylor and Saad, 2013). Next,
we computed time-varying FC for all scans separately using 45 s
(30 samples) long rectangular windows with an overlap of one
sample (1.5 s) in Python. The connectivity metric was the Fisher’s
transform of the Pearson’s correlation between time-windowed
ROI timeseries. Windowed FC matrices were converted to 1D
vectors by taking only unique connectivity values above the matrix
diagonal. These were subsequently concatenated into scan-wise
tvFC matrices of size 12,246 connections× 988 temporal windows.

Time-varying FC matrices computed this way are referred
through the manuscript as non-normalized or as-is. Additionally,
we also computed normalized versions of those tvFC matrices in
which all rows have been forced to have a mean of zero and a
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standard deviation of one across the time dimension. We refer to
those matrices as normalized or Z-scored matrices.

Intrinsic dimension

Three different ID estimators were used here: lPCA, twoNN,
and FisherS. For each method, we computed both IDlocal estimates
at each tvFC window and IDglobal estimates at the scan level. We
then report on the distribution of these two quantities across
the whole sample.

Dimensionality reduction

We computed low dimensional representations of the data
at two different scales: scan-level and group-level. Scan-level
embeddings were generated separately for each scan providing as
input their respective tvFC matrices.

To generate group-level embeddings, meaning embeddings
that contain all windows from all scans in the dataset, we used two
different approaches:

• “Concatenate + Embed”: in this case, we first concatenate all
scan-level tvFC matrices into a single larger matrix for the
whole dataset. We then provide this matrix as input to the
dimensionality reduction step.
• “Embed + Procrustes”: here, we first compute scan-level

embeddings separately for each scan and then apply the
Procrustes transformation to bring all of them into a common
space.

Table 1 summarizes the different configurations being explored
for each manifold learning method.

Embedding evaluation

Two different frameworks—clustering and predictive—were
used to quantitatively evaluate the quality of the resulting low
dimensional representations. The clustering framework looks at
the ability of those representations to show groupings of FC

TABLE 1 Hyper-parameter exploration space.

Hyper-
parameters

LE T-SNE UMAP

Distance function Euclidean,
correlation, cosine

Euclidean,
correlation, cosine

Euclidean,
correlation, cosine

Neighborhood size Knn : [5. . . 200,
step = 5]

PP: [5. . . 100,
step = 5] + [150,

175, 200]

Knn : [5. . . 200,
step = 5]

# Dimensions 2, 3, 5, 10, 15, 20, 25,
30

2, 3, 10, 15 2, 3, 5, 10, 15, 20,
25, 30

Learning rate N/A 10, 50, 75, 100, 200,
500, 1,000

0.01, 0.1, 1.0

Minimum distance N/A N/A 0.8

configurations that match labels of interest (e.g., task being
performed). The use of this framework is primarily motivated
by the concept of FC states (Allen et al., 2014; Gonzalez-Castillo
et al., 2015)—namely short-term recurrent FC configurations—
and the fact that external cognitive demands modulate FC
(Gonzalez-Castillo and Bandettini, 2018). As such, a meaningful
low dimensional representation of the multi-task dataset should
show cluster structure that relates to the different tasks. A common
way to measure the cluster consistency in machine learning is
the Silhouette index (SI; Rousseeuw, 1987), which is a measure of
cluster cohesion (how similar members of a cluster are to each
other) against cluster separation (the minimum distance between
samples from two different clusters). SI ranges from −1 to 1,
with higher SI values indicating more clearly delineated clusters.
SI was computed using the Python scikit-learn library. Only
task-homogenous windows—namely those that do not include
instruction periods or more than one task—are used for the
computation of the SI. For scan-level results we computed SI based
on tasks. For group-level results we computed SI based on tasks
(SItask) and subject identity (SIsubject). For comparison purposes,
SI was also computed using the tvFC matrices as input to the SI
calculation.

We also evaluate embeddings using a predictive framework.
In this case, the goal is to quantify how well low dimensional
representations of tvFC data performs as inputs to subsequent
regression/classification machinery. This framework is motivated
by the wide-spread use of FC (both static and time-varying)
patterns as input features for the prediction of clinical conditions
(Rashid et al., 2016), clinical outcomes (Dini et al., 2021),
personality traits (Hsu et al., 2018), behavioral performance
(Jangraw et al., 2018), and cognitive abilities (Finn et al., 2014). Our
quality measure under this second framework is the F1 accuracy
of classification at predicting task name for task-homogenous
windows using as input group-level embeddings. We restricted
analyses to UMAP and LE group-level embeddings obtained using
the “Embed + Procrustes” approach because those have good task
separability scores and are computationally efficient at estimating
embeddings beyond three dimensions. The classification engine
used is a logistic regression machine with an L1 regularization term
as implemented in the scikit-learn library. We split the data into
training and testing sets using two separate approaches:

Split-half cross-validation: first, we trained the classifier using
all windows within the first half of all scans and test on the
remaining of the data. We then switched training and testing
sets. Reported accuracy values are the average of the results
across the two halves, when they were the test set. It is worth
noting that, by splitting the data this way, we achieve two
goals: (1) training on data from all tasks in all subjects, and
(2) testing using data from windows that are fully temporally
independent from the ones used for training.

Leave-one-subject-out cross validation: in this case, we
generated 20 different splits of the data. In each split, data
from all subjects but one was used for training; and the data
from the left-out subject was used for testing. As above, we
report average values across all data splits. By splitting the data
this way we avoid potential overfitting issues resulting from
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including data from the same subject in both the training and
testing datasets.

