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Analysis and interpretation of studies on cognitive and affective dysregulation

often draw upon the network paradigm, especially the Triple Network Model,

which consists of the default mode network (DMN), the frontoparietal network

(FPN), and the salience network (SN). DMN activity is primarily dominant during

cognitive leisure and self-monitoring processes. The FPN peaks during task

involvement and cognitive exertion. Meanwhile, the SN serves as a dynamic

“switch” between the DMN and FPN, in line with salience and cognitive demand.

In the cognitive and affective domains, dysfunctions involving SN activity are

connected to a broad spectrum of deficits and maladaptive behavioral patterns

in a variety of clinical disorders, such as depression, insomnia, narcissism, PTSD

(in the case of SN hyperactivity), chronic pain, and anxiety, high degrees of

neuroticism, schizophrenia, epilepsy, autism, and neurodegenerative illnesses,

bipolar disorder (in the case of SN hypoactivity). We discuss behavioral and

neurological data from various research domains and present an integrated

perspective indicating that these conditions can be associated with a widespread

disruption in predictive coding at multiple hierarchical levels. We delineate the

fundamental ideas of the brain network paradigm and contrast them with the

conventional modular method in the first section of this article. Following this, we

outline the interaction model of the key functional brain networks and highlight

recent studies coupling SN-related dysfunctions with cognitive and affective

impairments.

KEYWORDS

triple network model, default mode network (DMN), the frontoparietal network (FPN),
salience network (SN), cognitive dysfunctions, affective dysfunctions

1. Modern paradigms in neuroimaging studies—from
modular to systemic perspectives

Understanding how the brain’s rich functionality emerges from its relatively fixed
anatomical structure is one of the main challenges in neuroscience. The brain’s cognitive
functions can be studied at many levels of complexity, ranging from the influence
of particular genes and their interactions on behavior to the analysis of dynamic
systems of interdependent structures creating intrinsic brain networks. For many years,
the modular perspective of applying particular functions to specific structures has
dominated cognitive science (Fodor, 1983; Barrett and Satpute, 2013), most often ascribing
autonomic roles to the studied regions, treating them as independent specialized modules.
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However, shortcomings of this paradigm have been noted
(Fuster, 2000), and study results, like the discovery of cross-
modal sensory processing modulations (Garner and Keller, 2022;
McClure et al., 2022), have begun to undermine even the most
basic assumptions, such as monomodality of first-order sensory
poles (Cappe and Barone, 2005). The biggest questions being
raised regard the apparent independence and specialization of
structures. Studies making this assumption often give accurate but
inconclusive results in the broader context, and the lack of an
overarching model makes it difficult to draw unified conclusions.
The function of the anterior insula (AI) is an apt example
(Wager and Barrett, 2017). Its activity is regularly attached to a
wide range of apparently unrelated processes from sensory and
affective processing to higher-order cognition (Uddin et al., 2017),
such as body and emotional awareness, pain (Liu et al., 2021),
self-recognition and motivation (Craig, 2009), singing and music
recognition (Zamorano et al., 2019), uncertainty, empathy, and
risky decisions (Singer et al., 2009), visual consciousness (Salomon
et al., 2018), time perception (Vicario et al., 2020), attention span
(Nelson et al., 2010) and integration of internal interoceptive and
external sensory signals (Chen et al., 2021), as well as homeostasis
(Flynn, 1999).

The systemic perspective describes psychological functions
as the result of interdependent processes driven by domain-
general functional brain networks, which do not have strict spatial
boundaries (Park and Friston, 2013; Uddin et al., 2019; Luo, 2021).
Moreover, the decoupling of structural and functional networks is
required to achieve the advanced context-sensitive integration that
is typical for humans (Griffa et al., 2022).

2. Brain functional networks

The perspective that the human brain is organized into
hierarchically modularized networks is now widely accepted
(Wang et al., 2015). In contrast to the assumption of independent
and functionally rigid modules similar to a set of specialized
tools (Gigerenzer and Todd, 1999), functional neural networks
are assessed as dynamic, elastic, and hierarchical (Gilmore
et al., 2018). This is necessary in order to confront changing
environmental factors and develop a wide range of context-
dependent behaviors (Bressler and McIntosh, 2007; Bressler
and Menon, 2010). Transitions between functional networks
are a response to environmental changes (Sadaghiani and
Kleinschmidt, 2013). Zerbi et al. (2019) showed that a rapid
reconfiguration of the functional connectome occurred in
response to a threat by the release of norepinephrine, which
drastically increases global brain connectivity, primarily within the
salience network.