Stability analysis

Two of the three methods under scrutiny are non-
deterministic: UMAP and T-SNE. To evaluate the stability
of these two embedding techniques, we decided to compute
scan-level embeddings 1,000 times on each subject using
optimal hyper-parameters (T-SNE: PP = 65, d = Correlation,
alpha = 10, m = 2 dimensions | UMAP: Knn = 70, d = Euclidean,
alpha = 10, m = 3 dimensions). We then looked at the
distribution of SItask values across the 1,000 iterations run on
each subject’s data.

Null models

Two null models were used as control conditions in this study.
The first null model (labeled “randomized connectivity”) proceeds
by randomizing row ordering separately for each column of the
tvFC matrix. By doing so, the row-to-connection relationship
inherent to tvFC matrices is destroyed and a given row of the
tvFC matrix no longer represents the true temporal evolution of
FC between a given pair of ROIs.

The second model (labeled “phase randomization”) proceeds
by randomizing the phase of the ROI timeseries prior to the
computation of the tvFC matrix (Handwerker et al., 2012). More
specifically, for each ROI we computed its Fourier transform,
kept the magnitude of the transform but substituted the phase
by uniformly distributed phase spectra, and finally applied the
inverse Fourier transform to get the surrogate ROI representative
timeseries. This procedure ensures the surrogate data will retain the
autoregressive properties of the original time series, yet the precise
timing of signal fluctuations is destroyed.

All code associated with these analyses can be found at the
following github repo.2

Results

Intrinsic dimension

Average estimates of IDglobal and IDlocal across all scans
are presented in Figures 5A, B. We show estimates based on
three ID estimators: Local PCA, Two Nearest Neighbors, and
Fisher Separability. Average IDglobal ranged from 26.25 dimensions
(Local PCA, normalized tvFC matrices) to 4.10 dimensions (Fisher
Separability, no normalization). IDglobal estimates were significantly
larger for Local PCA than for the two other methods (pBonf < 1e−4).
Normalization of tvFC matrices had a negligible effect of IDglobal
estimates. Despite the differences across estimation techniques,
in all instances the IDglobal of these data is shown to be several

2 https://github.com/nimh-sfim/manifold_learning_fmri

orders of magnitude below that of ambient space (i.e., 12,246
Connections).

Estimating IDlocal requires the selection of a neighborhood size
defined in terms of the number of neighbors (NN). Figure 5B
shows average IDlocal estimates for non-normalized data across
all scans as a function of both estimation technique and NN.
Overall, IDlocal ranges between 2 (Fisher Separability, NN = 50)
and 21 (Local PCA, NN = 200). As is the case with IDglobal, IDlocal
estimates vary significantly between estimators. In general, “Local
PCA” leads to the largest estimates. Also, there is a general trend
for IDlocal estimates to increase monotonically with neighborhood
size. Exceptions to these two trends only occur for the “Two NN”
estimator when NN ≤ 75. It is important to note that IDlocal
estimates are always below their counterpart IDglobal estimates.

We also computed IDglobal separately for each task. When using
the twoNN estimator, we found that rest has a significantly higher
IDglobal than all other tasks (Figure 5C). A significant difference was
not detected with the other two methods.

Evaluation for visualization/exploration
purposes

Figures 6A–C show the distribution of SItask for 2D and 3D
single-scan embeddings for both original data and the two null
models. Each panel shows results for a different manifold learning
technique (MLT). SItask of original data often reached values above
0.4 (black arrows). That is not the case for either null model.
Yet, while the “Connectivity Randomization” model always resulted
in SItask near or below zero, the “Phase Randomization” model
shows substantial overlap with the lower end of the distribution for
original data, especially for LE and UMAP.

Figure 6D shows how SItask changes with distance function
and Knn for LE embeddings. Overall, best performance is achieved
when using the Correlation distance and keeping three dimensions.
Additionally, Knn can also have substantial influence on task
separability. SItask is low for knn values below 50, then starts to
increase until it reaches a peak around knn = 75 and then decreases
again monotonically with knn. Figure 6E shows that whether tvFC
matrices are normalized or not prior to entering LE has little effect
on task separability.

Figures 6F–H summarize how task separability varies with
distance, perplexity, normalization scheme, and learning rate when
using T-SNE. As it was the case with LE, best results were
obtained with the Correlation distance. We can also observe high
dependence of embedding quality with neighborhood size (i.e.,
perplexity), and almost no dependence with normalization scheme.
Regarding learning rate, SItask monotonically decreases as learning
rate increased. Figures 6I–K show results for equivalent analyses
when using UMAP. In this case, best performance is achieved with
the Euclidean distance. Again, we observe high dependence of SItask
with neighborhood size, no dependence on normalization scheme,
and a monotonic decrease with increasing learning rate.

Figure 7 shows representative single-scan 2D embeddings (see
Supplementary Figure 4 for 3D results). First, Figure 7A shows
the best and worse LE embeddings obtained using the Correlation
distance and Knn = 25, 75, 125, and 175. Figures 7B, C show
2D embeddings for the same scans obtained using T-SNE with
the Correlation distance and UMAP with the Euclidean distance,
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FIGURE 5

(A) Summary view of global ID estimates segregated by estimation method (local PCA, two nearest neighbors, and Fisher separability) and
normalization approach (none or Z-scoring). Bar height corresponds to average across scans, bars indicate 95% confidence intervals. (B) Summary
view of local ID estimates segregated by estimation method and neighborhood size (NN = number of neighbors) for the non-normalized data.
(C) Statistical differences in global ID across tasks (*pFDR < 0.05) (gray, rest; yellow, visual attention; green, math; and blue, 2-back).