Functional neural networks have emerged from the temporally
organized coupling of activity across vastly dispersed brain regions.
They are characterized by the functional interdependence of brain
structures within their frameworks (Bressler and Menon, 2010).
Functional networks are bounded by the anatomical structure of
neural connections (Xie et al., 2021). The topology of functional
networks is dependent on individual development (Shanmugan
et al., 2022). Furthermore, Functional connectivity (FC) can be
used to predict behavioral traits such as fluid intelligence or even

personality factors (NEO-FFI; Li et al., 2022). FC is a powerful tool
for exploring healthy brain organization as well as mental disorders
and individual differences.

Uddin et al. (2019) identified six prevalent macro-scale brain
networks. Based on convergent evidence from many studies, three
networks: Default Mode Network (DMN), Frontoparietal Network
(FPN), and the Salience Network (SN), are often called canonical
(Ciric et al., 2017; Uddin et al., 2022), as their interactions play a
role in almost all cognitive functions (see Figure 1). The abnormal
functional organization of these networks and dynamic cross-
network talk may underlie a wide range of psychiatric symptoms
in the “triple-network model of psychopathology” (Menon, 2018;
Menon et al., 2022).

The DMN was the first large-scale network identified in human
subjects and, later, across all mammalian species studied to date
(Garin et al., 2022). Its central nodes consist of the posterior
cingulate cortex (PCC), precuneus, and ventromedial prefrontal
cortex (VMPFC; Bressler and Menon, 2010). The DMN is often
referred to as a task-negative network, characterized by a stable
and replicable deactivation of its core nodes during tasks requiring
cognitive effort in PET and fMRI studies (e.g., Raichle et al.,
2001). Nonetheless, some nodes are active throughout cognitive
processing, implying that DMN plays a more complex and dynamic
role in cognition (Weber et al., 2022). It was shown that the DMN is
active during tasks requiring autobiographical memory, prospective
thinking, ego/allocentric spatial reference, and understanding of
others’ intentions (Buckner et al., 2008; Spreng et al., 2009).
Additionally, the DMN is crucial for high-level social cognitive
processes, mediating individual variability in cognitive empathy
response (Oliveira-Silva et al., 2023).

FPN activity is significantly negatively correlated with DMN
(Uddin and Menon, 2009), and its activation is relatively strongest
during cognitive effort. Its function is primarily related to task
selection and executive function, using input from other brain
networks to actively process information, and supporting higher-
order cognitive functions, such as attentional control and working
memory. The FPN is also essential for decision-making in the
context of goal-directed behavior in rule-based problem-solving
(Lindquist and Barrett, 2012). It connects the lateral posterior
parietal cortex (PPC) and the dorsolateral prefrontal cortex
(DLPFC; Seeley et al., 2007).

The SN includes the AI and dorsolateral cingulate cortex
(dACC; Sridharan et al., 2008). It is distinguished by a unique
cellular component, the von Economo neurons in the AI/dACC
(Banovac et al., 2021), characterized by a large spindle-shaped body.
The SN functions as a dynamic switch between concentration on
self and the inner world, mediated by the DMN, and task-related
and directed attention on outside stimuli maintained by the
FPN. Additionally, the amygdala and other SN subcortical nodes
co-activate in response to various experimental tasks, indicating
a more domain-general role in identifying homeostatically most
relevant competing internal and external stimuli (Chong et al.,
2017; Seeley, 2019). Its function has been shown to be relevant for
processing reward, motivation, emotion, and pain (Menon, 2015).

Allocation of attentional resources to the most salient stimuli
requires top-down sensitivity control and a bottom-up mechanism
for filtering stimuli (Parr and Friston, 2017). A central role of the
SN is filled by the insula, acting as a gatekeeper of executive control.
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FIGURE 1

Three canonical networks.

Thanks to a widespread connectivity fingerprint, its posterior part
integrates signals from within the body with external stimuli. Then,
the interaction of the anterior and posterior parts of the insula
moderates autonomic reactions and generates a signal sent to the
anterior cingulate cortex (ACC), selectively intensifying salient
stimuli that require further cortical analysis. The right dAIC is
considered to be a unique brain region, functioning as a hub
that influences both the FPN and DMN (Uddin, 2015). A strong
negative correlation between the DMN and FPN relates to the
higher efficiency of executive functions (Posner et al., 2016; see
Figure 2).

3. Network dysfunction. The impact of
network materiality on dysfunction

The correct SN response determines the appropriateness of
behavior, and the AI plays a key role in the proper functioning of the
entire network. Disorders within this structure are correlated with
many cognitive-affective dysfunctions—including those associated
with both psychiatric disorders and neurodegenerative diseases.

3.1. Deficits associated with an overactive
salience network

Overactivity in the AI-dACC pathway is mainly associated
with affective disorders (high anxiety) and neuroticism (Massullo
et al., 2020). Findings indicate elevated AI activity in response to
facial emotional expressions (Paulus and Stein, 2006), particularly
in individuals with high levels of anxiety (Stein et al., 2007).
Paulus et al. (2003) showed an association of AI with questionnaire
measures—neuroticism and risk avoidance, as well as behavioral
measures in making risky decisions in a gambling game. Higher
activation within this structure was characteristic of riskier

decisions and predicted the likelihood of choosing the safe option
in the next choice. This suggests that people with elevated levels of
neuroticism may interpret relatively safe situations as threatening
(Feinstein et al., 2006). Hamilton et al. (2013), in a review article,
presented findings showing the activity of key SN structures (AI
and ACC) and the amygdala, in response to negative stimuli in
depressed individuals. They also observed elevated AI activity in
insomniacs when trying to fall asleep (Chen et al., 2014) and in the
right AI among narcissistic individuals (Fan et al., 2011).

In addition, resting-state studies also contribute to our
understanding of SN function and dysfunction. Seeley et al. (2007)
noted a positive correlation between reported levels of pre-test
anxiety and a measure of the strength of functional connections
between AI and dACC. Markett et al. (2013), on the other hand,
showed a correlation between Cloninger’s temperamental harm
avoidance scale and the strength of connections between AI and
ACC and AI and DLPFC. Stronger functional connectivity between
dorsal ACC and new cortex regions has been reported in patients
diagnosed with panic anxiety (Pannekoek et al., 2013).

It is noteworthy that SN hyperactivity is linked not only to
psychological but also physical vulnerability. For example, the
volume of gray matter within the insula and ACC, among others,
is characteristically high in patients suffering from chronic pain
(Borsook et al., 2013; Cauda et al., 2014), and the subjectively
perceived level of pain is correlated with the strength of AI and ACC
activations (Legrain et al., 2011).

All of the above results seem consistent with the SN model
and suggest that AI overactivation leads to excessive sensitivity and
anxiety arousal, and maybe a joint transdiagnostic characteristic in
numerous conditions. This is likely related to the low excitability
threshold of the structures that make up the SN (particularly the
right AI) and the classification of excessive stimuli as important.
This leads to the generalization and over-mobilization of stress
reactions in non-threatening situations (Menon and Uddin, 2010;
Hermans et al., 2014). In the case of narcissism, on the other
hand, a proposed model of SN dysfunction relies on the inability
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FIGURE 2

A basic interaction model of the three canonical networks.

of a dysregulated right AI to turn off the DMN, leading to an
excessive concentration of thoughts on one’s self (Jankowiak-Siuda
and Zajkowski, 2013).

Functional MRI data suggests that at least three subdivisions
can be recognized within the insula on the basis of differential FC
patterns: a dorsal anterior (dAI) involved in high-level cognitive
control processes (activated by tasks requiring attention and
redirecting information to the DLPFC-PPC loop), a ventral anterior
(vAI) involved in affective processes (responsible for the flow of
affective stimuli to specialized areas within the limbic cortex and
medial prefrontal cortex), and a posterior insula (PI) involved in
sensorimotor processing (Deen et al., 2011; Chang et al., 2013).
Subjects with stronger connections in the ventral stream were
characterized by stronger affective feelings, and subjects with

stronger connections in the dorsal stream performed faster and
more effectively on a cognitive task requiring the activity of
attentional processes.