FIGURE 6

Task separability for single-scan level embeddings. (A) Distribution of SItask values for original data and null models across all hyperparameters for LE
for 2D and 3D embeddings (Total Number of Cases: 20 Subjects × 3 Models × 2 Norm Methods × 3 Distances × 40 Knn values × 2 Dimensions).
(B) Same as panel (A) but for T-SNE. (C) Same as panel (A) but for UMAP. (D) SItask for LE as a function on distance metric and number of final
dimensions for the original data. Bold lines indicate mean values across all scans and hyperparameters. Shaded regions indicate 95% confidence
interval. (E) Effects of normalization scheme on SItask at Knn = 75 for original data and the three distances. (F) Same as panel (D) but for T-SNE.
(G) Same as panel (E) but for T-SNE and PP = 75. (H) SItask dependence on learning rate for T-SNE at PP = 75. (I) Same as panel (D) but for UMAP.
(J) Same as panel (E) but for UMAP. (K) Same as panel (H) but for UMAP. In panels (E,G,H,J,K) bar height indicate mean value and error bars indicate
95% confidence interval. Statistical annotations: nsnon-significant, *pBonf < 0.05, **pBonf < 0.01, ***pBonf < 0.001, ****pBonf < 0.0001.

respectively. Embedding shape significantly differed across MLTs
and as function of hyperparameters. For Knn = 25, all MLTs
placed next to each other are temporally contiguous windows in
a “spaghetti-like” configuration. No other structure of interest is
captured by those embeddings. For Knn ≥ 75 (embeddings marked
with a green box), those “spaghetti” start to break and bend in
ways that bring together windows corresponding to the same task
independently of whether or not such windows are contiguous in
time. If we focus our attention on high quality exemplars (green
boxes), we observe clear differences in shape across MLTs. For
example, LE places windows from different tasks in distal corners of
the 2D (and 3D) space; and the presence of two distinct task blocks
is no longer clear. Conversely, T-SNE and UMAP still preserve a

resemblance of the “spaghetti-like” structure previously mentioned,
and although windows from both task blocks now appear together,
one can still appreciate that there were two blocks of each task.
Finally, Figures 7D, E show embeddings for the null models at
Knn = 75 for the best scan. When connections are randomized,
embeddings look like random point clouds. When the phase of
ROI timeseries is randomized prior to generating tvFC matrices,
embeddings look similar to those generated with real data at low
Knn, meaning they have a “spaghetti-like” structure where time
contiguous windows appear together, but windows corresponding
to the two different blocks of the same task do not.

In terms of stability of scan level embeddings, UMAP
performed better than T-SNE (Supplementary Figure 5). While
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FIGURE 7

Representative single-scan embeddings. (A) LE embeddings for Knn = 25,75,125 and 175 generated with the Correlation distance. Left column shows
embeddings for the scan that reached the maximum SItask value across all possible Knn values. Right column shows embeddings for the scan that
reached worse SItask. In each scatter plot, a dot represents a window of tvFC data (i.e., a column in the tvFC matrix). Dots are annotated by task being
performed during that window. (B) T-SNE embeddings computed using the Correlation distance, learning rate = 10 and PP = 25, 75, 125, and 175.
These embeddings correspond to the same scans depicted in panel (A). (C) UMAP embeddings computed using the Euclidean distance, learning
rate = 0.01 and Knn = 25, 75, 125, and 175. These also correspond to the same scans depicted in panels (A,C). (D) LE, T-SNE, and UMAP embeddings
computed using as input the connectivity randomized version of the same scan corresponding to “best” in panels (A–C). (E) LE, T-SNE, and UMAP
embeddings computed using as input the phase randomized version of the same scan corresponding to “best” in panels (A–C).

for T-SNE we can often observe outliers and wide distributions
for SItask values, that is not the case for UMAP, which had very
consistent SItask values across the 1,000 iterations conducted on the
data of each participant.

Figure 8 shows clustering evaluation results for group-level
embeddings generated with LE for the original data. Regarding
task separability (Figure 8A), the “Embed + Procrustes” approach
(orange) outperforms the “Concatenate + Embed” approach (blue).
Importantly, the higher gains for the “Embed + Procrustes”
approach occur when the transformation is calculated using
dimensions beyond three (portion of the orange distribution
outlined in dark red in Figure 8A). Figure 8C shows embeddings
in which the Procrustes transformation was computed with an
increasing number of dimensions (from left to right). As the
number of dimensions increases toward the data’s ID, task
separability improves. For example, when all 30 dimensions are
used during the Procrustes transformation the group embedding
show four distinct clusters (one per task), and all subject
specific information has been removed (orange histogram in
Figure 8B). Figure 8D shows one example of high SIsubject for
the “Concatenation + Embed” approach. This occurs on a few
instances (long right tail of the blue distribution in Figure 8B) that
corresponds to scenarios where an excessively low Knn results in a
disconnected graph.