Alterations within all brain networks activity and connectivity
in the Triple Network Model (TNM) may underlie Post Traumatic
Stress Disorder (PTSD; Lebois et al., 2022). It is proposed that
overactive and hyperconnected SN destabilizes intrinsically weakly
connected and hypoactive DMN and FPN. In pursuance of
this model, alternations in networks e.g., increased posterior SN
connectivity to the PI may result in raised sensitivity to stimuli and
potential threats, that contribute to avoidance and hypervigilance
which characterize PTSD patients. Hyperactivation in the AI is
linked with re-experiencing traumatic memories (Nicholson et al.,
2020).
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The SN with a low threshold for perceived saliency is not able
to efficiently regulate the DMN and FPN switching (Weng et al.,
2019). The impairment of cognitive control over salience processing
in PTSD may be reflected in the reduced insular functional
connectivity in the ACC and the supplementary motor region (Lee
et al., 2022). The FPN and the DMN are weakly interconnected
and hypoactive, which causes narrowed cognition and incapacity
for top-down SN regulation in the FPN as well as dissociation and
fear generalization in the DMN.

As shown by Fenster et al. (2018), low involvement in
AI is linked to depersonalization and emotional detachment
symptoms in PTSD. However, Akiki et al. (2017) suggest that
alterations within the DMN may also underlie impairments
in the processing of self-referential information. In addition,
hyperconnectivity of the DMN with prefrontal FPN areas may
limit the capacity of the FPN to engage in other cognitively
demanding tasks, thus underpinning symptoms of reduced
cognitive efficacy in the PTSD group. Charquero-Ballester
et al. (2022) demonstrated positive correlations between
activity of SN and severity of PTSD symptoms and showed
that successful Cognitive Therapy for PTSD can normalize
the dynamics of brain networks. The Triple Network Model
offers a valuable way of comprehending the underlying neural
mechanisms of PTSD, but it is unlikely to account for all PTSD
abnormalities.

3.2. Deficits associated with
underperformance of the salience network

Reduced strength of causal influence from the AI to the FPN
and DMN has been linked to cognitive and affective deficits.
Up until now, the best-documented links relate to schizophrenia,
autism, and bipolar disorder.

Schizophrenia is characterized by impaired thinking and
perception as well as shallow, maladaptive affect, which can be
considered a defect of executive control. As shown by Limongi
et al. (2020), the key SN nodes’ excitation-inhibition balance is
impacted by the pathophysiology of glutamate neurotransmission.
Reduced FC has been demonstrated between the SN and DMN
(Buckner et al., 2009; Orliac et al., 2013) and between the SN
and FPN (Moran et al., 2013), as well as within SN—between
the AI and dACC (White et al., 2010). Structural MRI studies in
people with schizophrenia have revealed a smaller volume of gray
matter, encompassing all three networks (Palaniyappan et al., 2011;
Krishnadas et al., 2014). The most recent research on individuals
with schizophrenia revealed a general decrease in insula FC, as well
as a reduction in the differentiation of connectivity profiles between
insular subregions, which was associated with clinical symptom
variability (Tian et al., 2019).

Orliac et al. (2013) noted negative moderate correlations
between left striatum connectivity (included in the SN) and levels
of hallucinations and depression. The researchers interpret this as
a potential confirmation of the “relevance dysfunction” (aberrant
salience) hypothesis in schizophrenia, proposed by Kapur (2003).
It assumes that dysfunctional connections of the corticothalamic-
parietal loop lead to chaotic discharges of dopaminergic neurons,

disrupting the stimulus relevance selection taking place in the SN
(Menon et al., 2022; Pugliese et al., 2022). On the other hand,
Palaniyappan et al. (2013) highlighted the disruption between the
SN and FPN. Granger causality analysis indicated a significantly
reduced effect of SN on FPN activity, manifested by the inability to
strongly engage executive structures and “mute” the DMN during
cognitive effort.