Figure 9 shows clustering evaluation results for UMAP.
Figure 9A shows the distribution of SItask values across all
hyperparameters when working with the real data and the
Euclidean distance. High SItask values were only obtained when
combining scans via the “Embed + Procrustes” approach and using
more than three dimensions during the Procrustes transformation
(highlighted portion of the orange distribution in Figure 9A).
Figure 9C shows one example of an embedding with high
SItask computed this way. Clear task separability is observed

when annotating the embedding by task (Figure 9C, left).
If we annotate by subject identity (Figure 9C, right), we
can observe how individual differences have been removed by
this procedure. Figure 9B shows the distribution of SIsubject
values. High SIsubject values were only obtained when using
the “Concatenation + Embed” approach in data that has not
been normalized (dark blue outline). Z-scoring scan-level tvFC
matrices prior to concatenation removes UMAP ability to capture
subject identity (light blue highlight). Figure 9D shows a UMAP
embedding with high SIsubject annotated by task (left) and subject
identity (right). The embedding shows meaningful structure at two
different levels. First, windowed tvFC are clearly group by subject.
In addition, for most subjects, the embedding also captures the
task structure of the experiment. Results for T-SNE group-level
embeddings are shown in Supplementary Figure 6. T-SNE was
also able to generate embeddings that simultaneously capture task
and subject information using the “Concatenation + Embed” and no
normalization. Similarly, it could generate group embeddings that
bypass subject identity and only capture subject structure by using
the “Embed + Procrustes” approach, yet their quality was inferior to
those obtained with UMAP.

Independently of the method used, optimal hyper-parameter
selection always resulted in better separation of the data in terms of
task or subjects (see Table 2 for SI values calculated using directly
as input the tvFC matrices).

Evaluation for predictive/classification
purposes

Figure 10 shows results for the predictive framework
evaluation using the split-half cross-validation approach
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FIGURE 8

Summary of clustering evaluation for LE group embeddings. (A) Histograms of SItask values across all hyperparameters when using the Correlation
distance with real data. Distributions segregated by grouping method: “Embed + Procrustes” in orange and “Concatenation + Embed” in blue. Dark
red outline highlights the section of the distribution for “Embed + Procrustes” that corresponds to instances where more than 3 dimensions were
used to compute the Procrustes transformation. (B) Same as panel (A) but this time we report SIsubject instead of SItask. (C) Group level LE
embeddings obtained via “Embed + Procrustes” with an increasing number of dimensions entering the Procrustes transformation step. In all
instances we show embeddings annotated by task, including windows that span more than one task and/or instruction periods. For m = 30 we show
two additional versions of the embedding, one in which task inhomogeneous windows have been removed, so that task separability becomes clear,
and one when windows are annotated by subject identity to demonstrate how inter-individual differences are not captured in this instance.
(D) Representative group embedding with high SIsubject obtained via “Concatenation + Embed” approach.

FIGURE 9

Summary of clustering evaluation for UMAP group embeddings. (A) Histograms of SItask values across all hyperparameters when using Euclidean
distance on real data. Distributions are segregated by grouping method: “Embed + Procrustes” in orange and “Concatenation + Embed” in blue. Dark
orange outline highlights the section of the “Embed + Procrustes” distribution that corresponds to instances where more than 3 dimensions were
used to compute the Procrustes transformation. (B) Histograms of SIsubject values across all hyperparameters when using Euclidean distance on real
data. Distributions are segregated by grouping method in the same way as in panel (A). Light blue contour highlights the part of the distribution for
“Concatenation + Embed” computed on data that has been normalized (e.g., Z-scored), while the dark blue contour highlights the portion
corresponding to data that has not been normalized. (C) High quality group-level “Embed + Procrustes” embedding annotated by task (left) and
subject identity (right). (D) High quality group-level “Concatenation + Embed” annotated by task (left) and subject identity (right).
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TABLE 2 Silhouette index computed using tvFC data in
original ambient space.

Non-
normalized/“as-is”

Normalized/“Z-
scored”

Scan-level SItask 0.13± 0.02 0.12± 0.01

Group level SItask 0.01 0.01

SIsubject 0.05 −0.02

(Supplementary Figure 9 shows equivalent results using leave-
on-subject-out cross validation). This evaluation was performed
using only embeddings that performed well on the task separability
evaluation. For UMAP, this includes embeddings computed using
the Euclidean distance, learning rate = 0.01 and Knn > 50. For LE,
this includes embeddings computed using the Correlation distance
and Knn > 50. In both instances, we used as input group level
embeddings computed using the “Embed + Procrustes” aggregation
method. We did not perform this evaluation on T-SNE embeddings
because computational demands increase significantly with the
number of dimensions.

Figure 10A shows average classification accuracy for LE.
Classification accuracy increased significantly with the number
of dimensions up to m = 20. Beyond that point, accuracy
slightly decreased but remained above that obtained with m ≤ 3.
Figure 10B shows equivalent results for UMAP. In this case,
accuracy significantly increased up to m = 5, but monotonically
decreased beyond that point. For m ≥ 15, accuracy was less than
that of m = 3. Figures 10C, D show the average classifier coefficient
values associated with each dimension for classifiers trained with
m = 30 for LE and UMAP, respectively. In both instances we can
observe that although the higher contributing features are those for
the first three dimensions, there are still substantial contributions
from higher dimensions.

When a leave-one-subject-out cross validation scheme
is used we always observe, independently of embedding
method, a monotonic increase in classification accuracy as
m increases up to approximately m = 15. Beyond that point
accuracy is nearly 1 (Supplementary Figures 9A, B). Regarding
dimension contribution, results are equivalent for both cross
validation schemes.