The theory of predictive coding (PC) and Bayesian inference
offers a comprehensive principle of brain function with the
potential to link various levels of observation into a more
unified model of schizophrenia (e.g., Adams et al., 2022 or
Limongi et al., 2018). PC defines a biological scheme, where
the brain can be seen as a computational organ generating
predictions to infer the probable causes of the sensory signals,
which can be compared with actual sensory samples (Friston,
2010). Bottom-up sensory evidence (information from the sensory
milieu) ascends brain hierarchical architecture, where the lower
levels of the brain receive predictive signals from higher
levels of the brain, which encode prior beliefs. The accuracy
of prediction is cyclically tested—when the incoming sensory
input violates predictions, a prediction error (PE) is created
and sent forward to update higher-level expectations (Bayesian
belief updating; Friston, 2019). Agents weigh new evidence and
prior knowledge according to the level of confidence placed
in a prediction or PE, which determines the impact on belief
updates. The insular cortex in this framework is seen as an
integrator of low-level sensory PEs with interoceptive expectations,
regulating emotion and affective salience (Barrett and Simmons,
2015).

In addition, the SN plays an essential role in the bidirectional
circulation of prior beliefs, in order to execute functional
integration and activation of task stimuli (Limongi et al.,
2020). Royer et al. (2020) showed an insula microstructural
gradient transition with changes in local affiliation: from the
granular posterior, through ventral, up to agranular dorsal
anterior subregions. The shift in gradient corresponded with
an FC transition from primarily sensorimotor (unimodal) to
modulatory and association (transmodal) networks, analogous
to the hierarchical organization of other subcortical systems
responsible for perceptual, control, and higher-level cognitive
functions. Therefore, the multidimensional cytoarchitecture
of the insular cortex (and the whole SN) is well suited for
computing and transmitting the accuracy of ascending sensory
PEs. The FC hierarchical gradient is considered to be a large-
scale neural architecture for the PC and allostasis—predictive
regulation of the body’s energy resources, which is vital
for every aspect of a living organism (Katsumi et al.,
2022).

The view that brain inference systems are changed in
schizophrenia is supported by well-documented deficits in
cognitive decision-making in numerous studies (e.g., Schmack
et al., 2015; Kirihara et al., 2020). Failures of inference can
explain a wide range of psychotic symptoms and traits (Friston
et al., 2016). Neurotransmitter alterations underlie imprecision in
the PC hierarchical mechanism, particularly in the post-synaptic
gain of cortical NMDA receptors and GABAergic neurons with
elevated dopaminergic neuromodulation. Disturbed neural PE
signals induce misattribution of the salience of stimuli. The
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participation of the insula in monitoring the disruption of
predictions is compatible with its function in processing salient
stimuli and neuropathology in the assignment of behavioral
salience to non-target stimuli in schizophrenia (Sridharan et al.,
2008).

Furthermore, Luo et al. (2020) showed that control signals
from rAI are improperly elevated and directed towards both
the FPN and DMN, disrupting the contextually congruent
assignment of brain resources in patients with schizophrenia.
Liddle et al. (2016) used magnetoencephalography (MEG) to
measure beta oscillations in the insula during a saliency modulation
task to compare activity during task-relevant and task-irrelevant
stimulus processing. Beta oscillations were chosen as they mediate
endogenous long-range integrative signals or prior expectations
to recurring environmental stimuli. When compared to healthy
controls, schizophrenia patients had more beta synchronization
in the insula when processing irrelevant stimuli over relevant
ones (stronger reaction to disruption of prediction; Fries,
2015).

Empirical studies also link schizophrenia symptoms to
abnormal signaling of PEs (particularly in the brain areas of
reward, value-based decision-making), lack of long-term stability
of internal models and priors (Sterzer et al., 2019). A DCM study of
the PC provided further evidence of abnormal connectivity in the
neuropathology and pathophysiology of schizophrenia (Fogelson
et al., 2014). The long-standing unpredictability about upcoming
sensory inputs finally leads to stimulus avoidance and psychomotor
poverty, which is observed in clinical conditions (Corlett et al.,
2016). In conclusion, the symptoms of schizophrenia are consistent
with a decrease in high-level precision or a failure of sensory
attenuation (an overestimate of the trustworthiness of the PEs),
leading to false inferences and failure in cognitive control as well
as the possibility of hallucinations and delusions (Sterzer et al.,
2018).