Discussion

The purpose of this work is to understand why, how, and
when MLTs can be used to generate informative low dimensional
representations of tvFC data. In the theory section, we first provide
a rationale for why we believe it is reasonable to expect tvFC
data to lie on a low dimensional manifold embedded within the
higher dimensional ambient space of all possible pair-wise ROI
connections. We next discuss, at a programmatic level, the inner
workings of three state-of-the-art MLTs often used to summarize
biological data. This theoretical section is accompanied by several
empirical observations: (1) the dimensionality of tvFC data is
several orders of magnitude lower than that of its ambient space, (2)
the quality of low dimensional representations varies greatly across
methods and also within method as a function of hyper-parameter
selection, (3) temporal autocorrelation, which is prominent in

tvFC data but not on other data modalities commonly used to
benchmark manifold learning methods, dominates embedding
structure and must be taken into consideration when interpreting
results, and (4) while three dimensions suffice to capture first
order connectivity-to-behavior relationships (as measured by task
separability), keeping additional dimensions up to the ID of
the data can substantially improve the outcome of subsequent
transformation and classification operations.

Intrinsic dimension

Functional connectivity matrices are often computed using
brain parcellations that contain somewhere between 100 and
1,000 different regions of interest. As such, FC matrices have
dimensionality ranging from 4,950 to 499,500. We used a
parcellation with 157 regions, resulting in 12,246 dimensions. Our
results indicate that tvFC data only occupies a small portion of
that immense original space, namely that of a manifold with
dimensionality ranging somewhere between 3 and 25. This suggests
that the dimensionality of tvFC can be aggressively reduced and
still preserve salient properties of the data (e.g., task and subject
identity). That said, such low ID is not evidence of slow dynamics
or implies that the brain can be fully characterized using so few FC
configurations. For example, let us consider a latent space where
each dimension ranges between −1 and 1 (as it is the case with
Pearson’s correlation) in increments of 0.2 (e.g., −1.0, −0.8, −0.6
. . . 0.6, 0.8., 1.0). As such, there are only 11 possible values per
dimension. A hypothetical 3D space with dimensions defined that
way could represent up to 113 = 1,331 different FC configurations.
If we consider five dimensions, the number of configurations goes
up to 1.6e5. With 25 dimensions, we reach 1.1e26 different possible
FC configurations to be represented in such space. In other words,
low ID should not be regarded as a sign of FC being relatively
stable, but as confirmatory evidence that FC patterns are highly
structured and in agreement with prior observations such as the
fact that the brain’s functional connectome adhere to a very specific
network topography [e.g., small world network (Sporns and Honey,
2006)] or that task performance does not lead to radical FC re-
configurations (Cole et al., 2014; Krienen et al., 2014).

Using the twoNN estimator, we found that the IDg lobal of tvFC
from rest periods is significantly higher than that of the other
three tasks (Figure 5C), suggesting that FC traverses a larger space
of possible configurations during rest compared to when subjects
are engaged in tasks with more precise cognitive demands. This
agrees with prior work suggesting an overall increase in the stability
of FC for task as compared to rest (Liu and Duyn, 2013; Chen
et al., 2015; Elton and Gao, 2015; Billings et al., 2017). It also
suggests that ID can be a valuable summary statistic for tvFC data.
In machine learning, ID is used to evaluate the complexity of
object representations at different levels of deep neural networks
(Ansuini et al., 2019) and their robustness against adversarial
attacks (Amsaleg et al., 2017). In biomedical research, ID has also
been used to characterize the amount of variability present in
protein sequence evolution (Facco et al., 2019), and to explain
why humans can learn certain concepts from just a few sensory
experiences (i.e., “few-shot” concept learning; Sorscher et al.,
2022). Given that several psychiatric conditions and neurological
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FIGURE 10

Summary of predictive framework evaluation for LE (A,C) and UMAP (B,D) group embeddings using the split-half cross validation scheme.
(A) Classification accuracy as a function of the number of LE dimensions used as input features to the logistic regression classifier. Classification
improves as m increases up to m = 20. (B) Classification accuracy as a function of the number of UMAP dimensions used as input features to the
logistic regression classifier. Classification improves as m increases up to m = 5. Statistical annotations for panels (A,B) as follows: nsnon-significant,
**pBonf < 0.01, ***pBonf < 0.001, ****pBonf < 0.0001. (C) Average coefficients associated with each LE dimension for classifiers trained using m = 30
dimensions. For each m value, we stack the average coefficients associated with each label, which are colored as follows: blue, 2-back; green, math;
yellow, visual attention; gray, rest. (D) Same as panel (C) but for UMAP.

disorders have been previously associated with altered FC dynamics
(Damaraju et al., 2014; Rashid et al., 2016; Fiorenzato et al., 2018;
Kaiser et al., 2019), future research should evaluate the value of ID
as a marker of clinically relevant aberrant tvFC.

Finally, ID for tvFC data was estimated to be near to the number
of dimensions that can be easily visualized (i.e., two or three
dimensions). This explains the success of MLTs at summarizing
tvFC data reported here and elsewhere (Gonzalez-Castillo et al.,
2019; Gao et al., 2021; Rué-Queralt et al., 2021). Yet for two ID
estimators (lPCA and twoNN), ID was estimated to be greater
than 3 (Figures 5A, B). This suggests that one ought to keep
and explore additional dimensions up to ID whenever possible.
Although visualizing data with more than three dimensions is
challenging, tools such as coordinate plots (Inselberg and Dimsdale,
1990), or star glyphs (Chambers et al., 2018) should be considered
as ways to explore the data beyond three dimensions when needed.
Importantly, we empirically demonstrate the value of keeping
additional dimensions up to ID in two scenarios: across-scan
embedding alignment and task classification. For example, in
Figure 8C we show how task separability for Procrustes-based
group embeddings substantially improves when more than three
dimensions are used to compute the transformation. The Procrustes
transformation has several applications in fMRI data analysis
including hyper-alignment of voxel-wise responses (Haxby et al.,
2011), alignment of macro-anatomical FC gradients (Margulies
et al., 2016) and generation of bidirectional mappings between
fMRI responses and natural language description of scenes in
naturalistic experiments (Vodrahalli et al., 2018). The benefits of
using dimensions beyond those being interpreted during alignment
has been previously reported for functional gradients by Mckeown
et al. (2020) who showed that alignment toward a template
space significantly improves when using 10 dimensions instead
of three [the number of gradients often explored and interpreted
in studies that rely on this technique (Margulies et al., 2016;
Mckeown et al., 2020; Tian et al., 2020; Hardikar et al., 2022)].

The Supplementary material from that study [Supplementary
Figure 2 in Mckeown et al. (2020)] show that by keeping the
additional seven dimensions the authors approximately doubled
the amount of variance explained available as input to the Procrustes
transformation, yet no clear heuristic was provided about how to
select the optimal number of inputs. Our results suggest that ID
could help generate such heuristics and help inform how many
dimensions ought to be explored and retained during analysis.

Hyper-parameter selection

Our results demonstrate that although MLTs can create low
dimensional representations of tvFC data that capture structures
of interest at different levels (i.e., subject identity and mental
state), hyper-parameter selection was critical to their success.
Particularly important was the selection of distance function
and neighborhood size for single-scan embeddings. For group
embeddings, aggregation method and normalization scheme also
played a critical role.

One common theme across explored MLTs is the construction
of a neighborhood graph in early stages of the algorithm (e.g.,
Figure 2D). The final form of such graph depends, to a large
extent, on how one decides to quantitatively measure dissimilarity
between connectivity patterns (distance function) and how big
one expects neighborhoods of interest to be (Knn or PP). For LE
and T-SNE best results were obtained using Correlation distance,
which measures the degree of linear relationship between two sets
of observations. Correlation is often used to quantify similarity
in fMRI data, whether it be between timeseries (Biswal et al.,
1995; Finn et al., 2014), activity maps (Yarkoni et al., 2011;
Matsui et al., 2022), or connectivity matrices (Cole et al., 2014).
Therefore, Correlation’s ability to meaningfully quantify similarity
is well accepted and validated in the field. Moreover, previous work
with non-imaging data suggest that the Euclidean distance fails to
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accurately capture neighborhood relationships in high dimensional
spaces (Beyer et al., 1999) due to the curse of dimensionality, and
that the Correlation distance is more appropriate for clustering
and classification problems on high dimensional data (France
and Carroll, 2009). Our results confirm that is also the case
for tvFC data. One exception was UMAP, which performed best
with the Euclidean distance for mid-size neighborhoods and
became successively more equivalent to the other distances as
neighborhood size increased. As described on the theory section,
UMAP contains a distance normalization step (Figure 4E) aimed at
ensuring that each sample is connected to at least one other sample
in the neighboring graph. We believe this step is the reason why the
Euclidean distance outperforms the Correlation distance in UMAP.
First, as discussed in the original description of the algorithm by
McInnes et al. (2018), this normalization step increases robustness
against the curse of dimensionality and, as such, it helps mitigate
some of the undesired outcomes of using Euclidean distances with
high dimensional data. Second, because Correlation distances are
in the range [0,2], rho (Eq. 12) always takes values near zero
(Supplementary Figure 8A) and sigma (Eq. 13) is restricted to a
narrow range of values (Supplementary Figure 8C). These two
circumstances contribute to worsening UMAP’s ability to capture
global structure (e.g., same task in temporally distant blocks) when
using the Correlation distance.

In summary, when using MLTs and tvFC data one ought to
attempt to mitigate the negative effects derived from the curse
of dimensionality—namely the fact that high dimensional spaces
tend to be sparse and Euclidean distances become progressively
meaningless—either by the selection of an alternative distance
metric (e.g. Correlation) or by relying on algorithms with some
built-in level of protection against it (e.g., UMAP).

Neighborhood size, the second key parameter for graph
generation, can be thought of as a way of setting the scale
at which information of interest is expected. In our test data,
subjects engaged with four different tasks during two temporally
disconnected 180 s blocks. Given our sliding window parameters
(Window Duration = 45 s; Window Step = 1.5 s) this results in 91
windows per task block and a total of 182 windows per task on
each scan. For all methods, we observed bad task separability (low
SItask) at the smallest neighborhood sizes (e.g., <60). This is because
setting such small values often precluded the graph to capture
neighboring relationships beyond those due to large overlap in
the number of samples contributing to temporally contiguous
windows. As we approach neighborhood values above 70, we start
to observe the best SItask values. This is because at this point,
the graph can now capture neighborhood relationships between
windows corresponding to different blocks of the same task and
embeddings start to show structure and clusters that relate to the
task. As neighborhood size keeps increasing, SItask slowly degrades
because more windows from different tasks end up being marked
as neighbors during the construction of the graph.