Autism spectrum disorder (ASD) belongs to a group of
developmental disorders characterized by qualitative abnormalities
in social interactions and behavioral patterns, as well as a limited
and repetitive repertoire of interests and activities (ICD-10).
A meta-analysis of fMRI studies found that AI and ACC are
regularly less active in people with autism, compared to a control
group, during social tasks (Di Martino et al., 2009). Uddin
and Menon’s (2009) model of dysfunction in autism posits that
the disorder is caused by deficits in communication between
sensory and limbic structures and the insula. This leads to
the SN’s “underestimation” of the importance of social stimuli,
which explains the phenotype of characteristic dysfunctions in
responding to social stimuli. Moreover, changes in the FC pattern
among the dAIC, DMN, and FPN correlate with the severity
of ASD symptoms (Uddin et al., 2015). Gonzalez-Gadea et al.
(2015), using the PC framework, implied that persons with
ASD may have reduced precision adjustment when confronted
with uncertainty because of rigid expectations (Van de Cruys
et al., 2014). The predisposition to suppress bottom-up inputs
and the attentional bias toward anticipated stimuli may hinder
the ability to adjust precision in dynamic real-world contexts.
This result is consistent with previous research on predictive
coding in ASD (Lawson et al., 2014), which indicates that
autistic persons struggle to contextualize sensory input in light

of their preexisting beliefs and that these deficits primarily
manifest in situations of uncertainty (Gomot and Wicker,
2012).

Meta-analysis of bipolar disorder (BD) patients focused on
rs-fMRI and analysis of effective connectivity have shown that
functional integration within and among three core brain networks
(SN, DMN, and FPN) is abnormal (Sha et al., 2019; Yoon
et al., 2021; Zhang et al., 2022). Altered connectivity patterns
were dependent on mood, as well as the type of BD (Zhang
et al., 2022). BD patients expressed altered connectivity both
within networks (FPN, SN) and between (DMN-SN, DMN-
FPN). There were also differences between stages of the disorder:
compared to the depression stage, patients with euthymic stage
expressed a hyperconnectivity among the FPN and reduced
connectivity between SN and FPN and SN and DMN (Zhang
et al., 2022). Martino and Magioncalda (2022) and Magioncalda
and Martino (2022) suggested that the lack of integration between
SN, DMN, and FPN may be due to changes in neurotransmitter
signaling which can be observed during the manic and depressive
phases of BD.

4. Discussion, limitations, and
directions for further research

This mini-review segregates SN dysfunctions into hyperactivity
and hypoactivity, which can lead to a simplistic perception of the
mechanisms of the described deficits. However, it should be noted
that the actual role of the SN in the presented disorders is more
elusive. First, SN dysfunctions are a unifying feature of a whole
range of deficits, but this does not mean that they are the only
or even the main cause. Second, the relationships between and
within SN structures themselves are complex and varied, which is
one reason why the dysfunctions themselves are different. Third,
atypical connections or activations within SNs are not sufficient
conditions for cognitive-affective dysfunction to occur.

The second point, which entails exploring the more intricate
interactions and conditional dependencies that distinguish
the mechanisms underlying various disorders, seems most
intriguing from the standpoint of future research. Attempts
have been made to specify these mechanisms, such as the
briefly described neural models of dysfunction in autism
(Uddin and Menon, 2009), narcissism (Jankowiak-Siuda and
Zajkowski, 2013) or schizophrenia (Kapur, 2003; Palaniyappan
and Liddle, 2012). However, most of them are not yet
supported by enough empirical evidence to fully validate all
the hypotheses they pose; for now, they mainly serve to steer
further research.

It must also be taken into account that the functional
connectivity data derived from imaging studies suffer from
limited spatial and temporal resolution, limiting the inference
to sufficiently large brain areas and sufficiently slow dynamical
processes. Coupling these findings with methods capturing
millisecond dynamics (such as single or multi-electrode
arrays; Spira and Hai, 2013) could lead to new insights
and fuller understanding of the processes governing the
network dynamics.
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