Challenges for resting-state fMRI

In the previous paragraph, we were able to explain the
relationship between task separability and neighborhood size
because we know the scale of the phenomena of interest and have

labels for tasks. But what about situations where such information is
missing? For example, should we decide to use MLTs to explore the
dynamics of tvFC during resting state, what is the recommended
neighborhood size to use? This is quite a difficult question. Initially,
one could opt to rely on existing heuristics from machine learning
such using a neighborhood size equal to the square root of the
number of samples (Hassanat et al., 2014), but such heuristic
would have resulted in a value of 27, which is far from optimal.
Similarly, using default values in existing implementations would
have also proven sub-optimal here (e.g., PP = 30 in scikit-learn
implementation of T-SNE). A second approach would be to fine
tune neighborhood size using some hyper-parameter optimization
scheme, yet those methods require larger datasets and an objective
function to optimize. These two requirements are hard to meet
when working with tvFC data. First, in contrast with other data
modalities such as natural images, speech or genomics, fMRI
datasets are often of a limited size [although this is changing
thanks to recent international efforts such UK’s Biobank (Miller
et al., 2016)]. Second, defining an objective function in this context
is quite challenging. Not only it requires labeled data—which is
almost nonexistent for resting-state—but as our data shows, it can
be misleading (Figure 9D shows an embedding that captures both
subject and task identity but has low SItask). A third approach would
be to transfer heuristics from studies such as this one. We recently
took this approach in a study looking at the temporal dynamics
of FC during rest. We used the same multi-task dataset evaluated
here to inform our selection of Knn for LE. Using this approach,
combined with reverse inference via Neurosynth (Yarkoni et al.,
2011), we were able to show that resting-state tvFC patterns sitting
at the corners of LE embeddings correspond to mental activities
commonly reported as being performed during rest (Gonzalez-
Castillo et al., 2019). Finally, an additional alternative would be
to use newer versions of the algorithms that do not require
a priori selection of neighborhood size such as perplexity-free T-
SNE (Crecchi et al., 2020) or optimize concurrently at several scales
(Lee et al., 2015), yet the performance of those algorithmic variants
in tvFC data should be explored first.

Group-level aggregation

Functional connectivity is characterized by large inter-subject
variability; and subject identification across sessions is possible
using both static (Finn et al., 2014) and time-varying (Betzel et al.,
2022) FC patterns as a form of fingerprinting. Here, inter-subject
variability is clearly captured by group embeddings computed using
the “Concatenate + Embed” approach on non-normalized data (see
Figures 8D, 9D). If data is normalized prior to concatenation,
then subject identity is no longer depicted in the embeddings (see
Figures 8C, 9C). This suggests that one key differentiating aspect
across subjects is differences in the mean and/or standard deviation
of ROI-to-ROI FC traces. Supplementary Figures 7A, B show how
the distributions of these two summary metrics vary across subjects,
and how those differences are removed by the normalization step
(Supplementary Figures 7C, D).

The second way to remove subject identifiability from
the group-level embeddings is to generate those using the
“Embed + Procrustes” approach. This works well independently of
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whether data are normalized or not. The fact that the Procrustes
transformation—which only includes translations, rotations and
uniform scaling—can bring scan-level embeddings into a common
space where windows from the different tasks end up in the same
portion of the lower dimensional space suggest that scan-level
embeddings share a common geometrical shape and therefore that
within-subject relationships between the FC patterns associated
with the four different tasks are largely equivalent across subjects.

The role of temporal autocorrelation

While the “connectivity randomization” null model always
resulted in embeddings with no discernable structure (Figure 7D),
that was not the case for the “phase randomization” null
model (Figure 7E). Although both models remove all neuronally
meaningful information, they differ in one critical way. In the
“connectivity randomization” model, randomization happens after
the construction of the tvFC matrix. Conversely, in the “phase
randomization” model, randomization is applied over the ROI
timeseries and therefore precedes the sliding window procedure.
Because of this, a substantial amount of temporal autocorrelation is
reintroduced in this second null model during the sliding window
procedure. This results in FC patterns from temporally contiguous
windows being very similar to each other, even if those patterns
are neuronally and behaviorally meaningless. When MLTs are
then applied to this surrogate data, those temporally contiguous
windows appear in proximity. Moreover, because each individual
task block spans 91 such windows, one could get the impression
that embeddings computed on this second null model were able to
recover some task structure. Yet, that is not the case. All they do
is to recapitulate the time dimension. They never place together
windows from separate task blocks as it is the case with the
embeddings computed over real data. In summary, the results from
the “phase randomization” model do not suggest MLTs will show
good task separability in data with no neuronally driven FC. What
they highlight is the importance of considering the role of temporal
autocorrelation when interpreting and evaluating embeddings.

Because the goal of MLTs is to preserve local structure
over global structure, and temporal autocorrelation is the largest
source of local structure in tvFC data obtained with sliding
window procedures, embeddings will easily recapitulate the time
dimension in such data. Also, as mentioned in the discussion
about the role of normalization in group-level embeddings above,
MLTs tend to separate FC snapshots that have different mean
and/or standard deviation. These two observations should be
considered when selecting FC datasets for MLT benchmarking
or interpreting embeddings generated with them. For example,
benchmarking datasets should always include multiple temporally
distant repetitions of each phenomenon of interest (e.g., mental
states). The minimum temporal separation between them should be
larger than the intrinsic temporal autocorrelation properties of the
data. Moreover, to minimize systematic shifts in mean and standard
deviation, such repetitions should occur within the confines of
individual scans. In this sense, we believe that long multi-task
scans acquired as subjects perform and transition between different
tasks or mental states that repeat on several distant occasions
might be the optimal type of data for benchmarking MLTs and
related methods on tvFC data. Similarly, when using MLTs for

summarization and interpretation of tvFC, one ought to ensure
that observations are not easily explained by the two confounds
discussed here: temporal autocorrelation induced during the
generation of tvFC traces and/or systematic differences in average
or volatility values due to factors such as using data from different
subjects or different scans.

Heuristics and future work

One goal of this work was to provide a set of initial heuristics
for those looking to apply MLTs to tvFC data. The following
recommendations emerge from our observations. First, while all
three evaluated MLTs can generate meaningful embeddings, they
showed different behaviors. Overall, LE resulted in the best task
separability. This occurred when using the Correlation distance and
Knn greater than 50. Although embedding quality is modulated by
Knn, and the optimal Knn will be dataset specific, our results seem
to suggest that in general the use of larger values is safer as it helps
avoid disconnected graphs and embeddings that only capture inter-
scan or inter-subject differences. Two additional benefits of LE are
low computational demands, no optimization phase (which means
no additional hyper-parameters to choose from). Additionally,
previous applications of LE to FC data have proven quite successful
(Margulies et al., 2016; Gonzalez-Castillo et al., 2019; Mckeown
et al., 2020; Rué-Queralt et al., 2021). As such, LE might be a good
choice for initial choice for those willing to start using MLTs on tvFC
data.

That said, LE was the only method that was not able to
simultaneously capture two different levels of information (i.e.,
task and subject identity). In this regard, T-SNE and UMAP
outperformed LE, and therefore if one seeks to obtain such
multi-scale representations, these two methods may constitute a
better alternative. Between both methods, UMAP is initially a
better candidate because of its computational efficiency and higher
stability across repeated iterations (Supplementary Figure 5). This
is particularly true if one is willing to explore dimensions beyond
three, as T-SNE’s computing times becomes significantly larger as
the number of required dimensions increase. For UMAP our results
suggest the use of the Euclidean distance and a preference over
larger Knn values in the same manner as just discussed for LE.

Our exploration of MLTs is by no means comprehensive. This
work is limited not only in terms of data size (20 scans) and
evaluation metrics (clustering and classification), but also in terms
of the breath of methods being evaluated. Because of that, future
research should extend the evaluation presented here to additional
datasets, other biological events of interest [e.g., detection of
EEG microstates (Michel and Koenig, 2018)], and also consider
other dimensionality reduction methods. For example, manifold
estimation can also be accomplished via multidimensional scaling
(Kruskal, 1964), ISOMAP (Tenenbaum et al., 2000), diffusion
maps (Coifman et al., 2005), or T-PHATE (Busch et al., 2022),
to name a few additional MLTs not considered here. All these
other methods have been previously applied to fMRI data using
either regional levels of activity (Gao et al., 2021; Busch et al.,
2022) or static FC (Gallos et al., 2021a,b) as inputs. Future
research should evaluate their efficacy on tvFC data. Meaningful
dimensionality reduction can also be accomplished in other ways
such as linear decomposition methods (e.g., Principal Component
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Analysis, Independent Component Analysis, Non-negative Matrix
Factorization, etc.), using deep neural networks [e.g., autoencoders
(Wang et al., 2014)] or TDA methods [e.g., Mapper (Saggar et al.,
2018)]. All these alternatives should also be considered as valuable
candidates for dimensionality reduction of tvFC data. Of particular
interest for resting-state applications is the case of autoencoders
because evaluation of low dimensionality representations in this
case do not necessarily require labeled data, and prior work has
shown their ability to capture generative factors underlying resting-
state activity (Kim B.-H. et al., 2021; Kim J.-H. et al., 2021).

Finally, manifold learning methods applied to tvFC matrices
is one of the many tools one can use to explore and model time-
varying aspects of FC. For example, one can also rely on clustering
methods (Allen et al., 2014) or Hidden Markov models (Vidaurre
et al., 2018) to find meaningful recurrent configurations and their
spatiotemporal profiles. Alternatively, one can also explore the
dynamics of fMRI signals using tools that do not require the
generation of the tvFC matrix based on sliding window procedures,
such as edge timeseries (Faskowitz et al., 2020), co-activation
patterns (Liu et al., 2018) or quasi-period patterns (Thompson et al.,
2014). All these should be considered when looking to explore
dynamical aspects of the functional connectome, and ultimately,
which one to use will depend on the specific scientific question at
hand.

Conclusion

Dimensionality reduction, particularly manifold learning, can
play a key role in the summarization and interpretation of tvFC
data, especially when such data is utilized to study experimentally
unconstrained phenomena such as mind wandering, spontaneous
memory recall, and naturalistic paradigms. Yet, because most
MLTs are benchmarked and developed using data modalities with
different properties to that of tvFC, extreme caution must be
exerted when transferring methods and heuristics from these other
scientific disciplines. To alleviate this issue, here we evaluated three
state-of-the art MLTs using labeled tvFC data. This evaluation
suggests that LE and UMAP outperform T-SNE for this type of data.
It also highlights the confounding role of temporal autocorrelation,
and how it can artifactually inflate evaluation metrics. While we
only test a few methods on one dataset, we hope this report
actively contributes to the steady building of a much-needed
bridge between the fields of neuroimaging and machine learning.
Future steps in this direction should include the generation of
neuroimaging-based benchmarking datasets that can be easily
added to existing benchmarking efforts (Campadelli et al., 2015),
and the development of MLTs tailored to address the specific needs
and characteristics of tvFC data.
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